Source

emacs / src / floatfns.c

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
   Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/* ANSI C requires only these float functions:
   acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
   frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.

   Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
   Define HAVE_CBRT if you have cbrt.
   Define HAVE_RINT if you have rint.
   If you don't define these, then the appropriate routines will be simulated.

   Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
   (This should happen automatically.)

   Define FLOAT_CHECK_ERRNO if the float library routines set errno.
   This has no effect if HAVE_MATHERR is defined.

   Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
   (What systems actually do this?  Please let us know.)

   Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
   either setting errno, or signalling SIGFPE/SIGILL.  Otherwise, domain and
   range checking will happen before calling the float routines.  This has
   no effect if HAVE_MATHERR is defined (since matherr will be called when
   a domain error occurs.)
 */

#include <signal.h>

#include <config.h>
#include "lisp.h"
#include "syssignal.h"

Lisp_Object Qarith_error;

#ifdef LISP_FLOAT_TYPE

/* Work around a problem that happens because math.h on hpux 7
   defines two static variables--which, in Emacs, are not really static,
   because `static' is defined as nothing.  The problem is that they are
   defined both here and in lread.c.
   These macros prevent the name conflict.  */
#if defined (HPUX) && !defined (HPUX8)
#define _MAXLDBL floatfns_maxldbl
#define _NMAXLDBL floatfns_nmaxldbl
#endif

#include <math.h>

/* This declaration is omitted on some systems, like Ultrix.  */
#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
extern double logb ();
#endif /* not HPUX and HAVE_LOGB and no logb macro */

#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
    /* If those are defined, then this is probably a `matherr' machine. */
# ifndef HAVE_MATHERR
#  define HAVE_MATHERR
# endif
#endif

#ifdef NO_MATHERR
#undef HAVE_MATHERR
#endif

#ifdef HAVE_MATHERR
# ifdef FLOAT_CHECK_ERRNO
#  undef FLOAT_CHECK_ERRNO
# endif
# ifdef FLOAT_CHECK_DOMAIN
#  undef FLOAT_CHECK_DOMAIN
# endif
#endif

#ifndef NO_FLOAT_CHECK_ERRNO
#define FLOAT_CHECK_ERRNO
#endif

#ifdef FLOAT_CHECK_ERRNO
# include <errno.h>

extern int errno;
#endif

/* Avoid traps on VMS from sinh and cosh.
   All the other functions set errno instead.  */

#ifdef VMS
#undef cosh
#undef sinh
#define cosh(x) ((exp(x)+exp(-x))*0.5)
#define sinh(x) ((exp(x)-exp(-x))*0.5)
#endif /* VMS */

#ifndef HAVE_RINT
#define rint(x) (floor((x)+0.5))
#endif

static SIGTYPE float_error ();

/* Nonzero while executing in floating point.
   This tells float_error what to do.  */

static int in_float;

/* If an argument is out of range for a mathematical function,
   here is the actual argument value to use in the error message.  */

static Lisp_Object float_error_arg, float_error_arg2;

static char *float_error_fn_name;

/* Evaluate the floating point expression D, recording NUM
   as the original argument for error messages.
   D is normally an assignment expression.
   Handle errors which may result in signals or may set errno.

   Note that float_error may be declared to return void, so you can't
   just cast the zero after the colon to (SIGTYPE) to make the types
   check properly.  */

#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num)				\
  do {							\
    float_error_arg = num;				\
    float_error_fn_name = name;				\
    in_float = 1; errno = 0; (d); in_float = 0;		\
    switch (errno) {					\
    case 0: break;					\
    case EDOM:	 domain_error (float_error_fn_name, float_error_arg);	\
    case ERANGE: range_error (float_error_fn_name, float_error_arg);	\
    default:	 arith_error (float_error_fn_name, float_error_arg);	\
    }							\
  } while (0)
#define IN_FLOAT2(d, name, num, num2)			\
  do {							\
    float_error_arg = num;				\
    float_error_arg2 = num2;				\
    float_error_fn_name = name;				\
    in_float = 1; errno = 0; (d); in_float = 0;		\
    switch (errno) {					\
    case 0: break;					\
    case EDOM:	 domain_error (float_error_fn_name, float_error_arg);	\
    case ERANGE: range_error (float_error_fn_name, float_error_arg);	\
    default:	 arith_error (float_error_fn_name, float_error_arg);	\
    }							\
  } while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
#endif

/* Convert float to Lisp_Int if it fits, else signal a range error
   using the given arguments.  */
#define FLOAT_TO_INT(x, i, name, num)					\
  do									\
    {									\
      if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) ||			\
	  (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1)		\
	range_error (name, num);					\
      XSETINT (i,  (EMACS_INT)(x));					\
    }									\
  while (0)
#define FLOAT_TO_INT2(x, i, name, num1, num2)				\
  do									\
    {									\
      if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) ||			\
	  (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1)		\
	range_error2 (name, num1, num2);				\
      XSETINT (i,  (EMACS_INT)(x));					\
    }									\
  while (0)

#define arith_error(op,arg) \
  Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define range_error(op,arg) \
  Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define range_error2(op,a1,a2) \
  Fsignal (Qrange_error, Fcons (build_string ((op)), \
				Fcons ((a1), Fcons ((a2), Qnil))))
#define domain_error(op,arg) \
  Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define domain_error2(op,a1,a2) \
  Fsignal (Qdomain_error, Fcons (build_string ((op)), \
				 Fcons ((a1), Fcons ((a2), Qnil))))

/* Extract a Lisp number as a `double', or signal an error.  */

double
extract_float (num)
     Lisp_Object num;
{
  CHECK_NUMBER_OR_FLOAT (num, 0);

  if (FLOATP (num))
    return XFLOAT (num)->data;
  return (double) XINT (num);
}

/* Trig functions.  */

DEFUN ("acos", Facos, Sacos, 1, 1, 0,
  "Return the inverse cosine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("acos", arg);
#endif
  IN_FLOAT (d = acos (d), "acos", arg);
  return make_float (d);
}

DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
  "Return the inverse sine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 1.0 || d < -1.0)
    domain_error ("asin", arg);
#endif
  IN_FLOAT (d = asin (d), "asin", arg);
  return make_float (d);
}

DEFUN ("atan", Fatan, Satan, 1, 1, 0,
  "Return the inverse tangent of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = atan (d), "atan", arg);
  return make_float (d);
}

DEFUN ("cos", Fcos, Scos, 1, 1, 0,
  "Return the cosine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = cos (d), "cos", arg);
  return make_float (d);
}

DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
  "Return the sine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = sin (d), "sin", arg);
  return make_float (d);
}

DEFUN ("tan", Ftan, Stan, 1, 1, 0,
  "Return the tangent of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
  if (c == 0.0)
    domain_error ("tan", arg);
#endif
  IN_FLOAT (d = sin (d) / c, "tan", arg);
  return make_float (d);
}

#if 0 /* Leave these out unless we find there's a reason for them.  */

DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
  "Return the bessel function j0 of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = j0 (d), "bessel-j0", arg);
  return make_float (d);
}

DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
  "Return the bessel function j1 of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = j1 (d), "bessel-j1", arg);
  return make_float (d);
}

DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
  "Return the order N bessel function output jn of ARG.\n\
The first arg (the order) is truncated to an integer.")
  (arg1, arg2)
     register Lisp_Object arg1, arg2;
{
  int i1 = extract_float (arg1);
  double f2 = extract_float (arg2);

  IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
  return make_float (f2);
}

DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
  "Return the bessel function y0 of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = y0 (d), "bessel-y0", arg);
  return make_float (d);
}

DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
  "Return the bessel function y1 of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = y1 (d), "bessel-y0", arg);
  return make_float (d);
}

DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
  "Return the order N bessel function output yn of ARG.\n\
The first arg (the order) is truncated to an integer.")
  (arg1, arg2)
     register Lisp_Object arg1, arg2;
{
  int i1 = extract_float (arg1);
  double f2 = extract_float (arg2);

  IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
  return make_float (f2);
}

#endif

#if 0 /* Leave these out unless we see they are worth having.  */

DEFUN ("erf", Ferf, Serf, 1, 1, 0,
  "Return the mathematical error function of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = erf (d), "erf", arg);
  return make_float (d);
}

DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
  "Return the complementary error function of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = erfc (d), "erfc", arg);
  return make_float (d);
}

DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
  "Return the log gamma of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = lgamma (d), "log-gamma", arg);
  return make_float (d);
}

DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
  "Return the cube root of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef HAVE_CBRT
  IN_FLOAT (d = cbrt (d), "cube-root", arg);
#else
  if (d >= 0.0)
    IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
  else
    IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
#endif
  return make_float (d);
}

#endif

DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
  "Return the exponential base e of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 709.7827)   /* Assume IEEE doubles here */
    range_error ("exp", arg);
  else if (d < -709.0)
    return make_float (0.0);
  else
#endif
    IN_FLOAT (d = exp (d), "exp", arg);
  return make_float (d);
}

DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
  "Return the exponential ARG1 ** ARG2.")
  (arg1, arg2)
     register Lisp_Object arg1, arg2;
{
  double f1, f2;

  CHECK_NUMBER_OR_FLOAT (arg1, 0);
  CHECK_NUMBER_OR_FLOAT (arg2, 0);
  if (INTEGERP (arg1)     /* common lisp spec */
      && INTEGERP (arg2)) /* don't promote, if both are ints */
    {				/* this can be improved by pre-calculating */
      EMACS_INT acc, x, y;	/* some binary powers of x then accumulating */
      Lisp_Object val;

      x = XINT (arg1);
      y = XINT (arg2);
      acc = 1;
      
      if (y < 0)
	{
	  if (x == 1)
	    acc = 1;
	  else if (x == -1)
	    acc = (y & 1) ? -1 : 1;
	  else
	    acc = 0;
	}
      else
	{
	  while (y > 0)
	    {
	      if (y & 1)
		acc *= x;
	      x *= x;
	      y = (unsigned)y >> 1;
	    }
	}
      XSETINT (val, acc);
      return val;
    }
  f1 = FLOATP (arg1) ? XFLOAT (arg1)->data : XINT (arg1);
  f2 = FLOATP (arg2) ? XFLOAT (arg2)->data : XINT (arg2);
  /* Really should check for overflow, too */
  if (f1 == 0.0 && f2 == 0.0)
    f1 = 1.0;
#ifdef FLOAT_CHECK_DOMAIN
  else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
    domain_error2 ("expt", arg1, arg2);
#endif
  IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
  return make_float (f1);
}

DEFUN ("log", Flog, Slog, 1, 2, 0,
  "Return the natural logarithm of ARG.\n\
If second optional argument BASE is given, return log ARG using that base.")
  (arg, base)
     register Lisp_Object arg, base;
{
  double d = extract_float (arg);

#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error2 ("log", arg, base);
#endif
  if (NILP (base))
    IN_FLOAT (d = log (d), "log", arg);
  else
    {
      double b = extract_float (base);

#ifdef FLOAT_CHECK_DOMAIN
      if (b <= 0.0 || b == 1.0)
	domain_error2 ("log", arg, base);
#endif
      if (b == 10.0)
	IN_FLOAT2 (d = log10 (d), "log", arg, base);
      else
	IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
    }
  return make_float (d);
}

DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
  "Return the logarithm base 10 of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d <= 0.0)
    domain_error ("log10", arg);
#endif
  IN_FLOAT (d = log10 (d), "log10", arg);
  return make_float (d);
}

DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
  "Return the square root of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 0.0)
    domain_error ("sqrt", arg);
#endif
  IN_FLOAT (d = sqrt (d), "sqrt", arg);
  return make_float (d);
}

#if 0 /* Not clearly worth adding.  */

DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
  "Return the inverse hyperbolic cosine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d < 1.0)
    domain_error ("acosh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = acosh (d), "acosh", arg);
#else
  IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
#endif
  return make_float (d);
}

DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
  "Return the inverse hyperbolic sine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = asinh (d), "asinh", arg);
#else
  IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
#endif
  return make_float (d);
}

DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
  "Return the inverse hyperbolic tangent of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d >= 1.0 || d <= -1.0)
    domain_error ("atanh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
  IN_FLOAT (d = atanh (d), "atanh", arg);
#else
  IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
#endif
  return make_float (d);
}

DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
  "Return the hyperbolic cosine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("cosh", arg);
#endif
  IN_FLOAT (d = cosh (d), "cosh", arg);
  return make_float (d);
}

DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
  "Return the hyperbolic sine of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
  if (d > 710.0 || d < -710.0)
    range_error ("sinh", arg);
#endif
  IN_FLOAT (d = sinh (d), "sinh", arg);
  return make_float (d);
}

DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
  "Return the hyperbolic tangent of ARG.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = tanh (d), "tanh", arg);
  return make_float (d);
}
#endif

DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
  "Return the absolute value of ARG.")
  (arg)
     register Lisp_Object arg;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (FLOATP (arg))
    IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
  else if (XINT (arg) < 0)
    XSETINT (arg, - XINT (arg));

  return arg;
}

DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
  "Return the floating point number equal to ARG.")
  (arg)
     register Lisp_Object arg;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (INTEGERP (arg))
    return make_float ((double) XINT (arg));
  else				/* give 'em the same float back */
    return arg;
}

DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
  "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\
This is the same as the exponent of a float.")
     (arg)
     Lisp_Object arg;
{
  Lisp_Object val;
  EMACS_INT value;
  double f = extract_float (arg);

  if (f == 0.0)
    value = -(VALMASK >> 1);
  else
    {
#ifdef HAVE_LOGB
      IN_FLOAT (value = logb (f), "logb", arg);
#else
#ifdef HAVE_FREXP
      int ivalue;
      IN_FLOAT (frexp (f, &ivalue), "logb", arg);
      value = ivalue - 1;
#else
      int i;
      double d;
      if (f < 0.0)
	f = -f;
      value = -1;
      while (f < 0.5)
	{
	  for (i = 1, d = 0.5; d * d >= f; i += i)
	    d *= d;
	  f /= d;
	  value -= i;
	}
      while (f >= 1.0)
	{
	  for (i = 1, d = 2.0; d * d <= f; i += i)
	    d *= d;
	  f /= d;
	  value += i;
	}
#endif
#endif
    }
  XSETINT (val, value);
  return val;
}

/* the rounding functions  */

DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
  "Return the smallest integer no less than ARG.  (Round toward +inf.)")
  (arg)
     register Lisp_Object arg;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (FLOATP (arg))
    {
      double d;

      IN_FLOAT (d = ceil (XFLOAT (arg)->data), "ceiling", arg);
      FLOAT_TO_INT (d, arg, "ceiling", arg);
    }

  return arg;
}

#endif /* LISP_FLOAT_TYPE */


DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
  "Return the largest integer no greater than ARG.  (Round towards -inf.)\n\
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
  (arg, divisor)
     register Lisp_Object arg, divisor;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (! NILP (divisor))
    {
      EMACS_INT i1, i2;

      CHECK_NUMBER_OR_FLOAT (divisor, 1);

#ifdef LISP_FLOAT_TYPE
      if (FLOATP (arg) || FLOATP (divisor))
	{
	  double f1, f2;

	  f1 = FLOATP (arg) ? XFLOAT (arg)->data : XINT (arg);
	  f2 = (FLOATP (divisor) ? XFLOAT (divisor)->data : XINT (divisor));
	  if (f2 == 0)
	    Fsignal (Qarith_error, Qnil);

	  IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
	  FLOAT_TO_INT2 (f1, arg, "floor", arg, divisor);
	  return arg;
	}
#endif

      i1 = XINT (arg);
      i2 = XINT (divisor);

      if (i2 == 0)
	Fsignal (Qarith_error, Qnil);

      /* With C's /, the result is implementation-defined if either operand
	 is negative, so use only nonnegative operands.  */
      i1 = (i2 < 0
	    ? (i1 <= 0  ?  -i1 / -i2  :  -1 - ((i1 - 1) / -i2))
	    : (i1 < 0  ?  -1 - ((-1 - i1) / i2)  :  i1 / i2));

      XSETINT (arg, i1);
      return arg;
    }

#ifdef LISP_FLOAT_TYPE
  if (FLOATP (arg))
    {
      double d;
      IN_FLOAT (d = floor (XFLOAT (arg)->data), "floor", arg);
      FLOAT_TO_INT (d, arg, "floor", arg);
    }
#endif

  return arg;
}

#ifdef LISP_FLOAT_TYPE

DEFUN ("round", Fround, Sround, 1, 1, 0,
  "Return the nearest integer to ARG.")
  (arg)
     register Lisp_Object arg;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (FLOATP (arg))
    {
      double d;

      /* Screw the prevailing rounding mode.  */
      IN_FLOAT (d = rint (XFLOAT (arg)->data), "round", arg);
      FLOAT_TO_INT (d, arg, "round", arg);
    }

  return arg;
}

DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
       "Truncate a floating point number to an int.\n\
Rounds the value toward zero.")
  (arg)
     register Lisp_Object arg;
{
  CHECK_NUMBER_OR_FLOAT (arg, 0);

  if (FLOATP (arg))
    {
      double d;

      d = XFLOAT (arg)->data;
      FLOAT_TO_INT (d, arg, "truncate", arg);
    }

  return arg;
}

/* It's not clear these are worth adding.  */

DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
  "Return the smallest integer no less than ARG, as a float.\n\
\(Round toward +inf.\)")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = ceil (d), "fceiling", arg);
  return make_float (d);
}

DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
  "Return the largest integer no greater than ARG, as a float.\n\
\(Round towards -inf.\)")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = floor (d), "ffloor", arg);
  return make_float (d);
}

DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
  "Return the nearest integer to ARG, as a float.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  IN_FLOAT (d = rint (d), "fround", arg);
  return make_float (d);
}

DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
       "Truncate a floating point number to an integral float value.\n\
Rounds the value toward zero.")
  (arg)
     register Lisp_Object arg;
{
  double d = extract_float (arg);
  if (d >= 0.0)
    IN_FLOAT (d = floor (d), "ftruncate", arg);
  else
    IN_FLOAT (d = ceil (d), "ftruncate", arg);
  return make_float (d);
}

#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (signo)
     int signo;
{
  if (! in_float)
    fatal_error_signal (signo);

#ifdef BSD
#ifdef BSD4_1
  sigrelse (SIGILL);
#else /* not BSD4_1 */
  sigsetmask (SIGEMPTYMASK);
#endif /* not BSD4_1 */
#else
  /* Must reestablish handler each time it is called.  */
  signal (SIGILL, float_error);
#endif /* BSD */

  in_float = 0;

  Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
}

/* Another idea was to replace the library function `infnan'
   where SIGILL is signaled.  */

#endif /* FLOAT_CATCH_SIGILL */

#ifdef HAVE_MATHERR
int 
matherr (x)
     struct exception *x;
{
  Lisp_Object args;
  if (! in_float)
    /* Not called from emacs-lisp float routines; do the default thing. */
    return 0;
  if (!strcmp (x->name, "pow"))
    x->name = "expt";

  args
    = Fcons (build_string (x->name),
	     Fcons (make_float (x->arg1),
		    ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
		     ? Fcons (make_float (x->arg2), Qnil)
		     : Qnil)));
  switch (x->type)
    {
    case DOMAIN:	Fsignal (Qdomain_error, args);		break;
    case SING:		Fsignal (Qsingularity_error, args);	break;
    case OVERFLOW:	Fsignal (Qoverflow_error, args);	break;
    case UNDERFLOW:	Fsignal (Qunderflow_error, args);	break;
    default:		Fsignal (Qarith_error, args);		break;
    }
  return (1);	/* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */

init_floatfns ()
{
#ifdef FLOAT_CATCH_SIGILL
  signal (SIGILL, float_error);
#endif 
  in_float = 0;
}

#else /* not LISP_FLOAT_TYPE */

init_floatfns ()
{}

#endif /* not LISP_FLOAT_TYPE */

syms_of_floatfns ()
{
#ifdef LISP_FLOAT_TYPE
  defsubr (&Sacos);
  defsubr (&Sasin);
  defsubr (&Satan);
  defsubr (&Scos);
  defsubr (&Ssin);
  defsubr (&Stan);
#if 0
  defsubr (&Sacosh);
  defsubr (&Sasinh);
  defsubr (&Satanh);
  defsubr (&Scosh);
  defsubr (&Ssinh);
  defsubr (&Stanh);
  defsubr (&Sbessel_y0);
  defsubr (&Sbessel_y1);
  defsubr (&Sbessel_yn);
  defsubr (&Sbessel_j0);
  defsubr (&Sbessel_j1);
  defsubr (&Sbessel_jn);
  defsubr (&Serf);
  defsubr (&Serfc);
  defsubr (&Slog_gamma);
  defsubr (&Scube_root);
#endif
  defsubr (&Sfceiling);
  defsubr (&Sffloor);
  defsubr (&Sfround);
  defsubr (&Sftruncate);
  defsubr (&Sexp);
  defsubr (&Sexpt);
  defsubr (&Slog);
  defsubr (&Slog10);
  defsubr (&Ssqrt);

  defsubr (&Sabs);
  defsubr (&Sfloat);
  defsubr (&Slogb);
  defsubr (&Sceiling);
  defsubr (&Sround);
  defsubr (&Struncate);
#endif /* LISP_FLOAT_TYPE */
  defsubr (&Sfloor);
}