Source

emacs / lispref / numbers.texi

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. 
@c See the file elisp.texi for copying conditions.
@setfilename ../info/numbers
@node Numbers, Strings and Characters, Lisp Data Types, Top
@chapter Numbers
@cindex integers
@cindex numbers

  GNU Emacs supports two numeric data types: @dfn{integers} and
@dfn{floating point numbers}.  Integers are whole numbers such as
@minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
2.71828.  They can also be expressed in exponential notation:
1.5e2 equals 150; in this example, @samp{e2} stands for ten to the
second power, and is multiplied by 1.5.  Floating point values are not
exact; they have a fixed, limited amount of precision.

  Support for floating point numbers is a new feature in Emacs 19, and it
is controlled by a separate compilation option, so you may encounter a site
where Emacs does not support them.

@menu
* Integer Basics::            Representation and range of integers.
* Float Basics::	      Representation and range of floating point.
* Predicates on Numbers::     Testing for numbers.
* Comparison of Numbers::     Equality and inequality predicates.
* Numeric Conversions::	      Converting float to integer and vice versa.
* Arithmetic Operations::     How to add, subtract, multiply and divide.
* Rounding Operations::       Explicitly rounding floating point numbers.
* Bitwise Operations::        Logical and, or, not, shifting.
* Math Functions::            Trig, exponential and logarithmic functions.
* Random Numbers::            Obtaining random integers, predictable or not.
@end menu

@node Integer Basics
@comment  node-name,  next,  previous,  up
@section Integer Basics

  The range of values for an integer depends on the machine.  The
minimum range is @minus{}134217728 to 134217727 (28 bits; i.e.,
@ifinfo 
-2**27
@end ifinfo
@tex 
$-2^{27}$
@end tex
to 
@ifinfo 
2**27 - 1),
@end ifinfo
@tex 
$2^{27}-1$),
@end tex
but some machines may provide a wider range.  Many examples in this
chapter assume an integer has 28 bits.
@cindex overflow

  The Lisp reader reads an integer as a sequence of digits with optional
initial sign and optional final period.

@example
 1               ; @r{The integer 1.}
 1.              ; @r{The integer 1.}
+1               ; @r{Also the integer 1.}
-1               ; @r{The integer @minus{}1.}
 268435457       ; @r{Also the integer 1, due to overflow.}
 0               ; @r{The integer 0.}
-0               ; @r{The integer 0.}
@end example

  To understand how various functions work on integers, especially the
bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
view the numbers in their binary form.

  In 28-bit binary, the decimal integer 5 looks like this:

@example
0000  0000 0000  0000 0000  0000 0101
@end example

@noindent
(We have inserted spaces between groups of 4 bits, and two spaces
between groups of 8 bits, to make the binary integer easier to read.)

  The integer @minus{}1 looks like this:

@example
1111  1111 1111  1111 1111  1111 1111
@end example

@noindent
@cindex two's complement
@minus{}1 is represented as 28 ones.  (This is called @dfn{two's
complement} notation.)

  The negative integer, @minus{}5, is creating by subtracting 4 from
@minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
@minus{}5 looks like this:

@example
1111  1111 1111  1111 1111  1111 1011
@end example

  In this implementation, the largest 28-bit binary integer value is
134,217,727 in decimal.  In binary, it looks like this:

@example
0111  1111 1111  1111 1111  1111 1111
@end example

  Since the arithmetic functions do not check whether integers go
outside their range, when you add 1 to 134,217,727, the value is the
negative integer @minus{}134,217,728:

@example
(+ 1 134217727)
     @result{} -134217728
     @result{} 1000  0000 0000  0000 0000  0000 0000
@end example

  Many of the following functions accept markers for arguments as well
as integers.  (@xref{Markers}.)  More precisely, the actual arguments to
such functions may be either integers or markers, which is why we often
give these arguments the name @var{int-or-marker}.  When the argument
value is a marker, its position value is used and its buffer is ignored.

@ignore
  In version 19, except where @emph{integer} is specified as an
argument, all of the functions for markers and integers also work for
floating point numbers.
@end ignore

@node Float Basics
@section Floating Point Basics

@cindex @code{LISP_FLOAT_TYPE} configuration macro
  Emacs version 19 supports floating point numbers, if compiled with the
macro @code{LISP_FLOAT_TYPE} defined.  The precise range of floating
point numbers is machine-specific; it is the same as the range of the C
data type @code{double} on the machine in question.

  The printed representation for floating point numbers requires either
a decimal point (with at least one digit following), an exponent, or
both.  For example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2},
@samp{1.5e3}, and @samp{.15e4} are five ways of writing a floating point
number whose value is 1500.  They are all equivalent.  You can also use
a minus sign to write negative floating point numbers, as in
@samp{-1.0}.

@cindex IEEE floating point
@cindex positive infinity
@cindex negative infinity
@cindex infinity
@cindex NaN
   Most modern computers support the IEEE floating point standard, which
provides for positive infinity and negative infinity as floating point
values.  It also provides for a class of values called NaN or
``not-a-number''; numerical functions return such values in cases where
there is no correct answer.  For example, @code{(sqrt -1.0)} returns a
NaN.  For practical purposes, there's no significant difference between
different NaN values in Emacs Lisp, and there's no rule for precisely
which NaN value should be used in a particular case, so this manual
doesn't try to distinguish them.  Emacs Lisp has no read syntax for NaNs
or infinities; perhaps we should create a syntax in the future.

  You can use @code{logb} to extract the binary exponent of a floating
point number (or estimate the logarithm of an integer):

@defun logb number
This function returns the binary exponent of @var{number}.  More
precisely, the value is the logarithm of @var{number} base 2, rounded
down to an integer.
@end defun

@node Predicates on Numbers
@section Type Predicates for Numbers

  The functions in this section test whether the argument is a number or
whether it is a certain sort of number.  The functions @code{integerp}
and @code{floatp} can take any type of Lisp object as argument (the
predicates would not be of much use otherwise); but the @code{zerop}
predicate requires a number as its argument.  See also
@code{integer-or-marker-p} and @code{number-or-marker-p}, in
@ref{Predicates on Markers}.

@defun floatp object
This predicate tests whether its argument is a floating point
number and returns @code{t} if so, @code{nil} otherwise.

@code{floatp} does not exist in Emacs versions 18 and earlier.
@end defun

@defun integerp object
This predicate tests whether its argument is an integer, and returns
@code{t} if so, @code{nil} otherwise.
@end defun

@defun numberp object
This predicate tests whether its argument is a number (either integer or
floating point), and returns @code{t} if so, @code{nil} otherwise.
@end defun

@defun wholenump object
@cindex natural numbers
The @code{wholenump} predicate (whose name comes from the phrase
``whole-number-p'') tests to see whether its argument is a nonnegative
integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
considered non-negative.

@findex natnump
@code{natnump} is an obsolete synonym for @code{wholenump}.
@end defun

@defun zerop number
This predicate tests whether its argument is zero, and returns @code{t}
if so, @code{nil} otherwise.  The argument must be a number.

These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
@end defun

@node Comparison of Numbers
@section Comparison of Numbers
@cindex number equality

  To test numbers for numerical equality, you should normally use
@code{=}, not @code{eq}.  There can be many distinct floating point
number objects with the same numeric value.  If you use @code{eq} to
compare them, then you test whether two values are the same
@emph{object}.  By contrast, @code{=} compares only the numeric values
of the objects.

  At present, each integer value has a unique Lisp object in Emacs Lisp.
Therefore, @code{eq} is equivalent @code{=} where integers are
concerned.  It is sometimes convenient to use @code{eq} for comparing an
unknown value with an integer, because @code{eq} does not report an
error if the unknown value is not a number---it accepts arguments of any
type.  By contrast, @code{=} signals an error if the arguments are not
numbers or markers.  However, it is a good idea to use @code{=} if you
can, even for comparing integers, just in case we change the
representation of integers in a future Emacs version.

  There is another wrinkle: because floating point arithmetic is not
exact, it is often a bad idea to check for equality of two floating
point values.  Usually it is better to test for approximate equality.
Here's a function to do this:

@example
(defvar fuzz-factor 1.0e-6)
(defun approx-equal (x y)
  (or (and (= x 0) (= y 0))
      (< (/ (abs (- x y))
            (max (abs x) (abs y)))
         fuzz-factor)))
@end example

@cindex CL note---integers vrs @code{eq}
@quotation
@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
@code{=} because Common Lisp implements multi-word integers, and two
distinct integer objects can have the same numeric value.  Emacs Lisp
can have just one integer object for any given value because it has a
limited range of integer values.
@end quotation

@defun = number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and
returns @code{t} if so, @code{nil} otherwise.
@end defun

@defun /= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and
returns @code{t} if they are not, and @code{nil} if they are.
@end defun

@defun <  number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly less than
its second argument.  It returns @code{t} if so, @code{nil} otherwise.
@end defun

@defun <=  number-or-marker1 number-or-marker2
This function tests whether its first argument is less than or equal
to its second argument.  It returns @code{t} if so, @code{nil}
otherwise.
@end defun

@defun >  number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly greater
than its second argument.  It returns @code{t} if so, @code{nil}
otherwise.
@end defun

@defun >=  number-or-marker1 number-or-marker2
This function tests whether its first argument is greater than or
equal to its second argument.  It returns @code{t} if so, @code{nil}
otherwise.
@end defun

@defun max number-or-marker &rest numbers-or-markers
This function returns the largest of its arguments.

@example
(max 20)
     @result{} 20
(max 1 2.5)
     @result{} 2.5
(max 1 3 2.5)
     @result{} 3
@end example
@end defun

@defun min number-or-marker &rest numbers-or-markers
This function returns the smallest of its arguments.

@example
(min -4 1)
     @result{} -4
@end example
@end defun

@node Numeric Conversions
@section Numeric Conversions
@cindex rounding in conversions

To convert an integer to floating point, use the function @code{float}.

@defun float number
This returns @var{number} converted to floating point.
If @var{number} is already a floating point number, @code{float} returns
it unchanged.
@end defun

There are four functions to convert floating point numbers to integers;
they differ in how they round.  These functions accept integer arguments
also, and return such arguments unchanged.

@defun truncate number
This returns @var{number}, converted to an integer by rounding towards
zero.
@end defun

@defun floor number &optional divisor
This returns @var{number}, converted to an integer by rounding downward
(towards negative infinity).

If @var{divisor} is specified, @var{number} is divided by @var{divisor}
before the floor is taken; this is the division operation that
corresponds to @code{mod}.  An @code{arith-error} results if
@var{divisor} is 0.
@end defun

@defun ceiling number
This returns @var{number}, converted to an integer by rounding upward
(towards positive infinity).
@end defun

@defun round number
This returns @var{number}, converted to an integer by rounding towards the
nearest integer.  Rounding a value equidistant between two integers
may choose the integer closer to zero, or it may prefer an even integer,
depending on your machine.
@end defun

@node Arithmetic Operations
@section Arithmetic Operations

  Emacs Lisp provides the traditional four arithmetic operations:
addition, subtraction, multiplication, and division.  Remainder and modulus
functions supplement the division functions.  The functions to
add or subtract 1 are provided because they are traditional in Lisp and
commonly used.

  All of these functions except @code{%} return a floating point value
if any argument is floating.

  It is important to note that in GNU Emacs Lisp, arithmetic functions
do not check for overflow.  Thus @code{(1+ 134217727)} may evaluate to
@minus{}134217728, depending on your hardware.

@defun 1+ number-or-marker
This function returns @var{number-or-marker} plus 1.
For example,

@example
(setq foo 4)
     @result{} 4
(1+ foo)
     @result{} 5
@end example

This function is not analogous to the C operator @code{++}---it does not
increment a variable.  It just computes a sum.  Thus, if we continue,

@example
foo
     @result{} 4
@end example

If you want to increment the variable, you must use @code{setq},
like this:

@example
(setq foo (1+ foo))
     @result{} 5
@end example
@end defun

@defun 1- number-or-marker
This function returns @var{number-or-marker} minus 1.
@end defun

@defun abs number
This returns the absolute value of @var{number}.
@end defun

@defun + &rest numbers-or-markers
This function adds its arguments together.  When given no arguments,
@code{+} returns 0.

@example
(+)
     @result{} 0
(+ 1)
     @result{} 1
(+ 1 2 3 4)
     @result{} 10
@end example
@end defun

@defun - &optional number-or-marker &rest other-numbers-or-markers
The @code{-} function serves two purposes: negation and subtraction.
When @code{-} has a single argument, the value is the negative of the
argument.  When there are multiple arguments, @code{-} subtracts each of
the @var{other-numbers-or-markers} from @var{number-or-marker},
cumulatively.  If there are no arguments, the result is 0.

@example
(- 10 1 2 3 4)
     @result{} 0
(- 10)
     @result{} -10
(-)
     @result{} 0
@end example
@end defun

@defun * &rest numbers-or-markers
This function multiplies its arguments together, and returns the
product.  When given no arguments, @code{*} returns 1.

@example
(*)
     @result{} 1
(* 1)
     @result{} 1
(* 1 2 3 4)
     @result{} 24
@end example
@end defun

@defun / dividend divisor &rest divisors
This function divides @var{dividend} by @var{divisor} and returns the
quotient.  If there are additional arguments @var{divisors}, then it
divides @var{dividend} by each divisor in turn.  Each argument may be a
number or a marker.

If all the arguments are integers, then the result is an integer too.
This means the result has to be rounded.  On most machines, the result
is rounded towards zero after each division, but some machines may round
differently with negative arguments.  This is because the Lisp function
@code{/} is implemented using the C division operator, which also
permits machine-dependent rounding.  As a practical matter, all known
machines round in the standard fashion.

@cindex @code{arith-error} in division
If you divide by 0, an @code{arith-error} error is signaled.
(@xref{Errors}.)

@example
@group
(/ 6 2)
     @result{} 3
@end group
(/ 5 2)
     @result{} 2
(/ 25 3 2)
     @result{} 4
(/ -17 6)
     @result{} -2
@end example

The result of @code{(/ -17 6)} could in principle be -3 on some
machines.
@end defun

@defun % dividend divisor
@cindex remainder
This function returns the integer remainder after division of @var{dividend}
by @var{divisor}.  The arguments must be integers or markers.

For negative arguments, the remainder is in principle machine-dependent
since the quotient is; but in practice, all known machines behave alike.

An @code{arith-error} results if @var{divisor} is 0.

@example
(% 9 4)
     @result{} 1
(% -9 4)
     @result{} -1
(% 9 -4)
     @result{} 1
(% -9 -4)
     @result{} -1
@end example

For any two integers @var{dividend} and @var{divisor},

@example
@group
(+ (% @var{dividend} @var{divisor})
   (* (/ @var{dividend} @var{divisor}) @var{divisor}))
@end group
@end example

@noindent
always equals @var{dividend}.
@end defun

@defun mod dividend divisor
@cindex modulus
This function returns the value of @var{dividend} modulo @var{divisor};
in other words, the remainder after division of @var{dividend}
by @var{divisor}, but with the same sign as @var{divisor}.
The arguments must be numbers or markers.

Unlike @code{%}, @code{mod} returns a well-defined result for negative
arguments.  It also permits floating point arguments; it rounds the
quotient downward (towards minus infinity) to an integer, and uses that
quotient to compute the remainder.

An @code{arith-error} results if @var{divisor} is 0.

@example
@group
(mod 9 4)
     @result{} 1
@end group
@group
(mod -9 4)
     @result{} 3
@end group
@group
(mod 9 -4)
     @result{} -3
@end group
@group
(mod -9 -4)
     @result{} -1
@end group
@group
(mod 5.5 2.5)
     @result{} .5
@end group
@end example

For any two numbers @var{dividend} and @var{divisor},

@example
@group
(+ (mod @var{dividend} @var{divisor})
   (* (floor @var{dividend} @var{divisor}) @var{divisor}))
@end group
@end example

@noindent
always equals @var{dividend}, subject to rounding error if either
argument is floating point.  For @code{floor}, see @ref{Numeric
Conversions}.
@end defun

@node Rounding Operations
@section Rounding Operations
@cindex rounding without conversion

The functions @code{ffloor}, @code{fceiling}, @code{fround} and
@code{ftruncate} take a floating point argument and return a floating
point result whose value is a nearby integer.  @code{ffloor} returns the
nearest integer below; @code{fceiling}, the nearest integer above;
@code{ftruncate}, the nearest integer in the direction towards zero;
@code{fround}, the nearest integer.

@defun ffloor float
This function rounds @var{float} to the next lower integral value, and
returns that value as a floating point number.
@end defun

@defun fceiling float
This function rounds @var{float} to the next higher integral value, and
returns that value as a floating point number.
@end defun

@defun ftruncate float
This function rounds @var{float} towards zero to an integral value, and
returns that value as a floating point number.
@end defun

@defun fround float
This function rounds @var{float} to the nearest integral value,
and returns that value as a floating point number.
@end defun

@node Bitwise Operations
@section Bitwise Operations on Integers

  In a computer, an integer is represented as a binary number, a
sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
operation acts on the individual bits of such a sequence.  For example,
@dfn{shifting} moves the whole sequence left or right one or more places,
reproducing the same pattern ``moved over''.

  The bitwise operations in Emacs Lisp apply only to integers.

@defun lsh integer1 count
@cindex logical shift
@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
bits in @var{integer1} to the left @var{count} places, or to the right
if @var{count} is negative, bringing zeros into the vacated bits.  If
@var{count} is negative, @code{lsh} shifts zeros into the leftmost
(most-significant) bit, producing a positive result even if
@var{integer1} is negative.  Contrast this with @code{ash}, below.

Here are two examples of @code{lsh}, shifting a pattern of bits one
place to the left.  We show only the low-order eight bits of the binary
pattern; the rest are all zero.

@example
@group
(lsh 5 1)
     @result{} 10
;; @r{Decimal 5 becomes decimal 10.}
00000101 @result{} 00001010

(lsh 7 1)
     @result{} 14
;; @r{Decimal 7 becomes decimal 14.}
00000111 @result{} 00001110
@end group
@end example

@noindent
As the examples illustrate, shifting the pattern of bits one place to
the left produces a number that is twice the value of the previous
number.

Shifting a pattern of bits two places to the left produces results
like this (with 8-bit binary numbers):

@example
@group
(lsh 3 2)
     @result{} 12
;; @r{Decimal 3 becomes decimal 12.}
00000011 @result{} 00001100       
@end group
@end example

On the other hand, shifting one place to the right looks like this:

@example
@group
(lsh 6 -1)
     @result{} 3
;; @r{Decimal 6 becomes decimal 3.}
00000110 @result{} 00000011       
@end group

@group
(lsh 5 -1)
     @result{} 2
;; @r{Decimal 5 becomes decimal 2.}
00000101 @result{} 00000010       
@end group
@end example

@noindent
As the example illustrates, shifting one place to the right divides the
value of a positive integer by two, rounding downward.

The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
not check for overflow, so shifting left can discard significant bits
and change the sign of the number.  For example, left shifting
134,217,727 produces @minus{}2 on a 28-bit machine:

@example
(lsh 134217727 1)          ; @r{left shift}
     @result{} -2
@end example

In binary, in the 28-bit implementation, the argument looks like this:

@example
@group
;; @r{Decimal 134,217,727}
0111  1111 1111  1111 1111  1111 1111         
@end group
@end example

@noindent
which becomes the following when left shifted:

@example
@group
;; @r{Decimal @minus{}2}
1111  1111 1111  1111 1111  1111 1110         
@end group
@end example
@end defun

@defun ash integer1 count
@cindex arithmetic shift
@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
to the left @var{count} places, or to the right if @var{count}
is negative.

@code{ash} gives the same results as @code{lsh} except when
@var{integer1} and @var{count} are both negative.  In that case,
@code{ash} puts ones in the empty bit positions on the left, while
@code{lsh} puts zeros in those bit positions.

Thus, with @code{ash}, shifting the pattern of bits one place to the right
looks like this:

@example
@group
(ash -6 -1) @result{} -3            
;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
1111  1111 1111  1111 1111  1111 1010
     @result{} 
1111  1111 1111  1111 1111  1111 1101
@end group
@end example

In contrast, shifting the pattern of bits one place to the right with
@code{lsh} looks like this:

@example
@group
(lsh -6 -1) @result{} 134217725
;; @r{Decimal @minus{}6 becomes decimal 134,217,725.}
1111  1111 1111  1111 1111  1111 1010
     @result{} 
0111  1111 1111  1111 1111  1111 1101
@end group
@end example

Here are other examples:

@c !!! Check if lined up in smallbook format!  XDVI shows problem
@c     with smallbook but not with regular book! --rjc 16mar92
@smallexample
@group
                   ;  @r{             28-bit binary values}

(lsh 5 2)          ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
     @result{} 20         ;      =  @r{0000  0000 0000  0000 0000  0001 0100}
@end group
@group
(ash 5 2)
     @result{} 20
(lsh -5 2)         ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
     @result{} -20        ;      =  @r{1111  1111 1111  1111 1111  1110 1100}
(ash -5 2)
     @result{} -20
@end group
@group
(lsh 5 -2)         ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
     @result{} 1          ;      =  @r{0000  0000 0000  0000 0000  0000 0001}
@end group
@group
(ash 5 -2)
     @result{} 1
@end group
@group
(lsh -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
     @result{} 4194302    ;      =  @r{0011  1111 1111  1111 1111  1111 1110}
@end group
@group
(ash -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
     @result{} -2         ;      =  @r{1111  1111 1111  1111 1111  1111 1110}
@end group
@end smallexample
@end defun

@defun logand &rest ints-or-markers
@cindex logical and
@cindex bitwise and
This function returns the ``logical and'' of the arguments: the
@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
set in all the arguments.  (``Set'' means that the value of the bit is 1
rather than 0.)

For example, using 4-bit binary numbers, the ``logical and'' of 13 and
12 is 12: 1101 combined with 1100 produces 1100.
In both the binary numbers, the leftmost two bits are set (i.e., they
are 1's), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of
the arguments, so the rightmost two bits of the returned value are 0's.

@noindent
Therefore,

@example
@group
(logand 13 12)
     @result{} 12
@end group
@end example

If @code{logand} is not passed any argument, it returns a value of
@minus{}1.  This number is an identity element for @code{logand}
because its binary representation consists entirely of ones.  If
@code{logand} is passed just one argument, it returns that argument.

@smallexample
@group
                   ; @r{               28-bit binary values}

(logand 14 13)     ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
                   ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
     @result{} 12         ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
@end group

@group
(logand 14 13 4)   ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
                   ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
                   ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
     @result{} 4          ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
@end group

@group
(logand)
     @result{} -1         ; -1  =  @r{1111  1111 1111  1111 1111  1111 1111}
@end group
@end smallexample
@end defun

@defun logior &rest ints-or-markers
@cindex logical inclusive or
@cindex bitwise or
This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
is set in the result if, and only if, the @var{n}th bit is set in at least
one of the arguments.  If there are no arguments, the result is zero,
which is an identity element for this operation.  If @code{logior} is
passed just one argument, it returns that argument.

@smallexample
@group
                   ; @r{              28-bit binary values}

(logior 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
                   ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
     @result{} 13         ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
@end group

@group
(logior 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
                   ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
                   ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
     @result{} 15         ; 15  =  @r{0000  0000 0000  0000 0000  0000 1111}
@end group
@end smallexample
@end defun

@defun logxor &rest ints-or-markers
@cindex bitwise exclusive or
@cindex logical exclusive or
This function returns the ``exclusive or'' of its arguments: the
@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
set in an odd number of the arguments.  If there are no arguments, the
result is 0, which is an identity element for this operation.  If
@code{logxor} is passed just one argument, it returns that argument.

@smallexample
@group
                   ; @r{              28-bit binary values}

(logxor 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
                   ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
     @result{} 9          ;  9  =  @r{0000  0000 0000  0000 0000  0000 1001}
@end group

@group
(logxor 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
                   ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
                   ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
     @result{} 14         ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
@end group
@end smallexample
@end defun

@defun lognot integer
@cindex logical not
@cindex bitwise not
This function returns the logical complement of its argument: the @var{n}th
bit is one in the result if, and only if, the @var{n}th bit is zero in
@var{integer}, and vice-versa.

@example
(lognot 5)             
     @result{} -6
;;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
;; @r{becomes}
;; -6  =  @r{1111  1111 1111  1111 1111  1111 1010}
@end example
@end defun

@node Math Functions
@section Standard Mathematical Functions
@cindex transcendental functions
@cindex mathematical functions

These mathematical functions are available if floating point is
supported.  They allow integers as well as floating point numbers
as arguments.

@defun sin arg
@defunx cos arg
@defunx tan arg
These are the ordinary trigonometric functions, with argument measured
in radians.
@end defun

@defun asin arg
The value of @code{(asin @var{arg})} is a number between @minus{}pi/2
and pi/2 (inclusive) whose sine is @var{arg}; if, however, @var{arg}
is out of range (outside [-1, 1]), then the result is a NaN.
@end defun

@defun acos arg
The value of @code{(acos @var{arg})} is a number between 0 and pi
(inclusive) whose cosine is @var{arg}; if, however, @var{arg}
is out of range (outside [-1, 1]), then the result is a NaN.
@end defun

@defun atan arg
The value of @code{(atan @var{arg})} is a number between @minus{}pi/2
and pi/2 (exclusive) whose tangent is @var{arg}.
@end defun

@defun exp arg
This is the exponential function; it returns @i{e} to the power
@var{arg}.  @i{e} is a fundamental mathematical constant also called the
base of natural logarithms.
@end defun

@defun log arg &optional base
This function returns the logarithm of @var{arg}, with base @var{base}.
If you don't specify @var{base}, the base @var{e} is used.  If @var{arg}
is negative, the result is a NaN.
@end defun

@ignore
@defun expm1 arg
This function returns @code{(1- (exp @var{arg}))}, but it is more
accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
is close to 1.
@end defun

@defun log1p arg
This function returns @code{(log (1+ @var{arg}))}, but it is more
accurate than that when @var{arg} is so small that adding 1 to it would
lose accuracy.
@end defun
@end ignore

@defun log10 arg
This function returns the logarithm of @var{arg}, with base 10.  If
@var{arg} is negative, the result is a NaN.  @code{(log10 @var{x})}
@equiv{} @code{(log @var{x} 10)}, at least approximately.
@end defun

@defun expt x y
This function returns @var{x} raised to power @var{y}.  If both
arguments are integers and @var{y} is positive, the result is an
integer; in this case, it is truncated to fit the range of possible
integer values.
@end defun

@defun sqrt arg
This returns the square root of @var{arg}.  If @var{arg} is negative,
the value is a NaN.
@end defun

@node Random Numbers
@section Random Numbers
@cindex random numbers

A deterministic computer program cannot generate true random numbers.
For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
pseudo-random numbers is generated in a deterministic fashion.  The
numbers are not truly random, but they have certain properties that
mimic a random series.  For example, all possible values occur equally
often in a pseudo-random series.

In Emacs, pseudo-random numbers are generated from a ``seed'' number.
Starting from any given seed, the @code{random} function always
generates the same sequence of numbers.  Emacs always starts with the
same seed value, so the sequence of values of @code{random} is actually
the same in each Emacs run!  For example, in one operating system, the
first call to @code{(random)} after you start Emacs always returns
-1457731, and the second one always returns -7692030.  This
repeatability is helpful for debugging.

If you want truly unpredictable random numbers, execute @code{(random
t)}.  This chooses a new seed based on the current time of day and on
Emacs's process @sc{id} number.

@defun random &optional limit
This function returns a pseudo-random integer.  Repeated calls return a
series of pseudo-random integers.

If @var{limit} is a positive integer, the value is chosen to be
nonnegative and less than @var{limit}.

If @var{limit} is @code{t}, it means to choose a new seed based on the
current time of day and on Emacs's process @sc{id} number.
@c "Emacs'" is incorrect usage!

On some machines, any integer representable in Lisp may be the result
of @code{random}.  On other machines, the result can never be larger
than a certain maximum or less than a certain (negative) minimum.
@end defun
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.