Source

Blog_NotesOfDabbler / 04_learnR_parfitODE / compAppendix_parest.html

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>compAppendix_parest.R</title>

<style type="text/css">
body, td {
   font-family: sans-serif;
   background-color: white;
   font-size: 12px;
   margin: 8px;
}

tt, code, pre {
   font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}

h1 { 
   font-size:2.2em; 
}

h2 { 
   font-size:1.8em; 
}

h3 { 
   font-size:1.4em; 
}

h4 { 
   font-size:1.0em; 
}

h5 { 
   font-size:0.9em; 
}

h6 { 
   font-size:0.8em; 
}

a:visited {
   color: rgb(50%, 0%, 50%);
}

pre {	
   margin-top: 0;
   max-width: 95%;
   border: 1px solid #ccc;
   white-space: pre-wrap;
}

pre code {
   display: block; padding: 0.5em;
}

code.r, code.cpp {
   background-color: #F8F8F8;
}

table, td, th {
  border: none;
}

blockquote {
   color:#666666;
   margin:0;
   padding-left: 1em;
   border-left: 0.5em #EEE solid;
}

hr {
   height: 0px;
   border-bottom: none;
   border-top-width: thin;
   border-top-style: dotted;
   border-top-color: #999999;
}

@media print {
   * { 
      background: transparent !important; 
      color: black !important; 
      filter:none !important; 
      -ms-filter: none !important; 
   }

   body { 
      font-size:12pt; 
      max-width:100%; 
   }
       
   a, a:visited { 
      text-decoration: underline; 
   }

   hr { 
      visibility: hidden;
      page-break-before: always;
   }

   pre, blockquote { 
      padding-right: 1em; 
      page-break-inside: avoid; 
   }

   tr, img { 
      page-break-inside: avoid; 
   }

   img { 
      max-width: 100% !important; 
   }

   @page :left { 
      margin: 15mm 20mm 15mm 10mm; 
   }
     
   @page :right { 
      margin: 15mm 10mm 15mm 20mm; 
   }

   p, h2, h3 { 
      orphans: 3; widows: 3; 
   }

   h2, h3 { 
      page-break-after: avoid; 
   }
}

</style>

<!-- Styles for R syntax highlighter -->
<style type="text/css">
   pre .operator,
   pre .paren {
     color: rgb(104, 118, 135)
   }

   pre .literal {
     color: rgb(88, 72, 246)
   }

   pre .number {
     color: rgb(0, 0, 205);
   }

   pre .comment {
     color: rgb(76, 136, 107);
   }

   pre .keyword {
     color: rgb(0, 0, 255);
   }

   pre .identifier {
     color: rgb(0, 0, 0);
   }

   pre .string {
     color: rgb(3, 106, 7);
   }
</style>

<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/</gm,"&lt;")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>




</head>

<body>
<!-- Automatically generated by RStudio [12861c30b10411e1afa60800200c9a66] -->

<h3>compAppendix_parest.R</h3>

<p>admin &mdash; <em>Jun 30, 2013, 10:43 AM</em></p>

<pre><code class="r">#
# Computational Appendix of Book
# Chemical Reactor Analysis and Design Fundamentals - Rawlings and Ekerdt
#
# Example A.5: Estimating rate constants for A-&gt;B-&gt;C from concentration vs time data
#
#

# set working directory
setwd(&quot;~/R/wkspace&quot;)

# load libraries
library(ggplot2) #library for plotting
library(reshape2) # library for reshaping data (tall-narrow &lt;-&gt; short-wide)
library(deSolve) # library for solving differential equations
library(minpack.lm) # library for least squares fit using levenberg-marquart algorithm

#load concentration data
df=read.table(&quot;ABC_data.dat&quot;)
names(df)=c(&quot;time&quot;,&quot;ca&quot;,&quot;cb&quot;,&quot;cc&quot;)

# plot data
tmp=melt(df,id.vars=c(&quot;time&quot;),variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
ggplot(data=tmp,aes(x=time,y=conc,color=species))+geom_point(size=3)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>

<pre><code class="r">
# prediction of concentration
# rate function
rxnrate=function(t,c,parms){

  # rate constant passed through a list called parms
  k1=parms$k1
  k2=parms$k2

  # c is the concentration of species

  # derivatives dc/dt are computed below
  r=rep(0,length(c))
  r[1]=-k1*c[&quot;A&quot;]  #dcA/dt
  r[2]=k1*c[&quot;A&quot;]-k2*c[&quot;B&quot;] #dcB/dt
  r[3]=k2*c[&quot;B&quot;] #dcC/dt

  # the computed derivatives are returned as a list
  # order of derivatives needs to be the same as the order of species in c
  return(list(r))

}

# predicted concentration for a given parameter set
cinit=c(A=1,B=0,C=0)
t=df$time
parms=list(k1=2,k2=1)
out=ode(y=cinit,times=t,func=rxnrate,parms=parms)
head(out)
</code></pre>

<pre><code>      time       A      B       C
[1,] 0.000 1.00000 0.0000 0.00000
[2,] 0.263 0.59096 0.3556 0.05348
[3,] 0.526 0.34924 0.4834 0.16731
[4,] 0.789 0.20639 0.4958 0.29779
[5,] 1.053 0.12172 0.4543 0.42395
[6,] 1.316 0.07193 0.3925 0.53552
</code></pre>

<pre><code class="r">
#plot of predicted concentration
outdf=data.frame(out)
tmp=melt(outdf,id.var=&quot;time&quot;,variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
ggplot(data=tmp,aes(x=time,y=conc,color=species))+geom_line()
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>

<pre><code class="r">
# function that calculates residual sum of squares
ssq=function(parms){

  # inital concentration
  cinit=c(A=1,B=0,C=0)
  # time points for which conc is reported
  # include the points where data is available
  t=c(seq(0,5,0.1),df$time)
  t=sort(unique(t))
  # parameters from the parameter estimation routine
  k1=parms[1]
  k2=parms[2]
  # solve ODE for a given set of parameters
  out=ode(y=cinit,times=t,func=rxnrate,parms=list(k1=k1,k2=k2))

  # Filter data that contains time points where data is available
  outdf=data.frame(out)
  outdf=outdf[outdf$time %in% df$time,]
  # Evaluate predicted vs experimental residual
  preddf=melt(outdf,id.var=&quot;time&quot;,variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
  expdf=melt(df,id.var=&quot;time&quot;,variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
  ssqres=preddf$conc-expdf$conc

  # return predicted vs experimental residual
  return(ssqres)

}

# parameter fitting using levenberg marquart algorithm
# initial guess for parameters
parms=c(k1=0.5,k2=0.5)
# fitting
fitval=nls.lm(par=parms,fn=ssq)

# Summary of fit
summary(fitval)
</code></pre>

<pre><code>
Parameters:
   Estimate Std. Error t value Pr(&gt;|t|)    
k1   2.0191     0.0487    41.5   &lt;2e-16 ***
k2   0.9930     0.0178    55.8   &lt;2e-16 ***
---
Signif. codes:  0 &#39;***&#39; 0.001 &#39;**&#39; 0.01 &#39;*&#39; 0.05 &#39;.&#39; 0.1 &#39; &#39; 1

Residual standard error: 0.0212 on 58 degrees of freedom
Number of iterations to termination: 7 
Reason for termination: Relative error in the sum of squares is at most `ftol&#39;. 
</code></pre>

<pre><code class="r"># Estimated parameter
parest=as.list(coef(fitval))
parest
</code></pre>

<pre><code>$k1
[1] 2.019

$k2
[1] 0.993
</code></pre>

<pre><code class="r"># degrees of freedom: # data points - # parameters
dof=3*nrow(df)-2
dof
</code></pre>

<pre><code>[1] 58
</code></pre>

<pre><code class="r"># mean error
ms=sqrt(deviance(fitval)/dof)
ms
</code></pre>

<pre><code>[1] 0.0212
</code></pre>

<pre><code class="r"># variance Covariance Matrix
S=vcov(fitval)
S
</code></pre>

<pre><code>           k1         k2
k1  0.0023685 -0.0003606
k2 -0.0003606  0.0003165
</code></pre>

<pre><code class="r">
# plot of predicted vs experimental data

# simulated predicted profile at estimated parameter values
cinit=c(A=1,B=0,C=0)
t=seq(0,5,0.2)
parms=as.list(parest)
out=ode(y=cinit,times=t,func=rxnrate,parms=parms)
outdf=data.frame(out)
names(outdf)=c(&quot;time&quot;,&quot;ca_pred&quot;,&quot;cb_pred&quot;,&quot;cc_pred&quot;)

# Overlay predicted profile with experimental data
tmppred=melt(outdf,id.var=c(&quot;time&quot;),variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
tmpexp=melt(df,id.var=c(&quot;time&quot;),variable.name=&quot;species&quot;,value.name=&quot;conc&quot;)
p=ggplot(data=tmppred,aes(x=time,y=conc,color=species,linetype=species))+geom_line()
p=p+geom_line(data=tmpexp,aes(x=time,y=conc,color=species,linetype=species))
p=p+geom_point(data=tmpexp,aes(x=time,y=conc,color=species))
p=p+scale_linetype_manual(values=c(0,1,0,1,0,1))
p=p+scale_color_manual(values=rep(c(&quot;red&quot;,&quot;blue&quot;,&quot;green&quot;),each=2))+theme_bw()
print(p)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>

<pre><code class="r">
# Get the 95% confidence region

# Inverse of covariance matrix
Sinv=solve(S)

# draw the confidence region
# get points for a circle with radius r
r=sqrt(qf(0.95,2,58)*2)
theta=seq(0,2*pi,length.out=100)
z=cbind(r*cos(theta),r*sin(theta))
# transform points of circle into points of ellipse using 
# svd of inverse covariance matrix
Sinv_svd=svd(Sinv)      # inverse of covariance matrix
xt=t(Sinv_svd$v)%*%diag(1/sqrt(Sinv_svd$d))%*%t(z) # transform from circle to ellispse
x=t(xt)
# translate the ellipse so that center is the estimated parameter value
x=x+matrix(rep(as.numeric(parest),100),nrow=100,byrow=T)

plot(x[,1],x[,2],type=&quot;l&quot;,xlab=&quot;k1&quot;,ylab=&quot;k2&quot;,lwd=2)
points(parest$k1,parest$k2,pch=20,col=&quot;blue&quot;,cex=2)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>

<pre><code class="r">

# Simulation based estimation of uncertainty

# store original experimental data in a separate dataframe
dforig=df

# conc profile based on estimated k1 and k2
cinit=c(A=1,B=0,C=0)
t=dforig$time
parms=parest
out=ode(y=cinit,times=t,func=rxnrate,parms=parms)

outsim=matrix(0,nrow=nrow(dforig),ncol=4)
outsim[,1]=out[,1]

# number of simulations
nsim=1000

parsim=matrix(0,nrow=nsim,ncol=2)
colnames(parsim)=c(&quot;k1&quot;,&quot;k2&quot;)

for (i in 1:nsim){

  # Simulate data set by adding normal random variable with mean 0 and stdev from fit

  outsim[,2:4]=out[,2:4]+matrix(rnorm(3*nrow(dforig)),nrow=nrow(dforig),ncol=3)*ms
  df=data.frame(outsim)
  names(df)=c(&quot;time&quot;,&quot;ca&quot;,&quot;cb&quot;,&quot;cc&quot;)

  # get parameter estimate for the simulated dataset
  parms=as.numeric(parest)
  fitsim=nls.lm(par=parms,fn=ssq)
  # store estimated parameters in the ith row
  parsim[i,]=coef(fitsim)


}

# plot the parameter estimates from the 1000 simulations
plot(parsim[,1],parsim[,2],xlab=&quot;k1&quot;,ylab=&quot;k2&quot;)
# overlay the 95% ellipse computed previously
lines(x[,1],x[,2],col=&quot;blue&quot;,lwd=2)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>

<pre><code class="r">
# percentage of parameters from simulation within the 95% ellipse
tmp=rep(0,length.out=nsim)
for(i in 1:nsim){
  tmp[i]=(parsim[i,]-as.numeric(parest))%*%Sinv%*%(parsim[i,]-as.numeric(parest))
}
sum(tmp &lt;= qf(0.95,2,58)*2)/nsim
</code></pre>

<pre><code>[1] 0.957
</code></pre>

<pre><code class="r">
# session Info
sessionInfo()
</code></pre>

<pre><code>R version 3.0.1 (2013-05-16)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] minpack.lm_1.1-7 deSolve_1.10-6   reshape2_1.2.2   ggplot2_0.9.3.1 
[5] knitr_1.2       

loaded via a namespace (and not attached):
 [1] colorspace_1.2-2   dichromat_2.0-0    digest_0.6.3      
 [4] evaluate_0.4.3     formatR_0.8        grid_3.0.1        
 [7] gtable_0.1.2       labeling_0.2       MASS_7.3-26       
[10] munsell_0.4        plyr_1.8           proto_0.3-10      
[13] RColorBrewer_1.0-5 scales_0.2.3       stringr_0.6.2     
[16] tools_3.0.1       
</code></pre>

</body>

</html>