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Abstract

The goal of this problem is to detect and localize seismic events on a simulated
two-dimensional world (the surface of a perfect sphere) given signals collected over
a fixed time interval at a number of seismic stations. This is a simplification of
the real problem (Arora et al., 2013), and is designed as a challenge problem for
research in probabilistic programming languages.

1 Generative Model

1.1 Events

Events are generated by a homogenous space-time Poisson process over the surface of the
earth with rate parameter λe. We assume that the earth is a perfect sphere with radius
R, and we are only interested in events that occur in an episode of length T in time.
In other words, the number of events in any episode has a Poisson distribution with
rate λe4πR

2T . Further, it follows that the time of each event is uniformly distributed
in [0, T ], and the location is uniformly distributed over the surface of the earth. If
locations are represented by longitude and latitude then one can equivalently state
that longitudes are uniformly distributed over [−180, 180] and the sin of the latitude
is uniformly distributed over [−1, 1].

More formally, if e is the set of events in an episode, then

|e| ∼ Poisson( · | λe4πR2T ),

and for each event ei with time, longitude, and latitude given by eit, e
i
l1, and eil2 respec-

tively,

eit ∼ Uniform( · | 0, T )

eil1 ∼ Uniform( · | − 180, 180)

sin(eil2) ∼ Uniform( · | − 1, 1).
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The event magnitude, eim is distributed as per an exponential distribution with scale
θm, a minimum value of µm and a maximum of γm, i.e.,

eim ∼ Exponential( · | µm, θm, γm).

This magnitude model is based on the well known Gutenberg-Richter law (Wikipedia,
2015d). The maximum magnitude is a result of a phenomenon known as magnitude
saturation.

1.2 True Detections

The seismic energy from an event travels radially outwards in distinct phases, each of
which may or may not be detected by a station depending on local noise levels. For
example, the energy can travel via different modes of transmission (compression waves,
shear waves) and along different layers of the earth, the so called body waves or along
the surface, refer to International Seismological Centre (2011) for a full list. In this
work we only consider the first arriving phase, the P phase.

We define a true detection Λik as the moment of first arrival of the energy from
an event i at a seismic station k. Various signal processing algorithms are applied to
the raw waveforms to detect an arrival, and then station processing algorithms collect
various attributes of the detection such as time, azimuth, slowness, and amplitude
referenced by Λik

t , Λik
z , Λik

s , and Λik
a respectively. Time is quite obviously the detection

time of the energy, azimuth refers to the geographical direction of the incoming seismic
waves, and amplitude is the height of the initial peak. Slowness is a more peculiar term,
it refers to the inverse of the apparent surface speed of the waves, which will become
clearer shortly.

1.2.1 Detection Probability

The probability that an event ei is detected at station sk is a function of the event
magnitude and the great-circle distance, ∆ik, between the event and the station. If Λik

= ζ represents a mis-detection then,

P (Λik 6= ζ | ei, sk) = logistic(µkd0 + µkd1e
i
m + µkd2∆ik) .

1.2.2 Detection Time

The theoretical travel time of a seismic wave at a distance of δ is given by the travel
time function,

IT (δ) = −.023× δ2 + 10.7× δ + 5.

The detection time has a Laplacian distribution centered near the theoretical detection
time,

Λik
t ∼ Laplacian( · | eit + IT (∆ik) + µkt , θ

k
t ).
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Note that the detections with time greater than T will not be available in the episodic
data.

1.3 Detection Azimuth

The difference of the detection azimuth, Λik
z from the theoretical station-to-event az-

imuth, Gz(s
k
l , e

i
l) is distributed as a Laplacian,

ψ(Gz(s
k
l , e

i
l),Λ

ik
z ) ∼ Laplacian( · | µkz , θkz ).

Here skl and eil refer to the locations (pair of longitude and latiude) of the station and
the event respectively. See Appendix A for a definition of Gz and ψ.

1.4 Detection Slowness

The slowness at distance δ given by IS(δ) is simply the derivative of the travel time. In
other words, slowness measures the time that the seismic wave takes to travel between
two points very close to the station in the direction of the event-to-station azimuth.
The theoretical slowness is given by the formula,

IS(δ) = −.046× δ + 10.7 .

Note that IS is always positive since δ ∈ [0, 180].
The detection slowness is a Laplacian centered near the theoretical slowness,

Λik
s ∼ Laplacian( · | IS(∆ik) + µks , θ

k
s ).

1.5 Detection Amplitude

The log of the detection amplitude has a Gaussian distribution with a mean determined
by the event magnitude and travel time.

log(Λik
a ) ∼ Gaussian( · | µka0 + µka1e

i
m + µka2IT (∆ik) , σ

k
a ).

1.6 False Detections

Each station k has its own time-homogenous Poisson process generating false detections
with rate λkf . In other words, if ξk is the set of false detections in an episode,

|ξk| ∼ Poisson( · | λkf T ),

and the detection time ξkt is uniformly distributed,

ξkt ∼ Uniform( · | 0, T ).
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The azimuth and slowness are also uniformly distributed with their allowed ranges as
follows:

ξkz ∼ Uniform( · | 0, 360),

ξks ∼ Uniform( · | IS(180), IS(0)).

However, the log-amplitude is distributed as Cauchy,

log ξka ∼ Cauchy( · | µkf , θkf ).

2 Hyperpriors and Constants

T = 3600 s

R = 6371 km

λe ∼ Gamma( · | 6.0,
1

4πR2T
)

µm = 3.0

θm = 4.0

γm = 6.0 µkd0

µkd1

µkd2

 = MVarGaussian

 ·
∣∣∣∣∣∣
−10.4

3.26
−0.0499

 ,
 13.43 −2.36 −0.0122
−2.36 0.452 0.000 112
−0.0122 0.000 112 0.000 125

 
µkt = 0

θkt ∼ InvGamma( · | 120, 118)

µkz = 0

θkz ∼ InvGamma( · | 5.2, 44)

µks = 0

θks ∼ InvGamma( · | 6.7, 7.5) µka0

µka1

µka2

 = MVarGaussian

 ·
∣∣∣∣∣∣
−7.3

2.03
−0.001 96

 ,
 1.23 −0.227 −0.000 175
−0.227 0.0461 0.000 024 5
−0.000 175 0.000 024 5 0.000 000 302

 
(σka)2 ∼ InvGamma( · | 21.1, 12.6)

λkf ∼ Gamma( · | 2.1, 0.0013)

µkf ∼ Gaussian( · | − 0.68, 0.68)

θkf ∼ InvGamma( · | 23.5, 12.45)
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3 Stations

Abbreviation Station Number Longitude Latitude
ASAR 0 133.9 -23.7
CMAR 1 98.9 18.5
FINES 2 26.1 61.4
ILAR 3 -146.9 64.8
MKAR 4 82.3 46.8
SONM 5 106.4 47.8
STKA 6 141.6 -31.9
TORD 7 1.7 13.1
WRA 8 134.3 -19.9
ZALV 9 84.8 53.9

4 Data and Evaluation

The data for this problem is several hundred megabytes, and has to be downloaded
separately. The key point worth noting is that we are providing separate training and
test data sets that are generated from the same underlying physics. The file test.data

contains the fully labeled test data, and the file training.data is the fully labeled
training data. In order to avoid accidental peeking, we are also providing an unlabeled
copy of the test data in test.blind. The evaluation function is described in detail
in the following sections. However, we are providing a simple script, evaluate.py to
perform the evaluation.

A short data set of 100 episodes has been included for the purpose of evaluation on
the challenge problem. A larger data set of 10000 episodes has also been included for
further research.

4.1 File Format

Each data file consists of a number of episodes that are separated by a blank line. Each
episode has subsections for the events, detections, and associations that took place in
one episode of T seconds. The format of the blind data is identical, however it has no
events or associations.

Episodes:

Events:

<longitude> <latitude> <magnitude> <time>

...

Detections:

<station number (zero-based)> <time> <azimuth> <slowness> <amplitude>

...
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Assocs:

<event number (zero-based)> <detection number (zero-based)>

...

4.2 Evaluation

In each episode, the predicted events are matched against the ground truth events using
min-weight max-cardinality matching. Only events that are within WT = 50 seconds
and WD = 5 degrees of each other are considered as potential matches. The weight of
a matched pairs of events e and e′ is,

|et − e′t|
WT

+
dist(e, e′)

WD

.

Given a matching, we can compute the precision, recall, and F-1 score in each episode
as well as over the entire data set. Additionally, we will report the errors in magnitude
estimates, distance, and time for the matched events.

There is just one caveat here. Some of the ground truth events don’t have at least
two associations, and thus can’t be located reasonably. These events have to be excluded
from the matching and the subsequent recall score.

The provided script evaluate.py may be used to automatically evaluate a solution
bulletin. The format of the solution that is expected by this script is identical to
that used for the other data files. The list of detections may be left out. It is highly
recommended though that the list of associations should not be left out because future
versions of the script may match associations as well.

The following shows the output from the script when run against a partial bulletin
with only four episodes solved.

./evaluate.py short_data/test.data mysolution.data

Guess data has fewer episodes than gold data!!

10 matchable events, 12 guess events, and 4 matched

Precision 33.3 % , Recall 40.0 % , F1 36.4

Time Errors mean 8.5 std 4.7

Dist Errors mean 1.4 std 0.6

Mag Errors mean 0.2 std 0.1

4.3 Metric and Submission

This problem does not require a performance profile. Teams should report the metrics
output by the evaluation script at the point where their solution halts. Teams should
also report the CPU time consumed by their solution, in milliseconds.
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Appendices

A Spherical Geometry Functions

A.1 Azimuth

The azimuth of location b = (lon2, lat2) as observed from location a = (lon1, lat1) is
given by the function Gz(a, b) ∈ [0, 360). Where 0 is due north, 180 is due south, and
270 is due west. If dlon = lon2 − lon1 then we define

Gz(a, b) = [G′z(a, b) + 360] mod 360,

where G′z(a, b) = atan2 ( sin(dlon) , cos(lat1) tan(lat2)− sin(lat1) cos(dlon) ) .

See Wikipedia (2015c) for an explanation of G′z(a, b).

A.2 Azimuth Difference

The difference between two azimuths ψ(z1, z2) measures whether z2 is clockwise from
z1, i.e. ψ ∈ [0, 180] or counter-clockwise, ψ ∈ [0,−180].

ψ(z1, z2) =

{
ψ′(z1, z2)− 360 if ψ′(z1, z2) > 180

ψ′(z1, z2) otherwise

where,

ψ′(z1, z2) = [z2 − z1 + 360] mod 360.

A.3 Great-Circle Distance

From Wikipedia (2015b):

The great-circle distance is the shortest distance between two points on the
surface of a sphere measured along the surface of the sphere.

We use the Vincenty version of the formula. If a and b are two points on the surface of
a sphere described by longitude, latitude pairs (lon1, lat1) and (lon2, lat2) respectively,
and dlon is the difference in the longitudes, then

dist(a, b) = atan2(y, x),

where

y =
√

(cos(lat2) sin(dlon))2 + (cos(lat1) sin(lat2)− sin(lat1) cos(lat2) cos(dlon))2 , and

x = sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(dlon).

Note that atan2 (Wikipedia, 2015a) has range [0, 180] degrees when the first argument
is non-negative. Hence dist has range [0, 180].
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B Statistical Distributions and Functions

B.1 Cauchy

The Cauchy distribution with location µ and scale θ has probability density

Cauchy(x | µ, θ) =
1

πθ

1

1 + (x−µ
θ

)2

defined over all x ∈ R.

B.2 Exponential

The Exponential distribution with location (or minimum value) µ, scale θ, and maxi-
mum value γm has the probability density

Exponential(x | µ, θ, γ) =
1

θ

1

1− e− γ−µθ
e−

x−µ
θ

defined over all x ∈ R, x ≥ µ, and x < γ.

B.3 Gaussian

The Gaussian distribution with mean µ and standard deviation σ has probability den-
sity

Gaussian(x | µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

defined over all x ∈ R.

B.4 Gamma

The Gamma distribution with shape α and scale θ has probability density

Gamma(x | α, θ) =
1

Γ(α) θα
xα−1e−

x
θ ,

defined over all x ∈ R>0.

B.5 Inverse-Gamma

The Inverse-Gamma distribution with shape α and scale θ has probability density

InvGamma(x | α, θ) =
θα

Γ(α)
x−α−1e−

θ
x ,

defined over all x ∈ R>0.
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B.6 Logistic

The logistic function is defined as,

logistic(x) =
1

1 + e−x
.

B.7 Laplacian

The Laplacian distribution with location µ and scale θ has probability density

Laplacian(x | µ, θ) =
1

2θ
e−
|x−µ|
θ ,

defined over all x ∈ R.

B.8 Multi-variate Gaussian

The Muti-variate Gaussian distribution with mean vector µ ∈ Rk, and covariance matrix
Σ ∈ Rk×k has probability density

MVarGaussian(x | µ, Σ) =
1√

(2π)k|Σ|
e−

1
2

(x−µ)TΣ−1(x−µ)

defined over all x ∈ Rk.

B.9 Poisson

The Poisson distribution with rate λ has the probability density

Poisson(n | λ) = e−λ
λn

n!
,

defined over all n ∈ Z≥0.

B.10 Uniform

The Uniform distribution with parameters a, b ∈ R (and a < b) has the probability
density

Uniform(x | a, b) =
1

b− a
1x>a1x<b ,

defined over all x ∈ R.

C Supplied Python Scripts

All of the supplied scripts are briefly described in the provided README.txt file. Here
is a more detailed description.
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C.1 generate.py

This script first draws a sample from the hyperpriors. This sample represents the
physics of a hypothetical earth. Next it samples a number of episodes of seismic events
and detections based on this underlying physics. The episodes are divided into two sets,
one for training and the other for testing, and then saved. The test episodes are further
stripped of all events and associations and saved in the blind test file. The arguments
to the script are as follows.

• The number of episodes to sample for each of the training and test files.

• The file name to save the physics.

• The file name to save the training data.

• The file name to save the test data.

• The file name to save the blind test data.

The following sample output is generated when the script is run. First we create a
directory to save the data, and then invoke generate.py.

$> mkdir data

$> ./generate.py 100 data/physics.data data/training.data data/test.data data

/test.blind

263 events generated

58.9 % events have at least two detections

316 events generated

57.9 % events have at least two detections

$> ls data

physics.data test.blind test.data training.data

The format of the physics.data is very simple. It simple lists each attribute of the
physics in the order specified in Section 2 followed by an equal sign and the value as
represented in Python. For example, the following are the first few lines of this file.

T = 3600

R = 6371

lambda_e = 2.44749420963e-12

mu_m = 3.0

theta_m = 4.0

gamma_m = 6.0

mu_d0 = [-15.525711059357944, -13.02388685474455, -7.7621843877940453,

-11.133601793604004, -4.3077944888906963, -6.4595999202909073,

-6.0893863902811285, -11.5243613488537, -10.974148036814023,

-13.319638578401111]
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C.2 util.py

This script has a number of utilities that are described below.

• compute travel time is the function IT .

• compute slowness is the function IS.

• invert slowness is the function I−1
S .

• write namedtuple writes out a Python named tuple to file. This is used to write
the physics out to file.

• read namedtuple clearly reads a Python named tuple from file. This function is
handy to read the physics data.

• write episodes writes out a list of episodes to file.

• write single episode writes out a single episode to an existing file stream.

• read episodes reads a list of episodes from a file.

• iterate episodes sets up a Python iterator for iterating episodes in a file.

• compute distance is the dist function.

• compute azimuth is the Gz function.

• invert dist azimuth computes a location by traveling a certain amount of dis-
tance in a given azimuth from a fixed location. This problem is also called reck-
oning. The use of this function is critical to the sample solver.

• compute degdiff is the ψ function.

• mvar norm fit for fitting data to a multivariate normal.

• mvar norm sample for sampling from a multivariate normal. This function is used
in generate.py to generate the detection probability coefficient, for example.

C.3 solve.py

This sample solver is in a very rudimentary stage as of this writing. This version cheats
by looking directly at the physics rather than learning the physics from the training
data. The arguments to the script are as follows.

• The name of the physics data file.

• The name of the blind data file.
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• The name of the file where the solutions are to be written out.

Here is a sample command to run this script.

$> ./solve.py data/physics.data data/test.blind data/test.solution

The script keeps printing out to the terminal the events that it has located while
populating the solution file as well. The solution file is flushed at the end of each
episode.

A brief summary of the algorithm is as follows. For each detection we invert the
slowness to get a distance estimate. Next invert the distance estimate and azimuth to
get a potential event location, and finally the event time and magnitude is computed
from the location. Now, repeat this process with perturbed slowness and azimuth values
to get a number of candidates events from each detection. A large number of candidates,
roughly a hundred from each detection, is thus generated. A candidate is assigned a
score by attempting to associate the best set of detections from the available pool. An
event score is the log likelihood ratio of the associated detections being generated by
the event versus the same detections being generated by noise.

Once a best candidate is identified, its associated detections are removed from the
pool and the process is repeated. Once the score of a candidate event is below a
threshold the process stops.

Of course, this algorithm makes a number of simplifications. For example, it ig-
nores the event prior and doesn’t consider splitting or merging events. Please refer to
Arora et al. (2013) for the actual deployed algorithm.

C.4 evaluate.py

This script takes only two arguments. The data file with the correct bulletin, the so-
called gold data, and the guess data file. The guess file could have fewer episodes than
the gold data. In this case only the episodes in the guess data file are evaluated. Here
is a sample output from the script.

$> ./evaluate.py data/test.data data/test.solution

Guess data has fewer episodes than gold data!!

115 matchable events, 147 guess events, and 84 matched

Precision 57.1 % , Recall 73.0 % , F1 64.1

Time Errors mean 6.7 std 5.6

Dist Errors mean 1.4 std 0.9

Mag Errors mean 0.2 std 0.1

C.5 mwmatching.py

This utlity script implements a max-weight max cardinality matching algorithm that
is used for the evaluation.
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