Source

emacs / lisp / subr.el

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
;;; subr.el --- basic lisp subroutines for Emacs

;; Copyright (C) 1985, 86, 92, 94, 95, 99, 2000, 2001, 2002, 2003
;;   Free Software Foundation, Inc.

;; Maintainer: FSF
;; Keywords: internal

;; This file is part of GNU Emacs.

;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING.  If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.

;;; Commentary:

;;; Code:
(defvar custom-declare-variable-list nil
  "Record `defcustom' calls made before `custom.el' is loaded to handle them.
Each element of this list holds the arguments to one call to `defcustom'.")

;; Use this, rather than defcustom, in subr.el and other files loaded
;; before custom.el.
(defun custom-declare-variable-early (&rest arguments)
  (setq custom-declare-variable-list
	(cons arguments custom-declare-variable-list)))


(defun macro-declaration-function (macro decl)
  "Process a declaration found in a macro definition.
This is set as the value of the variable `macro-declaration-function'.
MACRO is the name of the macro being defined.
DECL is a list `(declare ...)' containing the declarations.
The return value of this function is not used."
  ;; We can't use `dolist' or `cadr' yet for bootstrapping reasons.
  (let (d)
    ;; Ignore the first element of `decl' (it's always `declare').
    (while (setq decl (cdr decl))
      (setq d (car decl))
      (cond ((and (consp d) (eq (car d) 'indent))
	     (put macro 'lisp-indent-function (car (cdr d))))
	    ((and (consp d) (eq (car d) 'debug))
	     (put macro 'edebug-form-spec (car (cdr d))))
	    (t
	     (message "Unknown declaration %s" d))))))

(setq macro-declaration-function 'macro-declaration-function)


;;;; Lisp language features.

(defalias 'not 'null)

(defmacro lambda (&rest cdr)
  "Return a lambda expression.
A call of the form (lambda ARGS DOCSTRING INTERACTIVE BODY) is
self-quoting; the result of evaluating the lambda expression is the
expression itself.  The lambda expression may then be treated as a
function, i.e., stored as the function value of a symbol, passed to
funcall or mapcar, etc.

ARGS should take the same form as an argument list for a `defun'.
DOCSTRING is an optional documentation string.
 If present, it should describe how to call the function.
 But documentation strings are usually not useful in nameless functions.
INTERACTIVE should be a call to the function `interactive', which see.
It may also be omitted.
BODY should be a list of Lisp expressions."
  ;; Note that this definition should not use backquotes; subr.el should not
  ;; depend on backquote.el.
  (list 'function (cons 'lambda cdr)))

(defmacro push (newelt listname)
  "Add NEWELT to the list stored in the symbol LISTNAME.
This is equivalent to (setq LISTNAME (cons NEWELT LISTNAME)).
LISTNAME must be a symbol."
  (declare (debug (form sexp)))
  (list 'setq listname
	(list 'cons newelt listname)))

(defmacro pop (listname)
  "Return the first element of LISTNAME's value, and remove it from the list.
LISTNAME must be a symbol whose value is a list.
If the value is nil, `pop' returns nil but does not actually
change the list."
  (declare (debug (sexp)))
  (list 'car
	(list 'prog1 listname
	      (list 'setq listname (list 'cdr listname)))))

(defmacro when (cond &rest body)
  "If COND yields non-nil, do BODY, else return nil."
  (declare (indent 1) (debug t))
  (list 'if cond (cons 'progn body)))

(defmacro unless (cond &rest body)
  "If COND yields nil, do BODY, else return nil."
  (declare (indent 1) (debug t))
  (cons 'if (cons cond (cons nil body))))

(defmacro dolist (spec &rest body)
  "Loop over a list.
Evaluate BODY with VAR bound to each car from LIST, in turn.
Then evaluate RESULT to get return value, default nil.

\(fn (VAR LIST [RESULT]) BODY...)"
  (declare (indent 1) (debug ((symbolp form &optional form) body)))
  (let ((temp (make-symbol "--dolist-temp--")))
    `(let ((,temp ,(nth 1 spec))
	   ,(car spec))
       (while ,temp
	 (setq ,(car spec) (car ,temp))
	 (setq ,temp (cdr ,temp))
	 ,@body)
       ,@(if (cdr (cdr spec))
	     `((setq ,(car spec) nil) ,@(cdr (cdr spec)))))))

(defmacro dotimes (spec &rest body)
  "Loop a certain number of times.
Evaluate BODY with VAR bound to successive integers running from 0,
inclusive, to COUNT, exclusive.  Then evaluate RESULT to get
the return value (nil if RESULT is omitted).

\(fn (VAR COUNT [RESULT]) BODY...)"
  (declare (indent 1) (debug dolist))
  (let ((temp (make-symbol "--dotimes-temp--"))
	(start 0)
	(end (nth 1 spec)))
    `(let ((,temp ,end)
	   (,(car spec) ,start))
       (while (< ,(car spec) ,temp)
	 ,@body
	 (setq ,(car spec) (1+ ,(car spec))))
       ,@(cdr (cdr spec)))))

(defsubst caar (x)
  "Return the car of the car of X."
  (car (car x)))

(defsubst cadr (x)
  "Return the car of the cdr of X."
  (car (cdr x)))

(defsubst cdar (x)
  "Return the cdr of the car of X."
  (cdr (car x)))

(defsubst cddr (x)
  "Return the cdr of the cdr of X."
  (cdr (cdr x)))

(defun last (x &optional n)
  "Return the last link of the list X.  Its car is the last element.
If X is nil, return nil.
If N is non-nil, return the Nth-to-last link of X.
If N is bigger than the length of X, return X."
  (if n
      (let ((m 0) (p x))
	(while (consp p)
	  (setq m (1+ m) p (cdr p)))
	(if (<= n 0) p
	  (if (< n m) (nthcdr (- m n) x) x)))
    (while (consp (cdr x))
      (setq x (cdr x)))
    x))

(defun butlast (x &optional n)
  "Returns a copy of LIST with the last N elements removed."
  (if (and n (<= n 0)) x
    (nbutlast (copy-sequence x) n)))

(defun nbutlast (x &optional n)
  "Modifies LIST to remove the last N elements."
  (let ((m (length x)))
    (or n (setq n 1))
    (and (< n m)
	 (progn
	   (if (> n 0) (setcdr (nthcdr (- (1- m) n) x) nil))
	   x))))

(defun number-sequence (from &optional to inc)
  "Return a sequence of numbers from FROM to TO (both inclusive) as a list.
INC is the increment used between numbers in the sequence.
So, the Nth element of the list is (+ FROM (* N INC)) where N counts from
zero.
If INC is nil, it defaults to 1 (one).
If TO is nil, it defaults to FROM.
If TO is less than FROM, the value is nil.
Note that FROM, TO and INC can be integer or float."
  (if (not to)
      (list from)
    (or inc (setq inc 1))
    (let (seq)
      (while (<= from to)
	(setq seq (cons from seq)
	      from (+ from inc)))
      (nreverse seq))))

(defun remove (elt seq)
  "Return a copy of SEQ with all occurrences of ELT removed.
SEQ must be a list, vector, or string.  The comparison is done with `equal'."
  (if (nlistp seq)
      ;; If SEQ isn't a list, there's no need to copy SEQ because
      ;; `delete' will return a new object.
      (delete elt seq)
    (delete elt (copy-sequence seq))))

(defun remq (elt list)
  "Return LIST with all occurrences of ELT removed.
The comparison is done with `eq'.  Contrary to `delq', this does not use
side-effects, and the argument LIST is not modified."
  (if (memq elt list)
      (delq elt (copy-sequence list))
    list))

(defun copy-tree (tree &optional vecp)
  "Make a copy of TREE.
If TREE is a cons cell, this recursively copies both its car and its cdr.
Contrast to `copy-sequence', which copies only along the cdrs.  With second
argument VECP, this copies vectors as well as conses."
  (if (consp tree)
      (let (result)
	(while (consp tree)
	  (let ((newcar (car tree)))
	    (if (or (consp (car tree)) (and vecp (vectorp (car tree))))
		(setq newcar (copy-tree (car tree) vecp)))
	    (push newcar result))
	  (setq tree (cdr tree)))
	(nconc (nreverse result) tree))
    (if (and vecp (vectorp tree))
	(let ((i (length (setq tree (copy-sequence tree)))))
	  (while (>= (setq i (1- i)) 0)
	    (aset tree i (copy-tree (aref tree i) vecp)))
	  tree)
      tree)))

(defun assoc-default (key alist &optional test default)
  "Find object KEY in a pseudo-alist ALIST.
ALIST is a list of conses or objects.  Each element (or the element's car,
if it is a cons) is compared with KEY by evaluating (TEST (car elt) KEY).
If that is non-nil, the element matches;
then `assoc-default' returns the element's cdr, if it is a cons,
or DEFAULT if the element is not a cons.

If no element matches, the value is nil.
If TEST is omitted or nil, `equal' is used."
  (let (found (tail alist) value)
    (while (and tail (not found))
      (let ((elt (car tail)))
	(when (funcall (or test 'equal) (if (consp elt) (car elt) elt) key)
	  (setq found t value (if (consp elt) (cdr elt) default))))
      (setq tail (cdr tail)))
    value))

(defun assoc-ignore-case (key alist)
  "Like `assoc', but ignores differences in case and text representation.
KEY must be a string.  Upper-case and lower-case letters are treated as equal.
Unibyte strings are converted to multibyte for comparison."
  (let (element)
    (while (and alist (not element))
      (if (eq t (compare-strings key 0 nil (car (car alist)) 0 nil t))
	  (setq element (car alist)))
      (setq alist (cdr alist)))
    element))

(defun assoc-ignore-representation (key alist)
  "Like `assoc', but ignores differences in text representation.
KEY must be a string.
Unibyte strings are converted to multibyte for comparison."
  (let (element)
    (while (and alist (not element))
      (if (eq t (compare-strings key 0 nil (car (car alist)) 0 nil))
	  (setq element (car alist)))
      (setq alist (cdr alist)))
    element))

(defun member-ignore-case (elt list)
  "Like `member', but ignores differences in case and text representation.
ELT must be a string.  Upper-case and lower-case letters are treated as equal.
Unibyte strings are converted to multibyte for comparison.
Non-strings in LIST are ignored."
  (while (and list
	      (not (and (stringp (car list))
			(eq t (compare-strings elt 0 nil (car list) 0 nil t)))))
    (setq list (cdr list)))
  list)


;;;; Keymap support.

(defun undefined ()
  (interactive)
  (ding))

;Prevent the \{...} documentation construct
;from mentioning keys that run this command.
(put 'undefined 'suppress-keymap t)

(defun suppress-keymap (map &optional nodigits)
  "Make MAP override all normally self-inserting keys to be undefined.
Normally, as an exception, digits and minus-sign are set to make prefix args,
but optional second arg NODIGITS non-nil treats them like other chars."
  (define-key map [remap self-insert-command] 'undefined)
  (or nodigits
      (let (loop)
	(define-key map "-" 'negative-argument)
	;; Make plain numbers do numeric args.
	(setq loop ?0)
	(while (<= loop ?9)
	  (define-key map (char-to-string loop) 'digit-argument)
	  (setq loop (1+ loop))))))

;Moved to keymap.c
;(defun copy-keymap (keymap)
;  "Return a copy of KEYMAP"
;  (while (not (keymapp keymap))
;    (setq keymap (signal 'wrong-type-argument (list 'keymapp keymap))))
;  (if (vectorp keymap)
;      (copy-sequence keymap)
;      (copy-alist keymap)))

(defvar key-substitution-in-progress nil
 "Used internally by substitute-key-definition.")

(defun substitute-key-definition (olddef newdef keymap &optional oldmap prefix)
  "Replace OLDDEF with NEWDEF for any keys in KEYMAP now defined as OLDDEF.
In other words, OLDDEF is replaced with NEWDEF where ever it appears.
Alternatively, if optional fourth argument OLDMAP is specified, we redefine
in KEYMAP as NEWDEF those keys which are defined as OLDDEF in OLDMAP."
  ;; Don't document PREFIX in the doc string because we don't want to
  ;; advertise it.  It's meant for recursive calls only.  Here's its
  ;; meaning

  ;; If optional argument PREFIX is specified, it should be a key
  ;; prefix, a string.  Redefined bindings will then be bound to the
  ;; original key, with PREFIX added at the front.
  (or prefix (setq prefix ""))
  (let* ((scan (or oldmap keymap))
	 (vec1 (vector nil))
	 (prefix1 (vconcat prefix vec1))
	 (key-substitution-in-progress
	  (cons scan key-substitution-in-progress)))
    ;; Scan OLDMAP, finding each char or event-symbol that
    ;; has any definition, and act on it with hack-key.
    (while (consp scan)
      (if (consp (car scan))
	  (let ((char (car (car scan)))
		(defn (cdr (car scan))))
	    ;; The inside of this let duplicates exactly
	    ;; the inside of the following let that handles array elements.
	    (aset vec1 0 char)
	    (aset prefix1 (length prefix) char)
	    (let (inner-def skipped)
	      ;; Skip past menu-prompt.
	      (while (stringp (car-safe defn))
		(setq skipped (cons (car defn) skipped))
		(setq defn (cdr defn)))
	      ;; Skip past cached key-equivalence data for menu items.
	      (and (consp defn) (consp (car defn))
		   (setq defn (cdr defn)))
	      (setq inner-def defn)
	      ;; Look past a symbol that names a keymap.
	      (while (and (symbolp inner-def)
			  (fboundp inner-def))
		(setq inner-def (symbol-function inner-def)))
	      (if (or (eq defn olddef)
		      ;; Compare with equal if definition is a key sequence.
		      ;; That is useful for operating on function-key-map.
		      (and (or (stringp defn) (vectorp defn))
			   (equal defn olddef)))
		  (define-key keymap prefix1 (nconc (nreverse skipped) newdef))
		(if (and (keymapp defn)
			 ;; Avoid recursively scanning
			 ;; where KEYMAP does not have a submap.
			 (let ((elt (lookup-key keymap prefix1)))
			   (or (null elt)
			       (keymapp elt)))
			 ;; Avoid recursively rescanning keymap being scanned.
			 (not (memq inner-def
				    key-substitution-in-progress)))
		    ;; If this one isn't being scanned already,
		    ;; scan it now.
		    (substitute-key-definition olddef newdef keymap
					       inner-def
					       prefix1)))))
	(if (vectorp (car scan))
	    (let* ((array (car scan))
		   (len (length array))
		   (i 0))
	      (while (< i len)
		(let ((char i) (defn (aref array i)))
		  ;; The inside of this let duplicates exactly
		  ;; the inside of the previous let.
		  (aset vec1 0 char)
		  (aset prefix1 (length prefix) char)
		  (let (inner-def skipped)
		    ;; Skip past menu-prompt.
		    (while (stringp (car-safe defn))
		      (setq skipped (cons (car defn) skipped))
		      (setq defn (cdr defn)))
		    (and (consp defn) (consp (car defn))
			 (setq defn (cdr defn)))
		    (setq inner-def defn)
		    (while (and (symbolp inner-def)
				(fboundp inner-def))
		      (setq inner-def (symbol-function inner-def)))
		    (if (or (eq defn olddef)
			    (and (or (stringp defn) (vectorp defn))
				 (equal defn olddef)))
			(define-key keymap prefix1
			  (nconc (nreverse skipped) newdef))
		      (if (and (keymapp defn)
			       (let ((elt (lookup-key keymap prefix1)))
				 (or (null elt)
				     (keymapp elt)))
			       (not (memq inner-def
					  key-substitution-in-progress)))
			  (substitute-key-definition olddef newdef keymap
						     inner-def
						     prefix1)))))
		(setq i (1+ i))))
	  (if (char-table-p (car scan))
	      (map-char-table
	       (function (lambda (char defn)
			   (let ()
			     ;; The inside of this let duplicates exactly
			     ;; the inside of the previous let,
			     ;; except that it uses set-char-table-range
			     ;; instead of define-key.
			     (aset vec1 0 char)
			     (aset prefix1 (length prefix) char)
			     (let (inner-def skipped)
			       ;; Skip past menu-prompt.
			       (while (stringp (car-safe defn))
				 (setq skipped (cons (car defn) skipped))
				 (setq defn (cdr defn)))
			       (and (consp defn) (consp (car defn))
				    (setq defn (cdr defn)))
			       (setq inner-def defn)
			       (while (and (symbolp inner-def)
					   (fboundp inner-def))
				 (setq inner-def (symbol-function inner-def)))
			       (if (or (eq defn olddef)
				       (and (or (stringp defn) (vectorp defn))
					    (equal defn olddef)))
				   (define-key keymap prefix1
				     (nconc (nreverse skipped) newdef))
				 (if (and (keymapp defn)
					  (let ((elt (lookup-key keymap prefix1)))
					    (or (null elt)
						(keymapp elt)))
					  (not (memq inner-def
						     key-substitution-in-progress)))
				     (substitute-key-definition olddef newdef keymap
								inner-def
								prefix1)))))))
	       (car scan)))))
      (setq scan (cdr scan)))))

(defun define-key-after (keymap key definition &optional after)
  "Add binding in KEYMAP for KEY => DEFINITION, right after AFTER's binding.
This is like `define-key' except that the binding for KEY is placed
just after the binding for the event AFTER, instead of at the beginning
of the map.  Note that AFTER must be an event type (like KEY), NOT a command
\(like DEFINITION).

If AFTER is t or omitted, the new binding goes at the end of the keymap.
AFTER should be a single event type--a symbol or a character, not a sequence.

Bindings are always added before any inherited map.

The order of bindings in a keymap matters when it is used as a menu."
  (unless after (setq after t))
  (or (keymapp keymap)
      (signal 'wrong-type-argument (list 'keymapp keymap)))
  (setq key
	(if (<= (length key) 1) (aref key 0)
	  (setq keymap (lookup-key keymap
				   (apply 'vector
					  (butlast (mapcar 'identity key)))))
	  (aref key (1- (length key)))))
  (let ((tail keymap) done inserted)
    (while (and (not done) tail)
      ;; Delete any earlier bindings for the same key.
      (if (eq (car-safe (car (cdr tail))) key)
	  (setcdr tail (cdr (cdr tail))))
      ;; If we hit an included map, go down that one.
      (if (keymapp (car tail)) (setq tail (car tail)))
      ;; When we reach AFTER's binding, insert the new binding after.
      ;; If we reach an inherited keymap, insert just before that.
      ;; If we reach the end of this keymap, insert at the end.
      (if (or (and (eq (car-safe (car tail)) after)
		   (not (eq after t)))
	      (eq (car (cdr tail)) 'keymap)
	      (null (cdr tail)))
	  (progn
	    ;; Stop the scan only if we find a parent keymap.
	    ;; Keep going past the inserted element
	    ;; so we can delete any duplications that come later.
	    (if (eq (car (cdr tail)) 'keymap)
		(setq done t))
	    ;; Don't insert more than once.
	    (or inserted
		(setcdr tail (cons (cons key definition) (cdr tail))))
	    (setq inserted t)))
      (setq tail (cdr tail)))))


(defmacro kbd (keys)
  "Convert KEYS to the internal Emacs key representation.
KEYS should be a string constant in the format used for
saving keyboard macros (see `insert-kbd-macro')."
  (read-kbd-macro keys))

(put 'keyboard-translate-table 'char-table-extra-slots 0)

(defun keyboard-translate (from to)
  "Translate character FROM to TO at a low level.
This function creates a `keyboard-translate-table' if necessary
and then modifies one entry in it."
  (or (char-table-p keyboard-translate-table)
      (setq keyboard-translate-table
	    (make-char-table 'keyboard-translate-table nil)))
  (aset keyboard-translate-table from to))


;;;; The global keymap tree.

;;; global-map, esc-map, and ctl-x-map have their values set up in
;;; keymap.c; we just give them docstrings here.

(defvar global-map nil
  "Default global keymap mapping Emacs keyboard input into commands.
The value is a keymap which is usually (but not necessarily) Emacs's
global map.")

(defvar esc-map nil
  "Default keymap for ESC (meta) commands.
The normal global definition of the character ESC indirects to this keymap.")

(defvar ctl-x-map nil
  "Default keymap for C-x commands.
The normal global definition of the character C-x indirects to this keymap.")

(defvar ctl-x-4-map (make-sparse-keymap)
  "Keymap for subcommands of C-x 4.")
(defalias 'ctl-x-4-prefix ctl-x-4-map)
(define-key ctl-x-map "4" 'ctl-x-4-prefix)

(defvar ctl-x-5-map (make-sparse-keymap)
  "Keymap for frame commands.")
(defalias 'ctl-x-5-prefix ctl-x-5-map)
(define-key ctl-x-map "5" 'ctl-x-5-prefix)


;;;; Event manipulation functions.

;; The call to `read' is to ensure that the value is computed at load time
;; and not compiled into the .elc file.  The value is negative on most
;; machines, but not on all!
(defconst listify-key-sequence-1 (logior 128 (read "?\\M-\\^@")))

(defun listify-key-sequence (key)
  "Convert a key sequence to a list of events."
  (if (vectorp key)
      (append key nil)
    (mapcar (function (lambda (c)
			(if (> c 127)
			    (logxor c listify-key-sequence-1)
			  c)))
	    key)))

(defsubst eventp (obj)
  "True if the argument is an event object."
  (or (integerp obj)
      (and (symbolp obj)
	   (get obj 'event-symbol-elements))
      (and (consp obj)
	   (symbolp (car obj))
	   (get (car obj) 'event-symbol-elements))))

(defun event-modifiers (event)
  "Returns a list of symbols representing the modifier keys in event EVENT.
The elements of the list may include `meta', `control',
`shift', `hyper', `super', `alt', `click', `double', `triple', `drag',
and `down'."
  (let ((type event))
    (if (listp type)
	(setq type (car type)))
    (if (symbolp type)
	(cdr (get type 'event-symbol-elements))
      (let ((list nil))
	(or (zerop (logand type ?\M-\^@))
	    (setq list (cons 'meta list)))
	(or (and (zerop (logand type ?\C-\^@))
		 (>= (logand type 127) 32))
	    (setq list (cons 'control list)))
	(or (and (zerop (logand type ?\S-\^@))
		 (= (logand type 255) (downcase (logand type 255))))
	    (setq list (cons 'shift list)))
	(or (zerop (logand type ?\H-\^@))
	    (setq list (cons 'hyper list)))
	(or (zerop (logand type ?\s-\^@))
	    (setq list (cons 'super list)))
	(or (zerop (logand type ?\A-\^@))
	    (setq list (cons 'alt list)))
	list))))

(defun event-basic-type (event)
  "Returns the basic type of the given event (all modifiers removed).
The value is a printing character (not upper case) or a symbol."
  (if (consp event)
      (setq event (car event)))
  (if (symbolp event)
      (car (get event 'event-symbol-elements))
    (let ((base (logand event (1- (lsh 1 18)))))
      (downcase (if (< base 32) (logior base 64) base)))))

(defsubst mouse-movement-p (object)
  "Return non-nil if OBJECT is a mouse movement event."
  (and (consp object)
       (eq (car object) 'mouse-movement)))

(defsubst event-start (event)
  "Return the starting position of EVENT.
If EVENT is a mouse press or a mouse click, this returns the location
of the event.
If EVENT is a drag, this returns the drag's starting position.
The return value is of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
The `posn-' functions access elements of such lists."
  (if (consp event) (nth 1 event)
    (list (selected-window) (point) '(0 . 0) 0)))

(defsubst event-end (event)
  "Return the ending location of EVENT.  EVENT should be a click or drag event.
If EVENT is a click event, this function is the same as `event-start'.
The return value is of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
The `posn-' functions access elements of such lists."
  (if (consp event) (nth (if (consp (nth 2 event)) 2 1) event)
    (list (selected-window) (point) '(0 . 0) 0)))

(defsubst event-click-count (event)
  "Return the multi-click count of EVENT, a click or drag event.
The return value is a positive integer."
  (if (and (consp event) (integerp (nth 2 event))) (nth 2 event) 1))

(defsubst posn-window (position)
  "Return the window in POSITION.
POSITION should be a list of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
as returned by the `event-start' and `event-end' functions."
  (nth 0 position))

(defsubst posn-point (position)
  "Return the buffer location in POSITION.
POSITION should be a list of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
as returned by the `event-start' and `event-end' functions."
  (if (consp (nth 1 position))
      (car (nth 1 position))
    (nth 1 position)))

(defsubst posn-x-y (position)
  "Return the x and y coordinates in POSITION.
POSITION should be a list of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
as returned by the `event-start' and `event-end' functions."
  (nth 2 position))

(defun posn-col-row (position)
  "Return the column and row in POSITION, measured in characters.
POSITION should be a list of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
as returned by the `event-start' and `event-end' functions.
For a scroll-bar event, the result column is 0, and the row
corresponds to the vertical position of the click in the scroll bar."
  (let* ((pair   (nth 2 position))
	 (window (posn-window position)))
    (if (eq (if (consp (nth 1 position))
		(car (nth 1 position))
	      (nth 1 position))
	    'vertical-scroll-bar)
	(cons 0 (scroll-bar-scale pair (1- (window-height window))))
      (if (eq (if (consp (nth 1 position))
		  (car (nth 1 position))
		(nth 1 position))
	      'horizontal-scroll-bar)
	  (cons (scroll-bar-scale pair (window-width window)) 0)
	(let* ((frame (if (framep window) window (window-frame window)))
	       (x (/ (car pair) (frame-char-width frame)))
	       (y (/ (cdr pair) (+ (frame-char-height frame)
				   (or (frame-parameter frame 'line-spacing)
				       default-line-spacing
				       0)))))
	  (cons x y))))))

(defsubst posn-timestamp (position)
  "Return the timestamp of POSITION.
POSITION should be a list of the form
   (WINDOW BUFFER-POSITION (X . Y) TIMESTAMP)
as returned by the `event-start' and `event-end' functions."
  (nth 3 position))


;;;; Obsolescent names for functions.

(defalias 'dot 'point)
(defalias 'dot-marker 'point-marker)
(defalias 'dot-min 'point-min)
(defalias 'dot-max 'point-max)
(defalias 'window-dot 'window-point)
(defalias 'set-window-dot 'set-window-point)
(defalias 'read-input 'read-string)
(defalias 'send-string 'process-send-string)
(defalias 'send-region 'process-send-region)
(defalias 'show-buffer 'set-window-buffer)
(defalias 'buffer-flush-undo 'buffer-disable-undo)
(defalias 'eval-current-buffer 'eval-buffer)
(defalias 'compiled-function-p 'byte-code-function-p)
(defalias 'define-function 'defalias)

(defalias 'sref 'aref)
(make-obsolete 'sref 'aref "20.4")
(make-obsolete 'char-bytes "now always returns 1." "20.4")
(make-obsolete 'chars-in-region "use (abs (- BEG END))." "20.3")
(make-obsolete 'dot 'point		"before 19.15")
(make-obsolete 'dot-max 'point-max	"before 19.15")
(make-obsolete 'dot-min 'point-min	"before 19.15")
(make-obsolete 'dot-marker 'point-marker "before 19.15")
(make-obsolete 'buffer-flush-undo 'buffer-disable-undo "before 19.15")
(make-obsolete 'baud-rate "use the baud-rate variable instead." "before 19.15")
(make-obsolete 'compiled-function-p 'byte-code-function-p "before 19.15")
(make-obsolete 'define-function 'defalias "20.1")

(defun insert-string (&rest args)
  "Mocklisp-compatibility insert function.
Like the function `insert' except that any argument that is a number
is converted into a string by expressing it in decimal."
  (dolist (el args)
    (insert (if (integerp el) (number-to-string el) el))))
(make-obsolete 'insert-string 'insert "21.4")
(defun makehash (&optional test) (make-hash-table :test (or test 'eql)))
(make-obsolete 'makehash 'make-hash-table "21.4")

;; Some programs still use this as a function.
(defun baud-rate ()
  "Return the value of the `baud-rate' variable."
  baud-rate)

(defalias 'focus-frame 'ignore)
(defalias 'unfocus-frame 'ignore)


;;;; Obsolescence declarations for variables.

(make-obsolete-variable 'directory-sep-char "do not use it." "21.1")
(make-obsolete-variable 'mode-line-inverse-video "use the appropriate faces instead." "21.1")
(make-obsolete-variable 'unread-command-char
  "use `unread-command-events' instead.  That variable is a list of events to reread, so it now uses nil to mean `no event', instead of -1."
  "before 19.15")
(make-obsolete-variable 'executing-macro 'executing-kbd-macro "before 19.34")
(make-obsolete-variable 'post-command-idle-hook
  "use timers instead, with `run-with-idle-timer'." "before 19.34")
(make-obsolete-variable 'post-command-idle-delay
  "use timers instead, with `run-with-idle-timer'." "before 19.34")


;;;; Alternate names for functions - these are not being phased out.

(defalias 'string= 'string-equal)
(defalias 'string< 'string-lessp)
(defalias 'move-marker 'set-marker)
(defalias 'rplaca 'setcar)
(defalias 'rplacd 'setcdr)
(defalias 'beep 'ding) ;preserve lingual purity
(defalias 'indent-to-column 'indent-to)
(defalias 'backward-delete-char 'delete-backward-char)
(defalias 'search-forward-regexp (symbol-function 're-search-forward))
(defalias 'search-backward-regexp (symbol-function 're-search-backward))
(defalias 'int-to-string 'number-to-string)
(defalias 'store-match-data 'set-match-data)
(defalias 'make-variable-frame-localizable 'make-variable-frame-local)
;; These are the XEmacs names:
(defalias 'point-at-eol 'line-end-position)
(defalias 'point-at-bol 'line-beginning-position)

;;; Should this be an obsolete name?  If you decide it should, you get
;;; to go through all the sources and change them.
(defalias 'string-to-int 'string-to-number)

;;;; Hook manipulation functions.

(defun make-local-hook (hook)
  "Make the hook HOOK local to the current buffer.
The return value is HOOK.

You never need to call this function now that `add-hook' does it for you
if its LOCAL argument is non-nil.

When a hook is local, its local and global values
work in concert: running the hook actually runs all the hook
functions listed in *either* the local value *or* the global value
of the hook variable.

This function works by making t a member of the buffer-local value,
which acts as a flag to run the hook functions in the default value as
well.  This works for all normal hooks, but does not work for most
non-normal hooks yet.  We will be changing the callers of non-normal
hooks so that they can handle localness; this has to be done one by
one.

This function does nothing if HOOK is already local in the current
buffer.

Do not use `make-local-variable' to make a hook variable buffer-local."
  (if (local-variable-p hook)
      nil
    (or (boundp hook) (set hook nil))
    (make-local-variable hook)
    (set hook (list t)))
  hook)
(make-obsolete 'make-local-hook "not necessary any more." "21.1")

(defun add-hook (hook function &optional append local)
  "Add to the value of HOOK the function FUNCTION.
FUNCTION is not added if already present.
FUNCTION is added (if necessary) at the beginning of the hook list
unless the optional argument APPEND is non-nil, in which case
FUNCTION is added at the end.

The optional fourth argument, LOCAL, if non-nil, says to modify
the hook's buffer-local value rather than its default value.
This makes the hook buffer-local if needed, and it makes t a member
of the buffer-local value.  That acts as a flag to run the hook
functions in the default value as well as in the local value.

HOOK should be a symbol, and FUNCTION may be any valid function.  If
HOOK is void, it is first set to nil.  If HOOK's value is a single
function, it is changed to a list of functions."
  (or (boundp hook) (set hook nil))
  (or (default-boundp hook) (set-default hook nil))
  (if local (unless (local-variable-if-set-p hook)
	      (set (make-local-variable hook) (list t)))
    ;; Detect the case where make-local-variable was used on a hook
    ;; and do what we used to do.
    (unless (and (consp (symbol-value hook)) (memq t (symbol-value hook)))
      (setq local t)))
  (let ((hook-value (if local (symbol-value hook) (default-value hook))))
    ;; If the hook value is a single function, turn it into a list.
    (when (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
      (setq hook-value (list hook-value)))
    ;; Do the actual addition if necessary
    (unless (member function hook-value)
      (setq hook-value
	    (if append
		(append hook-value (list function))
	      (cons function hook-value))))
    ;; Set the actual variable
    (if local (set hook hook-value) (set-default hook hook-value))))

(defun remove-hook (hook function &optional local)
  "Remove from the value of HOOK the function FUNCTION.
HOOK should be a symbol, and FUNCTION may be any valid function.  If
FUNCTION isn't the value of HOOK, or, if FUNCTION doesn't appear in the
list of hooks to run in HOOK, then nothing is done.  See `add-hook'.

The optional third argument, LOCAL, if non-nil, says to modify
the hook's buffer-local value rather than its default value.
This makes the hook buffer-local if needed."
  (or (boundp hook) (set hook nil))
  (or (default-boundp hook) (set-default hook nil))
  (if local (unless (local-variable-if-set-p hook)
	      (set (make-local-variable hook) (list t)))
    ;; Detect the case where make-local-variable was used on a hook
    ;; and do what we used to do.
    (unless (and (consp (symbol-value hook)) (memq t (symbol-value hook)))
      (setq local t)))
  (let ((hook-value (if local (symbol-value hook) (default-value hook))))
    ;; Remove the function, for both the list and the non-list cases.
    (if (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
	(if (equal hook-value function) (setq hook-value nil))
      (setq hook-value (delete function (copy-sequence hook-value))))
    ;; If the function is on the global hook, we need to shadow it locally
    ;;(when (and local (member function (default-value hook))
    ;;	       (not (member (cons 'not function) hook-value)))
    ;;  (push (cons 'not function) hook-value))
    ;; Set the actual variable
    (if (not local)
	(set-default hook hook-value)
      (if (equal hook-value '(t))
	  (kill-local-variable hook)
	(set hook hook-value)))))

(defun add-to-list (list-var element &optional append)
  "Add to the value of LIST-VAR the element ELEMENT if it isn't there yet.
The test for presence of ELEMENT is done with `equal'.
If ELEMENT is added, it is added at the beginning of the list,
unless the optional argument APPEND is non-nil, in which case
ELEMENT is added at the end.

The return value is the new value of LIST-VAR.

If you want to use `add-to-list' on a variable that is not defined
until a certain package is loaded, you should put the call to `add-to-list'
into a hook function that will be run only after loading the package.
`eval-after-load' provides one way to do this.  In some cases
other hooks, such as major mode hooks, can do the job."
  (if (member element (symbol-value list-var))
      (symbol-value list-var)
    (set list-var
	 (if append
	     (append (symbol-value list-var) (list element))
	   (cons element (symbol-value list-var))))))


;;; Load history

;;; (defvar symbol-file-load-history-loaded nil
;;;   "Non-nil means we have loaded the file `fns-VERSION.el' in `exec-directory'.
;;; That file records the part of `load-history' for preloaded files,
;;; which is cleared out before dumping to make Emacs smaller.")

;;; (defun load-symbol-file-load-history ()
;;;   "Load the file `fns-VERSION.el' in `exec-directory' if not already done.
;;; That file records the part of `load-history' for preloaded files,
;;; which is cleared out before dumping to make Emacs smaller."
;;;   (unless symbol-file-load-history-loaded
;;;     (load (expand-file-name
;;; 	   ;; fns-XX.YY.ZZ.el does not work on DOS filesystem.
;;; 	   (if (eq system-type 'ms-dos)
;;; 	       "fns.el"
;;; 	     (format "fns-%s.el" emacs-version))
;;; 	   exec-directory)
;;; 	  ;; The file name fns-%s.el already has a .el extension.
;;; 	  nil nil t)
;;;     (setq symbol-file-load-history-loaded t)))

(defun symbol-file (function)
  "Return the input source from which FUNCTION was loaded.
The value is normally a string that was passed to `load':
either an absolute file name, or a library name
\(with no directory name and no `.el' or `.elc' at the end).
It can also be nil, if the definition is not associated with any file."
  (if (and (symbolp function) (fboundp function)
	   (eq 'autoload (car-safe (symbol-function function))))
      (nth 1 (symbol-function function))
    (let ((files load-history)
	  file)
      (while files
	(if (member function (cdr (car files)))
	    (setq file (car (car files)) files nil))
	(setq files (cdr files)))
      file)))


;;;; Specifying things to do after certain files are loaded.

(defun eval-after-load (file form)
  "Arrange that, if FILE is ever loaded, FORM will be run at that time.
This makes or adds to an entry on `after-load-alist'.
If FILE is already loaded, evaluate FORM right now.
It does nothing if FORM is already on the list for FILE.
FILE must match exactly.  Normally FILE is the name of a library,
with no directory or extension specified, since that is how `load'
is normally called.
FILE can also be a feature (i.e. a symbol), in which case FORM is
evaluated whenever that feature is `provide'd."
  (let ((elt (assoc file after-load-alist)))
    ;; Make sure there is an element for FILE.
    (unless elt (setq elt (list file)) (push elt after-load-alist))
    ;; Add FORM to the element if it isn't there.
    (unless (member form (cdr elt))
      (nconc elt (list form))
      ;; If the file has been loaded already, run FORM right away.
      (if (if (symbolp file)
	      (featurep file)
	    ;; Make sure `load-history' contains the files dumped with
	    ;; Emacs for the case that FILE is one of them.
	    ;; (load-symbol-file-load-history)
	    (assoc file load-history))
	  (eval form))))
  form)

(defun eval-next-after-load (file)
  "Read the following input sexp, and run it whenever FILE is loaded.
This makes or adds to an entry on `after-load-alist'.
FILE should be the name of a library, with no directory name."
  (eval-after-load file (read)))

;;; make-network-process wrappers

(if (featurep 'make-network-process)
    (progn

(defun open-network-stream (name buffer host service)
  "Open a TCP connection for a service to a host.
Returns a subprocess-object to represent the connection.
Input and output work as for subprocesses; `delete-process' closes it.
Args are NAME BUFFER HOST SERVICE.
NAME is name for process.  It is modified if necessary to make it unique.
BUFFER is the buffer (or buffer-name) to associate with the process.
 Process output goes at end of that buffer, unless you specify
 an output stream or filter function to handle the output.
 BUFFER may be also nil, meaning that this process is not associated
 with any buffer
Third arg is name of the host to connect to, or its IP address.
Fourth arg SERVICE is name of the service desired, or an integer
specifying a port number to connect to."
  (make-network-process :name name :buffer buffer
			:host host :service service))

(defun open-network-stream-nowait (name buffer host service &optional sentinel filter)
  "Initiate connection to a TCP connection for a service to a host.
It returns nil if non-blocking connects are not supported; otherwise,
it returns a subprocess-object to represent the connection.

This function is similar to `open-network-stream', except that this
function returns before the connection is established.  When the
connection is completed, the sentinel function will be called with
second arg matching `open' (if successful) or `failed' (on error).

Args are NAME BUFFER HOST SERVICE SENTINEL FILTER.
NAME, BUFFER, HOST, and SERVICE are as for `open-network-stream'.
Optional args, SENTINEL and FILTER specifies the sentinel and filter
functions to be used for this network stream."
  (if (featurep 'make-network-process  '(:nowait t))
      (make-network-process :name name :buffer buffer :nowait t
			    :host host :service service
			    :filter filter :sentinel sentinel)))

(defun open-network-stream-server (name buffer service &optional sentinel filter)
  "Create a network server process for a TCP service.
It returns nil if server processes are not supported; otherwise,
it returns a subprocess-object to represent the server.

When a client connects to the specified service, a new subprocess
is created to handle the new connection, and the sentinel function
is called for the new process.

Args are NAME BUFFER SERVICE SENTINEL FILTER.
NAME is name for the server process.  Client processes are named by
appending the ip-address and port number of the client to NAME.
BUFFER is the buffer (or buffer-name) to associate with the server
process.  Client processes will not get a buffer if a process filter
is specified or BUFFER is nil; otherwise, a new buffer is created for
the client process.  The name is similar to the process name.
Third arg SERVICE is name of the service desired, or an integer
specifying a port number to connect to.  It may also be t to selected
an unused port number for the server.
Optional args, SENTINEL and FILTER specifies the sentinel and filter
functions to be used for the client processes; the server process
does not use these function."
  (if (featurep 'make-network-process '(:server t))
      (make-network-process :name name :buffer buffer
			    :service service :server t :noquery t
			    :sentinel sentinel :filter filter)))

))  ;; (featurep 'make-network-process)


;; compatibility

(defun process-kill-without-query (process &optional flag)
  "Say no query needed if PROCESS is running when Emacs is exited.
Optional second argument if non-nil says to require a query.
Value is t if a query was formerly required.
New code should not use this function; use `process-query-on-exit-flag'
or `set-process-query-on-exit-flag' instead."
  (let ((old (process-query-on-exit-flag process)))
    (set-process-query-on-exit-flag process nil)
    old))

;; process plist management

(defun process-get (process propname)
  "Return the value of PROCESS' PROPNAME property.
This is the last value stored with `(process-put PROCESS PROPNAME VALUE)'."
  (plist-get (process-plist process) propname))

(defun process-put (process propname value)
  "Change PROCESS' PROPNAME property to VALUE.
It can be retrieved with `(process-get PROCESS PROPNAME)'."
  (set-process-plist process
		     (plist-put (process-plist process) propname value)))


;;;; Input and display facilities.

(defvar read-quoted-char-radix 8
  "*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
Legitimate radix values are 8, 10 and 16.")

(custom-declare-variable-early
 'read-quoted-char-radix 8
 "*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
Legitimate radix values are 8, 10 and 16."
  :type '(choice (const 8) (const 10) (const 16))
  :group 'editing-basics)

(defun read-quoted-char (&optional prompt)
  "Like `read-char', but do not allow quitting.
Also, if the first character read is an octal digit,
we read any number of octal digits and return the
specified character code.  Any nondigit terminates the sequence.
If the terminator is RET, it is discarded;
any other terminator is used itself as input.

The optional argument PROMPT specifies a string to use to prompt the user.
The variable `read-quoted-char-radix' controls which radix to use
for numeric input."
  (let ((message-log-max nil) done (first t) (code 0) char translated)
    (while (not done)
      (let ((inhibit-quit first)
	    ;; Don't let C-h get the help message--only help function keys.
	    (help-char nil)
	    (help-form
	     "Type the special character you want to use,
or the octal character code.
RET terminates the character code and is discarded;
any other non-digit terminates the character code and is then used as input."))
	(setq char (read-event (and prompt (format "%s-" prompt)) t))
	(if inhibit-quit (setq quit-flag nil)))
      ;; Translate TAB key into control-I ASCII character, and so on.
      ;; Note: `read-char' does it using the `ascii-character' property.
      ;; We could try and use read-key-sequence instead, but then C-q ESC
      ;; or C-q C-x might not return immediately since ESC or C-x might be
      ;; bound to some prefix in function-key-map or key-translation-map.
      (setq translated char)
      (let ((translation (lookup-key function-key-map (vector char))))
	(if (arrayp translation)
	    (setq translated (aref translation 0))))
      (cond ((null translated))
	    ((not (integerp translated))
	     (setq unread-command-events (list char)
		   done t))
	    ((/= (logand translated ?\M-\^@) 0)
	     ;; Turn a meta-character into a character with the 0200 bit set.
	     (setq code (logior (logand translated (lognot ?\M-\^@)) 128)
		   done t))
	    ((and (<= ?0 translated) (< translated (+ ?0 (min 10 read-quoted-char-radix))))
	     (setq code (+ (* code read-quoted-char-radix) (- translated ?0)))
	     (and prompt (setq prompt (message "%s %c" prompt translated))))
	    ((and (<= ?a (downcase translated))
		  (< (downcase translated) (+ ?a -10 (min 36 read-quoted-char-radix))))
	     (setq code (+ (* code read-quoted-char-radix)
			   (+ 10 (- (downcase translated) ?a))))
	     (and prompt (setq prompt (message "%s %c" prompt translated))))
	    ((and (not first) (eq translated ?\C-m))
	     (setq done t))
	    ((not first)
	     (setq unread-command-events (list char)
		   done t))
	    (t (setq code translated
		     done t)))
      (setq first nil))
    code))

(defun read-passwd (prompt &optional confirm default)
  "Read a password, prompting with PROMPT.  Echo `.' for each character typed.
End with RET, LFD, or ESC.  DEL or C-h rubs out.  C-u kills line.
Optional argument CONFIRM, if non-nil, then read it twice to make sure.
Optional DEFAULT is a default password to use instead of empty input."
  (if confirm
      (let (success)
	(while (not success)
	  (let ((first (read-passwd prompt nil default))
		(second (read-passwd "Confirm password: " nil default)))
	    (if (equal first second)
		(progn
		  (and (arrayp second) (fillarray second ?\0))
		  (setq success first))
	      (and (arrayp first) (fillarray first ?\0))
	      (and (arrayp second) (fillarray second ?\0))
	      (message "Password not repeated accurately; please start over")
	      (sit-for 1))))
	success)
    (let ((pass nil)
	  (c 0)
	  (echo-keystrokes 0)
	  (cursor-in-echo-area t))
      (while (progn (message "%s%s"
			     prompt
			     (make-string (length pass) ?.))
		    (setq c (read-char-exclusive nil t))
		    (and (/= c ?\r) (/= c ?\n) (/= c ?\e)))
	(clear-this-command-keys)
	(if (= c ?\C-u)
	    (progn
	      (and (arrayp pass) (fillarray pass ?\0))
	      (setq pass ""))
	  (if (and (/= c ?\b) (/= c ?\177))
	      (let* ((new-char (char-to-string c))
		     (new-pass (concat pass new-char)))
		(and (arrayp pass) (fillarray pass ?\0))
		(fillarray new-char ?\0)
		(setq c ?\0)
		(setq pass new-pass))
	    (if (> (length pass) 0)
		(let ((new-pass (substring pass 0 -1)))
		  (and (arrayp pass) (fillarray pass ?\0))
		  (setq pass new-pass))))))
      (message nil)
      (or pass default ""))))

;;; Atomic change groups.

(defmacro atomic-change-group (&rest body)
  "Perform BODY as an atomic change group.
This means that if BODY exits abnormally,
all of its changes to the current buffer are undone.
This works regardless of whether undo is enabled in the buffer.

This mechanism is transparent to ordinary use of undo;
if undo is enabled in the buffer and BODY succeeds, the
user can undo the change normally."
  (let ((handle (make-symbol "--change-group-handle--"))
	(success (make-symbol "--change-group-success--")))
    `(let ((,handle (prepare-change-group))
	   (,success nil))
       (unwind-protect
	   (progn
	     ;; This is inside the unwind-protect because
	     ;; it enables undo if that was disabled; we need
	     ;; to make sure that it gets disabled again.
	     (activate-change-group ,handle)
	     ,@body
	     (setq ,success t))
	 ;; Either of these functions will disable undo
	 ;; if it was disabled before.
	 (if ,success
	     (accept-change-group ,handle)
	   (cancel-change-group ,handle))))))

(defun prepare-change-group (&optional buffer)
  "Return a handle for the current buffer's state, for a change group.
If you specify BUFFER, make a handle for BUFFER's state instead.

Pass the handle to `activate-change-group' afterward to initiate
the actual changes of the change group.

To finish the change group, call either `accept-change-group' or
`cancel-change-group' passing the same handle as argument.  Call
`accept-change-group' to accept the changes in the group as final;
call `cancel-change-group' to undo them all.  You should use
`unwind-protect' to make sure the group is always finished.  The call
to `activate-change-group' should be inside the `unwind-protect'.
Once you finish the group, don't use the handle again--don't try to
finish the same group twice.  For a simple example of correct use, see
the source code of `atomic-change-group'.

The handle records only the specified buffer.  To make a multibuffer
change group, call this function once for each buffer you want to
cover, then use `nconc' to combine the returned values, like this:

  (nconc (prepare-change-group buffer-1)
         (prepare-change-group buffer-2))

You can then activate that multibuffer change group with a single
call to `activate-change-group' and finish it with a single call
to `accept-change-group' or `cancel-change-group'."

  (if buffer
      (list (cons buffer (with-current-buffer buffer buffer-undo-list)))
    (list (cons (current-buffer) buffer-undo-list))))

(defun activate-change-group (handle)
  "Activate a change group made with `prepare-change-group' (which see)."
  (dolist (elt handle)
    (with-current-buffer (car elt)
      (if (eq buffer-undo-list t)
	  (setq buffer-undo-list nil)))))

(defun accept-change-group (handle)
  "Finish a change group made with `prepare-change-group' (which see).
This finishes the change group by accepting its changes as final."
  (dolist (elt handle)
    (with-current-buffer (car elt)
      (if (eq elt t)
	  (setq buffer-undo-list t)))))

(defun cancel-change-group (handle)
  "Finish a change group made with `prepare-change-group' (which see).
This finishes the change group by reverting all of its changes."
  (dolist (elt handle)
    (with-current-buffer (car elt)
      (setq elt (cdr elt))
      (let ((old-car
	     (if (consp elt) (car elt)))
	    (old-cdr
	     (if (consp elt) (cdr elt))))
	;; Temporarily truncate the undo log at ELT.
	(when (consp elt)
	  (setcar elt nil) (setcdr elt nil))
	(unless (eq last-command 'undo) (undo-start))
	;; Make sure there's no confusion.
	(when (and (consp elt) (not (eq elt (last pending-undo-list))))
	  (error "Undoing to some unrelated state"))
	;; Undo it all.
	(while pending-undo-list (undo-more 1))
	;; Reset the modified cons cell ELT to its original content.
	(when (consp elt)
	  (setcar elt old-car)
	  (setcdr elt old-cdr))
	;; Revert the undo info to what it was when we grabbed the state.
	(setq buffer-undo-list elt)))))

;; For compatibility.
(defalias 'redraw-modeline 'force-mode-line-update)

(defun force-mode-line-update (&optional all)
  "Force the mode line of the current buffer to be redisplayed.
With optional non-nil ALL, force redisplay of all mode lines."
  (if all (save-excursion (set-buffer (other-buffer))))
  (set-buffer-modified-p (buffer-modified-p)))

(defun momentary-string-display (string pos &optional exit-char message)
  "Momentarily display STRING in the buffer at POS.
Display remains until next character is typed.
If the char is EXIT-CHAR (optional third arg, default is SPC) it is swallowed;
otherwise it is then available as input (as a command if nothing else).
Display MESSAGE (optional fourth arg) in the echo area.
If MESSAGE is nil, instructions to type EXIT-CHAR are displayed there."
  (or exit-char (setq exit-char ?\ ))
  (let ((inhibit-read-only t)
	;; Don't modify the undo list at all.
	(buffer-undo-list t)
	(modified (buffer-modified-p))
	(name buffer-file-name)
	insert-end)
    (unwind-protect
	(progn
	  (save-excursion
	    (goto-char pos)
	    ;; defeat file locking... don't try this at home, kids!
	    (setq buffer-file-name nil)
	    (insert-before-markers string)
	    (setq insert-end (point))
	    ;; If the message end is off screen, recenter now.
	    (if (< (window-end nil t) insert-end)
		(recenter (/ (window-height) 2)))
	    ;; If that pushed message start off the screen,
	    ;; scroll to start it at the top of the screen.
	    (move-to-window-line 0)
	    (if (> (point) pos)
		(progn
		  (goto-char pos)
		  (recenter 0))))
	  (message (or message "Type %s to continue editing.")
		   (single-key-description exit-char))
	  (let ((char (read-event)))
	    (or (eq char exit-char)
		(setq unread-command-events (list char)))))
      (if insert-end
	  (save-excursion
	    (delete-region pos insert-end)))
      (setq buffer-file-name name)
      (set-buffer-modified-p modified))))


;;;; Overlay operations

(defun copy-overlay (o)
  "Return a copy of overlay O."
  (let ((o1 (make-overlay (overlay-start o) (overlay-end o)
			  ;; FIXME: there's no easy way to find the
			  ;; insertion-type of the two markers.
			  (overlay-buffer o)))
	(props (overlay-properties o)))
    (while props
      (overlay-put o1 (pop props) (pop props)))
    o1))

(defun remove-overlays (beg end name val)
  "Clear BEG and END of overlays whose property NAME has value VAL.
Overlays might be moved and or split."
  (if (< end beg)
      (setq beg (prog1 end (setq end beg))))
  (save-excursion
    (dolist (o (overlays-in beg end))
      (when (eq (overlay-get o name) val)
	;; Either push this overlay outside beg...end
	;; or split it to exclude beg...end
	;; or delete it entirely (if it is contained in beg...end).
	(if (< (overlay-start o) beg)
	    (if (> (overlay-end o) end)
		(progn
		  (move-overlay (copy-overlay o)
				(overlay-start o) beg)
		  (move-overlay o end (overlay-end o)))
	      (move-overlay o (overlay-start o) beg))
	  (if (> (overlay-end o) end)
	      (move-overlay o end (overlay-end o))
	    (delete-overlay o)))))))

;;;; Miscellanea.

;; A number of major modes set this locally.
;; Give it a global value to avoid compiler warnings.
(defvar font-lock-defaults nil)

(defvar suspend-hook nil
  "Normal hook run by `suspend-emacs', before suspending.")

(defvar suspend-resume-hook nil
  "Normal hook run by `suspend-emacs', after Emacs is continued.")

(defvar temp-buffer-show-hook nil
  "Normal hook run by `with-output-to-temp-buffer' after displaying the buffer.
When the hook runs, the temporary buffer is current, and the window it
was displayed in is selected.  This hook is normally set up with a
function to make the buffer read only, and find function names and
variable names in it, provided the major mode is still Help mode.")

(defvar temp-buffer-setup-hook nil
  "Normal hook run by `with-output-to-temp-buffer' at the start.
When the hook runs, the temporary buffer is current.
This hook is normally set up with a function to put the buffer in Help
mode.")

;; Avoid compiler warnings about this variable,
;; which has a special meaning on certain system types.
(defvar buffer-file-type nil
  "Non-nil if the visited file is a binary file.
This variable is meaningful on MS-DOG and Windows NT.
On those systems, it is automatically local in every buffer.
On other systems, this variable is normally always nil.")

;; This should probably be written in C (i.e., without using `walk-windows').
(defun get-buffer-window-list (buffer &optional minibuf frame)
  "Return windows currently displaying BUFFER, or nil if none.
See `walk-windows' for the meaning of MINIBUF and FRAME."
  (let ((buffer (if (bufferp buffer) buffer (get-buffer buffer))) windows)
    (walk-windows (function (lambda (window)
			      (if (eq (window-buffer window) buffer)
				  (setq windows (cons window windows)))))
		  minibuf frame)
    windows))

(defun ignore (&rest ignore)
  "Do nothing and return nil.
This function accepts any number of arguments, but ignores them."
  (interactive)
  nil)

(defun error (&rest args)
  "Signal an error, making error message by passing all args to `format'.
In Emacs, the convention is that error messages start with a capital
letter but *do not* end with a period.  Please follow this convention
for the sake of consistency."
  (while t
    (signal 'error (list (apply 'format args)))))

(defalias 'user-original-login-name 'user-login-name)

(defvar yank-excluded-properties)

(defun remove-yank-excluded-properties (start end)
  "Remove `yank-excluded-properties' between START and END positions.
Replaces `category' properties with their defined properties."
  (let ((inhibit-read-only t))
    ;; Replace any `category' property with the properties it stands for.
    (unless (memq yank-excluded-properties '(t nil))
      (save-excursion
	(goto-char start)
	(while (< (point) end)
	  (let ((cat (get-text-property (point) 'category))
		run-end)
	    (setq run-end
		  (next-single-property-change (point) 'category nil end))
	    (when cat
	      (let (run-end2 original)
		(remove-list-of-text-properties (point) run-end '(category))
		(while (< (point) run-end)
		  (setq run-end2 (next-property-change (point) nil run-end))
		  (setq original (text-properties-at (point)))
		  (set-text-properties (point) run-end2 (symbol-plist cat))
		  (add-text-properties (point) run-end2 original)
		  (goto-char run-end2))))
	    (goto-char run-end)))))
    (if (eq yank-excluded-properties t)
	(set-text-properties start end nil)
      (remove-list-of-text-properties start end yank-excluded-properties))))

(defvar yank-undo-function)

(defun insert-for-yank (string)
  "Insert STRING at point, stripping some text properties.
Strip text properties from the inserted text according to
`yank-excluded-properties'.  Otherwise just like (insert STRING).

If STRING has a non-nil `yank-handler' property on the first character,
the normal insert behaviour is modified in various ways.  The value of
the yank-handler property must be a list with one to five elements
with the following format:  (FUNCTION PARAM NOEXCLUDE UNDO).
When FUNCTION is present and non-nil, it is called instead of `insert'
 to insert the string.  FUNCTION takes one argument--the object to insert.
If PARAM is present and non-nil, it replaces STRING as the object
 passed to FUNCTION (or `insert'); for example, if FUNCTION is
 `yank-rectangle', PARAM may be a list of strings to insert as a
 rectangle.
If NOEXCLUDE is present and non-nil, the normal removal of the
 yank-excluded-properties is not performed; instead FUNCTION is
 responsible for removing those properties.  This may be necessary
 if FUNCTION adjusts point before or after inserting the object.
If UNDO is present and non-nil, it is a function that will be called
 by `yank-pop' to undo the insertion of the current object.  It is
 called with two arguments, the start and end of the current region.
 FUNCTION may set `yank-undo-function' to override the UNDO value."
  (let* ((handler (and (stringp string)
		       (get-text-property 0 'yank-handler string)))
	 (param (or (nth 1 handler) string))
	 (opoint (point)))
    (setq yank-undo-function t)
    (if (nth 0 handler) ;; FUNCTION
	(funcall (car handler) param)
      (insert param))
    (unless (nth 2 handler) ;; NOEXCLUDE
      (remove-yank-excluded-properties opoint (point)))
    (if (eq yank-undo-function t)  ;; not set by FUNCTION
	(setq yank-undo-function (nth 3 handler))) ;; UNDO
    (if (nth 4 handler) ;; COMMAND
	(setq this-command (nth 4 handler)))))

(defun insert-buffer-substring-no-properties (buf &optional start end)
  "Insert before point a substring of buffer BUFFER, without text properties.
BUFFER may be a buffer or a buffer name.
Arguments START and END are character numbers specifying the substring.
They default to the beginning and the end of BUFFER."
  (let ((opoint (point)))
    (insert-buffer-substring buf start end)
    (let ((inhibit-read-only t))
      (set-text-properties opoint (point) nil))))

(defun insert-buffer-substring-as-yank (buf &optional start end)
  "Insert before point a part of buffer BUFFER, stripping some text properties.
BUFFER may be a buffer or a buffer name.  Arguments START and END are
character numbers specifying the substring.  They default to the
beginning and the end of BUFFER.  Strip text properties from the
inserted text according to `yank-excluded-properties'."
  (let ((opoint (point)))
    (insert-buffer-substring buf start end)
    (remove-yank-excluded-properties opoint (point))))


;; Synchronous shell commands.

(defun start-process-shell-command (name buffer &rest args)
  "Start a program in a subprocess.  Return the process object for it.
Args are NAME BUFFER COMMAND &rest COMMAND-ARGS.
NAME is name for process.  It is modified if necessary to make it unique.
BUFFER is the buffer or (buffer-name) to associate with the process.
 Process output goes at end of that buffer, unless you specify
 an output stream or filter function to handle the output.
 BUFFER may be also nil, meaning that this process is not associated
 with any buffer
Third arg is command name, the name of a shell command.
Remaining arguments are the arguments for the command.
Wildcards and redirection are handled as usual in the shell."
  (cond
   ((eq system-type 'vax-vms)
    (apply 'start-process name buffer args))
   ;; We used to use `exec' to replace the shell with the command,
   ;; but that failed to handle (...) and semicolon, etc.
   (t
    (start-process name buffer shell-file-name shell-command-switch
		   (mapconcat 'identity args " ")))))

(defun call-process-shell-command (command &optional infile buffer display
					   &rest args)
  "Execute the shell command COMMAND synchronously in separate process.
The remaining arguments are optional.
The program's input comes from file INFILE (nil means `/dev/null').
Insert output in BUFFER before point; t means current buffer;
 nil for BUFFER means discard it; 0 means discard and don't wait.
BUFFER can also have the form (REAL-BUFFER STDERR-FILE); in that case,
REAL-BUFFER says what to do with standard output, as above,
while STDERR-FILE says what to do with standard error in the child.
STDERR-FILE may be nil (discard standard error output),
t (mix it with ordinary output), or a file name string.

Fourth arg DISPLAY non-nil means redisplay buffer as output is inserted.
Remaining arguments are strings passed as additional arguments for COMMAND.
Wildcards and redirection are handled as usual in the shell.

If BUFFER is 0, `call-process-shell-command' returns immediately with value nil.
Otherwise it waits for COMMAND to terminate and returns a numeric exit
status or a signal description string.
If you quit, the process is killed with SIGINT, or SIGKILL if you quit again."
  (cond
   ((eq system-type 'vax-vms)
    (apply 'call-process command infile buffer display args))
   ;; We used to use `exec' to replace the shell with the command,
   ;; but that failed to handle (...) and semicolon, etc.
   (t
    (call-process shell-file-name
		  infile buffer display
		  shell-command-switch
		  (mapconcat 'identity (cons command args) " ")))))

(defmacro with-current-buffer (buffer &rest body)
  "Execute the forms in BODY with BUFFER as the current buffer.
The value returned is the value of the last form in BODY.
See also `with-temp-buffer'."
  (declare (indent 1) (debug t))
  `(save-current-buffer
     (set-buffer ,buffer)
     ,@body))

(defmacro with-selected-window (window &rest body)
  "Execute the forms in BODY with WINDOW as the selected window.
The value returned is the value of the last form in BODY.
This does not alter the buffer list ordering.
See also `with-temp-buffer'."
  (declare (indent 1) (debug t))
  ;; Most of this code is a copy of save-selected-window.
  `(let ((save-selected-window-window (selected-window))
	 (save-selected-window-alist
	  (mapcar (lambda (frame) (list frame (frame-selected-window frame)))
		  (frame-list))))
     (unwind-protect
	 (progn (select-window ,window 'norecord)
		,@body)
       (dolist (elt save-selected-window-alist)
	 (and (frame-live-p (car elt))
	      (window-live-p (cadr elt))
	      (set-frame-selected-window (car elt) (cadr elt))))
       (if (window-live-p save-selected-window-window)
	   ;; This is where the code differs from save-selected-window.
	   (select-window save-selected-window-window 'norecord)))))

(defmacro with-temp-file (file &rest body)
  "Create a new buffer, evaluate BODY there, and write the buffer to FILE.
The value returned is the value of the last form in BODY.
See also `with-temp-buffer'."
  (declare (debug t))
  (let ((temp-file (make-symbol "temp-file"))
	(temp-buffer (make-symbol "temp-buffer")))
    `(let ((,temp-file ,file)
	   (,temp-buffer
	    (get-buffer-create (generate-new-buffer-name " *temp file*"))))
       (unwind-protect
	   (prog1
	       (with-current-buffer ,temp-buffer
		 ,@body)
	     (with-current-buffer ,temp-buffer
	       (widen)
	       (write-region (point-min) (point-max) ,temp-file nil 0)))
	 (and (buffer-name ,temp-buffer)
	      (kill-buffer ,temp-buffer))))))

(defmacro with-temp-message (message &rest body)
  "Display MESSAGE temporarily if non-nil while BODY is evaluated.
The original message is restored to the echo area after BODY has finished.
The value returned is the value of the last form in BODY.
MESSAGE is written to the message log buffer if `message-log-max' is non-nil.
If MESSAGE is nil, the echo area and message log buffer are unchanged.
Use a MESSAGE of \"\" to temporarily clear the echo area."
  (declare (debug t))
  (let ((current-message (make-symbol "current-message"))
	(temp-message (make-symbol "with-temp-message")))
    `(let ((,temp-message ,message)
	   (,current-message))
       (unwind-protect
	   (progn
	     (when ,temp-message
	       (setq ,current-message (current-message))
	       (message "%s" ,temp-message))
	     ,@body)
	 (and ,temp-message
	      (if ,current-message
		  (message "%s" ,current-message)
		(message nil)))))))

(defmacro with-temp-buffer (&rest body)
  "Create a temporary buffer, and evaluate BODY there like `progn'.
See also `with-temp-file' and `with-output-to-string'."
  (declare (indent 0) (debug t))
  (let ((temp-buffer (make-symbol "temp-buffer")))
    `(let ((,temp-buffer
	    (get-buffer-create (generate-new-buffer-name " *temp*"))))
       (unwind-protect
	   (with-current-buffer ,temp-buffer
	     ,@body)
	 (and (buffer-name ,temp-buffer)
	      (kill-buffer ,temp-buffer))))))

(defmacro with-output-to-string (&rest body)
  "Execute BODY, return the text it sent to `standard-output', as a string."
  (declare (indent 0) (debug t))
  `(let ((standard-output
	  (get-buffer-create (generate-new-buffer-name " *string-output*"))))
     (let ((standard-output standard-output))
       ,@body)
     (with-current-buffer standard-output
       (prog1
	   (buffer-string)
	 (kill-buffer nil)))))

(defmacro with-local-quit (&rest body)
  "Execute BODY with `inhibit-quit' temporarily bound to nil."
  (declare (debug t) (indent 0))
  `(condition-case nil
       (let ((inhibit-quit nil))
	 ,@body)
     (quit (setq quit-flag t))))

(defmacro combine-after-change-calls (&rest body)
  "Execute BODY, but don't call the after-change functions till the end.
If BODY makes changes in the buffer, they are recorded
and the functions on `after-change-functions' are called several times
when BODY is finished.
The return value is the value of the last form in BODY.

If `before-change-functions' is non-nil, then calls to the after-change
functions can't be deferred, so in that case this macro has no effect.

Do not alter `after-change-functions' or `before-change-functions'
in BODY."
  (declare (indent 0) (debug t))
  `(unwind-protect
       (let ((combine-after-change-calls t))
	 . ,body)
     (combine-after-change-execute)))


(defvar delay-mode-hooks nil
  "If non-nil, `run-mode-hooks' should delay running the hooks.")
(defvar delayed-mode-hooks nil
  "List of delayed mode hooks waiting to be run.")
(make-variable-buffer-local 'delayed-mode-hooks)

(defun run-mode-hooks (&rest hooks)
  "Run mode hooks `delayed-mode-hooks' and HOOKS, or delay HOOKS.
Execution is delayed if `delay-mode-hooks' is non-nil.
Major mode functions should use this."
  (if delay-mode-hooks
      ;; Delaying case.
      (dolist (hook hooks)
	(push hook delayed-mode-hooks))
    ;; Normal case, just run the hook as before plus any delayed hooks.
    (setq hooks (nconc (nreverse delayed-mode-hooks) hooks))
    (setq delayed-mode-hooks nil)
    (apply 'run-hooks hooks)))

(defmacro delay-mode-hooks (&rest body)
  "Execute BODY, but delay any `run-mode-hooks'.
Only affects hooks run in the current buffer."
  (declare (debug t))
  `(progn
     (make-local-variable 'delay-mode-hooks)
     (let ((delay-mode-hooks t))
       ,@body)))

;; PUBLIC: find if the current mode derives from another.

(defun derived-mode-p (&rest modes)
  "Non-nil if the current major mode is derived from one of MODES.
Uses the `derived-mode-parent' property of the symbol to trace backwards."
  (let ((parent major-mode))
    (while (and (not (memq parent modes))
		(setq parent (get parent 'derived-mode-parent))))
    parent))

(defmacro with-syntax-table (table &rest body)
  "Evaluate BODY with syntax table of current buffer set to TABLE.
The syntax table of the current buffer is saved, BODY is evaluated, and the
saved table is restored, even in case of an abnormal exit.
Value is what BODY returns."
  (declare (debug t))
  (let ((old-table (make-symbol "table"))
	(old-buffer (make-symbol "buffer")))
    `(let ((,old-table (syntax-table))
	   (,old-buffer (current-buffer)))
       (unwind-protect
	   (progn
	     (set-syntax-table ,table)
	     ,@body)
	 (save-current-buffer
	   (set-buffer ,old-buffer)
	   (set-syntax-table ,old-table))))))

(defmacro dynamic-completion-table (fun)
  "Use function FUN as a dynamic completion table.
FUN is called with one argument, the string for which completion is required,
and it should return an alist containing all the intended possible
completions.  This alist may be a full list of possible completions so that FUN
can ignore the value of its argument.  If completion is performed in the
minibuffer, FUN will be called in the buffer from which the minibuffer was
entered.

The result of the `dynamic-completion-table' form is a function
that can be used as the ALIST argument to `try-completion' and
`all-completion'.  See Info node `(elisp)Programmed Completion'."
  (let ((win (make-symbol "window"))
        (string (make-symbol "string"))
        (predicate (make-symbol "predicate"))
        (mode (make-symbol "mode")))
    `(lambda (,string ,predicate ,mode)
       (with-current-buffer (let ((,win (minibuffer-selected-window)))
                              (if (window-live-p ,win) (window-buffer ,win)
                                (current-buffer)))
         (cond
          ((eq ,mode t) (all-completions ,string (,fun ,string) ,predicate))
          ((not ,mode) (try-completion ,string (,fun ,string) ,predicate))
          (t (test-completion ,string (,fun ,string) ,predicate)))))))

(defmacro lazy-completion-table (var fun &rest args)
  "Initialize variable VAR as a lazy completion table.
If the completion table VAR is used for the first time (e.g., by passing VAR
as an argument to `try-completion'), the function FUN is called with arguments
ARGS.  FUN must return the completion table that will be stored in VAR.
If completion is requested in the minibuffer, FUN will be called in the buffer
from which the minibuffer was entered.  The return value of
`lazy-completion-table' must be used to initialize the value of VAR."
  (let ((str (make-symbol "string")))
    `(dynamic-completion-table
      (lambda (,str)
        (unless (listp ,var)
          (setq ,var (funcall ',fun ,@args)))
        ,var))))

;;; Matching and substitution

(defvar save-match-data-internal)

;; We use save-match-data-internal as the local variable because
;; that works ok in practice (people should not use that variable elsewhere).
;; We used to use an uninterned symbol; the compiler handles that properly
;; now, but it generates slower code.
(defmacro save-match-data (&rest body)
  "Execute the BODY forms, restoring the global value of the match data.
The value returned is the value of the last form in BODY."
  ;; It is better not to use backquote here,
  ;; because that makes a bootstrapping problem
  ;; if you need to recompile all the Lisp files using interpreted code.
  (declare (indent 0) (debug t))
  (list 'let
	'((save-match-data-internal (match-data)))
	(list 'unwind-protect
	      (cons 'progn body)
	      '(set-match-data save-match-data-internal))))

(defun match-string (num &optional string)
  "Return string of text matched by last search.
NUM specifies which parenthesized expression in the last regexp.
 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
Zero means the entire text matched by the whole regexp or whole string.
STRING should be given if the last search was by `string-match' on STRING."
  (if (match-beginning num)
      (if string
	  (substring string (match-beginning num) (match-end num))
	(buffer-substring (match-beginning num) (match-end num)))))

(defun match-string-no-properties (num &optional string)
  "Return string of text matched by last search, without text properties.
NUM specifies which parenthesized expression in the last regexp.
 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
Zero means the entire text matched by the whole regexp or whole string.
STRING should be given if the last search was by `string-match' on STRING."
  (if (match-beginning num)
      (if string
	  (let ((result
		 (substring string (match-beginning num) (match-end num))))
	    (set-text-properties 0 (length result) nil result)
	    result)
	(buffer-substring-no-properties (match-beginning num)
					(match-end num)))))

(defun looking-back (regexp &optional limit)
  "Return non-nil if text before point matches regular expression REGEXP.
Like `looking-at' except backwards and slower.
LIMIT if non-nil speeds up the search by specifying how far back the
match can start."
  (save-excursion
    (re-search-backward (concat "\\(?:" regexp "\\)\\=") limit t)))

(defconst split-string-default-separators "[ \f\t\n\r\v]+"
  "The default value of separators for `split-string'.

A regexp matching strings of whitespace.  May be locale-dependent
\(as yet unimplemented).  Should not match non-breaking spaces.

Warning: binding this to a different value and using it as default is
likely to have undesired semantics.")

;; The specification says that if both SEPARATORS and OMIT-NULLS are
;; defaulted, OMIT-NULLS should be treated as t.  Simplifying the logical
;; expression leads to the equivalent implementation that if SEPARATORS
;; is defaulted, OMIT-NULLS is treated as t.
(defun split-string (string &optional separators omit-nulls)
  "Splits STRING into substrings bounded by matches for SEPARATORS.

The beginning and end of STRING, and each match for SEPARATORS, are
splitting points.  The substrings matching SEPARATORS are removed, and
the substrings between the splitting points are collected as a list,
which is returned.

If SEPARATORS is non-nil, it should be a regular expression matching text
which separates, but is not part of, the substrings.  If nil it defaults to
`split-string-default-separators', normally \"[ \\f\\t\\n\\r\\v]+\", and
OMIT-NULLS is forced to t.

If OMIT-NULLs is t, zero-length substrings are omitted from the list \(so
that for the default value of SEPARATORS leading and trailing whitespace
are effectively trimmed).  If nil, all zero-length substrings are retained,
which correctly parses CSV format, for example.

Note that the effect of `(split-string STRING)' is the same as
`(split-string STRING split-string-default-separators t)').  In the rare
case that you wish to retain zero-length substrings when splitting on
whitespace, use `(split-string STRING split-string-default-separators)'.

Modifies the match data; use `save-match-data' if necessary."
  (let ((keep-nulls (not (if separators omit-nulls t)))
	(rexp (or separators split-string-default-separators))
	(start 0)
	notfirst
	(list nil))
    (while (and (string-match rexp string
			      (if (and notfirst
				       (= start (match-beginning 0))
				       (< start (length string)))
				  (1+ start) start))
		(< start (length string)))
      (setq notfirst t)
      (if (or keep-nulls (< start (match-beginning 0)))
	  (setq list
		(cons (substring string start (match-beginning 0))
		      list)))
      (setq start (match-end 0)))
    (if (or keep-nulls (< start (length string)))
	(setq list
	      (cons (substring string start)
		    list)))
    (nreverse list)))

(defun subst-char-in-string (fromchar tochar string &optional inplace)
  "Replace FROMCHAR with TOCHAR in STRING each time it occurs.
Unless optional argument INPLACE is non-nil, return a new string."
  (let ((i (length string))
	(newstr (if inplace string (copy-sequence string))))
    (while (> i 0)
      (setq i (1- i))
      (if (eq (aref newstr i) fromchar)
	  (aset newstr i tochar)))
    newstr))

(defun replace-regexp-in-string (regexp rep string &optional
                                 fixedcase literal subexp start)
  "Replace all matches for REGEXP with REP in STRING.

Return a new string containing the replacements.

Optional arguments FIXEDCASE, LITERAL and SUBEXP are like the
arguments with the same names of function `replace-match'.  If START
is non-nil, start replacements at that index in STRING.

REP is either a string used as the NEWTEXT arg of `replace-match' or a
function.  If it is a function it is applied to each match to generate
the replacement passed to `replace-match'; the match-data at this
point are such that match 0 is the function's argument.

To replace only the first match (if any), make REGEXP match up to \\'
and replace a sub-expression, e.g.
  (replace-regexp-in-string \"\\\\(foo\\\\).*\\\\'\" \"bar\" \" foo foo\" nil nil 1)
    => \" bar foo\"
"

  ;; To avoid excessive consing from multiple matches in long strings,
  ;; don't just call `replace-match' continually.  Walk down the
  ;; string looking for matches of REGEXP and building up a (reversed)
  ;; list MATCHES.  This comprises segments of STRING which weren't
  ;; matched interspersed with replacements for segments that were.
  ;; [For a `large' number of replacements it's more efficient to
  ;; operate in a temporary buffer; we can't tell from the function's
  ;; args whether to choose the buffer-based implementation, though it
  ;; might be reasonable to do so for long enough STRING.]
  (let ((l (length string))
	(start (or start 0))
	matches str mb me)
    (save-match-data
      (while (and (< start l) (string-match regexp string start))
	(setq mb (match-beginning 0)
	      me (match-end 0))
	;; If we matched the empty string, make sure we advance by one char
	(when (= me mb) (setq me (min l (1+ mb))))
	;; Generate a replacement for the matched substring.
	;; Operate only on the substring to minimize string consing.
	;; Set up match data for the substring for replacement;
	;; presumably this is likely to be faster than munging the
	;; match data directly in Lisp.
	(string-match regexp (setq str (substring string mb me)))
	(setq matches
	      (cons (replace-match (if (stringp rep)
				       rep
				     (funcall rep (match-string 0 str)))
				   fixedcase literal str subexp)
		    (cons (substring string start mb)       ; unmatched prefix
			  matches)))
	(setq start me))
      ;; Reconstruct a string from the pieces.
      (setq matches (cons (substring string start l) matches)) ; leftover
      (apply #'concat (nreverse matches)))))

(defun shell-quote-argument (argument)
  "Quote an argument for passing as argument to an inferior shell."
  (if (eq system-type 'ms-dos)
      ;; Quote using double quotes, but escape any existing quotes in
      ;; the argument with backslashes.
      (let ((result "")
	    (start 0)
	    end)
	(if (or (null (string-match "[^\"]" argument))
		(< (match-end 0) (length argument)))
	    (while (string-match "[\"]" argument start)
	      (setq end (match-beginning 0)
		    result (concat result (substring argument start end)
				   "\\" (substring argument end (1+ end)))
		    start (1+ end))))
	(concat "\"" result (substring argument start) "\""))
    (if (eq system-type 'windows-nt)
	(concat "\"" argument "\"")
      (if (equal argument "")
	  "''"
	;; Quote everything except POSIX filename characters.
	;; This should be safe enough even for really weird shells.
	(let ((result "") (start 0) end)
	  (while (string-match "[^-0-9a-zA-Z_./]" argument start)
	    (setq end (match-beginning 0)
		  result (concat result (substring argument start end)
				 "\\" (substring argument end (1+ end)))
		  start (1+ end)))
	  (concat result (substring argument start)))))))

(defun make-syntax-table (&optional oldtable)
  "Return a new syntax table.
Create a syntax table which inherits from OLDTABLE (if non-nil) or
from `standard-syntax-table' otherwise."
  (let ((table (make-char-table 'syntax-table nil)))
    (set-char-table-parent table (or oldtable (standard-syntax-table)))
    table))

(defun syntax-after (pos)
  "Return the syntax of the char after POS."
  (unless (or (< pos (point-min)) (>= pos (point-max)))
    (let ((st (if parse-sexp-lookup-properties
		  (get-char-property pos 'syntax-table))))
      (if (consp st) st
	(aref (or st (syntax-table)) (char-after pos))))))

(defun add-to-invisibility-spec (arg)
  "Add elements to `buffer-invisibility-spec'.
See documentation for `buffer-invisibility-spec' for the kind of elements
that can be added."
  (if (eq buffer-invisibility-spec t)
      (setq buffer-invisibility-spec (list t)))
  (setq buffer-invisibility-spec
	(cons arg buffer-invisibility-spec)))

(defun remove-from-invisibility-spec (arg)
  "Remove elements from `buffer-invisibility-spec'."
  (if (consp buffer-invisibility-spec)
    (setq buffer-invisibility-spec (delete arg buffer-invisibility-spec))))

(defun global-set-key (key command)
  "Give KEY a global binding as COMMAND.
COMMAND is the command definition to use; usually it is
a symbol naming an interactively-callable function.
KEY is a key sequence; noninteractively, it is a string or vector
of characters or event types, and non-ASCII characters with codes
above 127 (such as ISO Latin-1) can be included if you use a vector.

Note that if KEY has a local binding in the current buffer,
that local binding will continue to shadow any global binding
that you make with this function."
  (interactive "KSet key globally: \nCSet key %s to command: ")
  (or (vectorp key) (stringp key)
      (signal 'wrong-type-argument (list 'arrayp key)))
  (define-key (current-global-map) key command))

(defun local-set-key (key command)
  "Give KEY a local binding as COMMAND.
COMMAND is the command definition to use; usually it is
a symbol naming an interactively-callable function.
KEY is a key sequence; noninteractively, it is a string or vector
of characters or event types, and non-ASCII characters with codes
above 127 (such as ISO Latin-1) can be included if you use a vector.

The binding goes in the current buffer's local map,
which in most cases is shared with all other buffers in the same major mode."
  (interactive "KSet key locally: \nCSet key %s locally to command: ")
  (let ((map (current-local-map)))
    (or map
	(use-local-map (setq map (make-sparse-keymap))))
    (or (vectorp key) (stringp key)
	(signal 'wrong-type-argument (list 'arrayp key)))
    (define-key map key command)))

(defun global-unset-key (key)
  "Remove global binding of KEY.
KEY is a string representing a sequence of keystrokes."
  (interactive "kUnset key globally: ")
  (global-set-key key nil))

(defun local-unset-key (key)
  "Remove local binding of KEY.
KEY is a string representing a sequence of keystrokes."
  (interactive "kUnset key locally: ")
  (if (current-local-map)
      (local-set-key key nil))
  nil)

;; We put this here instead of in frame.el so that it's defined even on
;; systems where frame.el isn't loaded.
(defun frame-configuration-p (object)
  "Return non-nil if OBJECT seems to be a frame configuration.
Any list whose car is `frame-configuration' is assumed to be a frame
configuration."
  (and (consp object)
       (eq (car object) 'frame-configuration)))

(defun functionp (object)
  "Non-nil iff OBJECT is a type of object that can be called as a function."
  (or (and (symbolp object) (fboundp object)
	   (condition-case nil
	       (setq object (indirect-function object))
	     (error nil))
	   (eq (car-safe object) 'autoload)
	   (not (car-safe (cdr-safe (cdr-safe (cdr-safe (cdr-safe object)))))))
      (subrp object) (byte-code-function-p object)
      (eq (car-safe object) 'lambda)))

(defun interactive-form (function)
  "Return the interactive form of FUNCTION.
If function is a command (see `commandp'), value is a list of the form
\(interactive SPEC).  If function is not a command, return nil."
  (setq function (indirect-function function))
  (when (commandp function)
    (cond ((byte-code-function-p function)
	   (when (> (length function) 5)
	     (let ((spec (aref function 5)))
	       (if spec
		   (list 'interactive spec)
		 (list 'interactive)))))
	  ((subrp function)
	   (subr-interactive-form function))
	  ((eq (car-safe function) 'lambda)
	   (setq function (cddr function))
	   (when (stringp (car function))
	     (setq function (cdr function)))
	   (let ((form (car function)))
	     (when (eq (car-safe form) 'interactive)
	       (copy-sequence form)))))))

(defun assq-delete-all (key alist)
  "Delete from ALIST all elements whose car is KEY.
Return the modified alist.
Elements of ALIST that are not conses are ignored."
  (let ((tail alist))
    (while tail
      (if (and (consp (car tail)) (eq (car (car tail)) key))
	  (setq alist (delq (car tail) alist)))
      (setq tail (cdr tail)))
    alist))

(defun make-temp-file (prefix &optional dir-flag suffix)
  "Create a temporary file.
The returned file name (created by appending some random characters at the end
of PREFIX, and expanding against `temporary-file-directory' if necessary),
is guaranteed to point to a newly created empty file.
You can then use `write-region' to write new data into the file.

If DIR-FLAG is non-nil, create a new empty directory instead of a file.

If SUFFIX is non-nil, add that at the end of the file name."
  (let ((umask (default-file-modes))
	file)
    (unwind-protect
	(progn
	  ;; Create temp files with strict access rights.  It's easy to
	  ;; loosen them later, whereas it's impossible to close the
	  ;; time-window of loose permissions otherwise.
	  (set-default-file-modes ?\700)
	  (while (condition-case ()
		     (progn
		       (setq file
			     (make-temp-name
			      (expand-file-name prefix temporary-file-directory)))
		       (if suffix
			   (setq file (concat file suffix)))
		       (if dir-flag
			   (make-directory file)
			 (write-region "" nil file nil 'silent nil 'excl))
		       nil)
		   (file-already-exists t))
	    ;; the file was somehow created by someone else between
	    ;; `make-temp-name' and `write-region', let's try again.
	    nil)
	  file)
      ;; Reset the umask.
      (set-default-file-modes umask))))


;; If a minor mode is not defined with define-minor-mode,
;; add it here explicitly.
;; isearch-mode is deliberately excluded, since you should
;; not call it yourself.
(defvar minor-mode-list '(auto-save-mode auto-fill-mode abbrev-mode
					 overwrite-mode view-mode)
  "List of all minor mode functions.")

(defun add-minor-mode (toggle name &optional keymap after toggle-fun)
  "Register a new minor mode.

This is an XEmacs-compatibility function.  Use `define-minor-mode' instead.

TOGGLE is a symbol which is the name of a buffer-local variable that
is toggled on or off to say whether the minor mode is active or not.

NAME specifies what will appear in the mode line when the minor mode
is active.  NAME should be either a string starting with a space, or a
symbol whose value is such a string.

Optional KEYMAP is the keymap for the minor mode that will be added
to `minor-mode-map-alist'.

Optional AFTER specifies that TOGGLE should be added after AFTER
in `minor-mode-alist'.

Optional TOGGLE-FUN is an interactive function to toggle the mode.
It defaults to (and should by convention be) TOGGLE.

If TOGGLE has a non-nil `:included' property, an entry for the mode is
included in the mode-line minor mode menu.
If TOGGLE has a `:menu-tag', that is used for the menu item's label."
  (unless (memq toggle minor-mode-list)
    (push toggle minor-mode-list))

  (unless toggle-fun (setq toggle-fun toggle))
  ;; Add the name to the minor-mode-alist.
  (when name
    (let ((existing (assq toggle minor-mode-alist)))
      (if existing
	  (setcdr existing (list name))
	(let ((tail minor-mode-alist) found)
	  (while (and tail (not found))
	    (if (eq after (caar tail))
		(setq found tail)
	      (setq tail (cdr tail))))
	  (if found
	      (let ((rest (cdr found)))
		(setcdr found nil)
		(nconc found (list (list toggle name)) rest))
	    (setq minor-mode-alist (cons (list toggle name)
					 minor-mode-alist)))))))
  ;; Add the toggle to the minor-modes menu if requested.
  (when (get toggle :included)
    (define-key mode-line-mode-menu
      (vector toggle)
      (list 'menu-item
	    (concat
	     (or (get toggle :menu-tag)
		 (if (stringp name) name (symbol-name toggle)))
	     (let ((mode-name (if (symbolp name) (symbol-value name))))
	       (if (and (stringp mode-name) (string-match "[^ ]+" mode-name))
		   (concat " (" (match-string 0 mode-name) ")"))))
	    toggle-fun
	    :button (cons :toggle toggle))))

  ;; Add the map to the minor-mode-map-alist.
  (when keymap
    (let ((existing (assq toggle minor-mode-map-alist)))
      (if existing
	  (setcdr existing keymap)
	(let ((tail minor-mode-map-alist) found)
	  (while (and tail (not found))
	    (if (eq after (caar tail))
		(setq found tail)
	      (setq tail (cdr tail))))
	  (if found
	      (let ((rest (cdr found)))
		(setcdr found nil)
		(nconc found (list (cons toggle keymap)) rest))
	    (setq minor-mode-map-alist (cons (cons toggle keymap)
					     minor-mode-map-alist))))))))

;; Clones ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun text-clone-maintain (ol1 after beg end &optional len)
  "Propagate the changes made under the overlay OL1 to the other clones.
This is used on the `modification-hooks' property of text clones."
  (when (and after (not undo-in-progress) (overlay-start ol1))
    (let ((margin (if (overlay-get ol1 'text-clone-spreadp) 1 0)))
      (setq beg (max beg (+ (overlay-start ol1) margin)))
      (setq end (min end (- (overlay-end ol1) margin)))
      (when (<= beg end)
	(save-excursion
	  (when (overlay-get ol1 'text-clone-syntax)
	    ;; Check content of the clone's text.
	    (let ((cbeg (+ (overlay-start ol1) margin))
		  (cend (- (overlay-end ol1) margin)))
	      (goto-char cbeg)
	      (save-match-data
		(if (not (re-search-forward
			  (overlay-get ol1 'text-clone-syntax) cend t))
		    ;; Mark the overlay for deletion.
		    (overlay-put ol1 'text-clones nil)
		  (when (< (match-end 0) cend)
		    ;; Shrink the clone at its end.
		    (setq end (min end (match-end 0)))
		    (move-overlay ol1 (overlay-start ol1)
				  (+ (match-end 0) margin)))
		  (when (> (match-beginning 0) cbeg)
		    ;; Shrink the clone at its beginning.
		    (setq beg (max (match-beginning 0) beg))
		    (move-overlay ol1 (- (match-beginning 0) margin)
				  (overlay-end ol1)))))))
	  ;; Now go ahead and update the clones.
	  (let ((head (- beg (overlay-start ol1)))
		(tail (- (overlay-end ol1) end))
		(str (buffer-substring beg end))
		(nothing-left t)
		(inhibit-modification-hooks t))
	    (dolist (ol2 (overlay-get ol1 'text-clones))
	      (let ((oe (overlay-end ol2)))
		(unless (or (eq ol1 ol2) (null oe))
		  (setq nothing-left nil)
		  (let ((mod-beg (+ (overlay-start ol2) head)))
		    ;;(overlay-put ol2 'modification-hooks nil)
		    (goto-char (- (overlay-end ol2) tail))
		    (unless (> mod-beg (point))
		      (save-excursion (insert str))
		      (delete-region mod-beg (point)))
		    ;;(overlay-put ol2 'modification-hooks '(text-clone-maintain))
		    ))))
	    (if nothing-left (delete-overlay ol1))))))))

(defun text-clone-create (start end &optional spreadp syntax)
  "Create a text clone of START...END at point.
Text clones are chunks of text that are automatically kept identical:
changes done to one of the clones will be immediately propagated to the other.

The buffer's content at point is assumed to be already identical to
the one between START and END.
If SYNTAX is provided it's a regexp that describes the possible text of
the clones; the clone will be shrunk or killed if necessary to ensure that
its text matches the regexp.
If SPREADP is non-nil it indicates that text inserted before/after the
clone should be incorporated in the clone."
  ;; To deal with SPREADP we can either use an overlay with `nil t' along
  ;; with insert-(behind|in-front-of)-hooks or use a slightly larger overlay
  ;; (with a one-char margin at each end) with `t nil'.
  ;; We opted for a larger overlay because it behaves better in the case
  ;; where the clone is reduced to the empty string (we want the overlay to
  ;; stay when the clone's content is the empty string and we want to use
  ;; `evaporate' to make sure those overlays get deleted when needed).
  ;;
  (let* ((pt-end (+ (point) (- end start)))
  	 (start-margin (if (or (not spreadp) (bobp) (<= start (point-min)))
			   0 1))
  	 (end-margin (if (or (not spreadp)
			     (>= pt-end (point-max))
  			     (>= start (point-max)))
  			 0 1))
  	 (ol1 (make-overlay (- start start-margin) (+ end end-margin) nil t))
  	 (ol2 (make-overlay (- (point) start-margin) (+ pt-end end-margin) nil t))
	 (dups (list ol1 ol2)))
    (overlay-put ol1 'modification-hooks '(text-clone-maintain))
    (when spreadp (overlay-put ol1 'text-clone-spreadp t))
    (when syntax (overlay-put ol1 'text-clone-syntax syntax))
    ;;(overlay-put ol1 'face 'underline)
    (overlay-put ol1 'evaporate t)
    (overlay-put ol1 'text-clones dups)
    ;;
    (overlay-put ol2 'modification-hooks '(text-clone-maintain))
    (when spreadp (overlay-put ol2 'text-clone-spreadp t))
    (when syntax (overlay-put ol2 'text-clone-syntax syntax))
    ;;(overlay-put ol2 'face 'underline)
    (overlay-put ol2 'evaporate t)
    (overlay-put ol2 'text-clones dups)))

(defun play-sound (sound)
  "SOUND is a list of the form `(sound KEYWORD VALUE...)'.
The following keywords are recognized:

  :file FILE - read sound data from FILE.  If FILE isn't an
absolute file name, it is searched in `data-directory'.

  :data DATA - read sound data from string DATA.

Exactly one of :file or :data must be present.

  :volume VOL - set volume to VOL.  VOL must an integer in the
range 0..100 or a float in the range 0..1.0.  If not specified,
don't change the volume setting of the sound device.

  :device DEVICE - play sound on DEVICE.  If not specified,
a system-dependent default device name is used."
  (unless (fboundp 'play-sound-internal)
    (error "This Emacs binary lacks sound support"))
  (play-sound-internal sound))

(defun define-mail-user-agent (symbol composefunc sendfunc
				      &optional abortfunc hookvar)
  "Define a symbol to identify a mail-sending package for `mail-user-agent'.

SYMBOL can be any Lisp symbol.  Its function definition and/or
value as a variable do not matter for this usage; we use only certain
properties on its property list, to encode the rest of the arguments.

COMPOSEFUNC is program callable function that composes an outgoing
mail message buffer.  This function should set up the basics of the
buffer without requiring user interaction.  It should populate the
standard mail headers, leaving the `to:' and `subject:' headers blank
by default.

COMPOSEFUNC should accept several optional arguments--the same
arguments that `compose-mail' takes.  See that function's documentation.

SENDFUNC is the command a user would run to send the message.

Optional ABORTFUNC is the command a user would run to abort the
message.  For mail packages that don't have a separate abort function,
this can be `kill-buffer' (the equivalent of omitting this argument).

Optional HOOKVAR is a hook variable that gets run before the message
is actually sent.  Callers that use the `mail-user-agent' may
install a hook function temporarily on this hook variable.
If HOOKVAR is nil, `mail-send-hook' is used.

The properties used on SYMBOL are `composefunc', `sendfunc',
`abortfunc', and `hookvar'."
  (put symbol 'composefunc composefunc)
  (put symbol 'sendfunc sendfunc)
  (put symbol 'abortfunc (or abortfunc 'kill-buffer))
  (put symbol 'hookvar (or hookvar 'mail-send-hook)))

;;; subr.el ends here