
January 20, 2022 Self-Issued OpenID Provider - Same Device Flow Christina Bauer

1 Introduction
The Self-Issued OpenID Providers Specification Draft1 describes two versions of the Self-Issued
OpenID Provider Protocol, one of which is the Same-Device Flow. A core goal of the Self-Issued
OpenID Provider Same-Device Flow is to provide authentication.

To achieve this, it is vital that no ’fresh’ nonce or ID token associated with an honest End-User
is leaked to an attacker. Otherwise, the attacker might be able to impersonate the End-User,
or inject their own identity in a session of the End-User.

As of now (Jan 14, 2022), the specification’s security considerations advise to take care
when invoking the Self-Issued OP, but give little guidance for the Self-Issued OP invoking the
browser in the response. However, if the Self-Issued OP procedes without caution here, an
attacker controlling an application on the device where the Self-Issued OP resides, might be
able to obtain the Authentication Response by the Self-Issued OP, under certain assumptions.

2 Attacker model
We assume that the attacker

• controls an application on the same device as the Self-Issued OP of the End-User.

• can call the Self-Issued OP of the End-User.

• has no control over the operating system.

• can obtain responses from the Self-Issued OP - either by the Self-Issued OP giving re-
sponses to the caller without further checks, or by the attacker application registering as
a handler for URLs2.

We also consider the End-User that is careless in certain concerns and will authorize requests,
if they seem sufficiently legitimate.

3 Same-Device Token Leak
The Same-Device Flow might allow an attack similar to the request replay attack on Cross-
Device Self-Issued OP from the Security Considerations of the Specification under certain as-
sumptions.

In short an attacker can bypass the use of a legitimate browser, call a Self-Issued OP and - if
the user authorizes the request and the attacker applications gets access to the response - the
attacker can impersonate the End-User at an honest RP.

1https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/
openid-connect-self-issued-v2-1_0.md

2Outside of the theoretical possibility of this, see Section 3.4.1 for a possible setup in Android.

1

https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md

January 20, 2022 Self-Issued OpenID Provider - Same Device Flow Christina Bauer

Attacker Web Server Attacker App

303
 [Set Cookie : session=s1]

Location={auth_req}

Self-Issued OP

(4.) User Authentication
& Authorization
for {auth_req}

from RP
with identity 'alice'

(5.) REPLY with {auth_resp}

(8.) 200 ok, alice
[Set Cookie:

auth_session=s2]

SIOP Same-Device
Illicit Consent

Relying Party

End-User Device
of Alice

(2.) {auth_req}
(3.) CALL with {auth_req}

(6.) {auth_resp}(7.) POST
[session=s1]
{auth_resp}

Local Calls
(OS dependent)

(1.) POST /startLoginViaSIOP

Figure 1: Sketch of the ID Token Leak - {auth_resp} contains an ID token and possibly other
parameters

3.1 Result of the Attack
The attacker obtains an ID token from the End-User Self-Issued OP for a nonce and audience
of their choosing. With this they can impersonate the End-User, breaking authentication.

As the attacker with the ID token obtain a fresh nonce this can also allow the attacker to
log the user in under an identity of the attacker using a CSRF attack - given the user starts
the login flow in a local browser, and the Self-Issued OP answers to the attackers application
instead of the browser.

3.2 Attack Flow
The attack proceeds as follows:

1. The attacker starts a login flow at a Relying Party using their web server. Towards the
RP they behave like a legitimate browser that requests a login via a Self-Issued OP.

2. The attacker passes the Authentication Request they receive to their application on the
End-Users Device.

3. The attacker’s application calls the Self-Issued OP with the Authentication Request, like
a local browser would.

2

January 20, 2022 Self-Issued OpenID Provider - Same Device Flow Christina Bauer

4. The (careless) End-User authorizes the Authentication Request for the Relying Party
(aud) in the Self-Issued OP.

5. The Self-Issued OP gives the Authentication Response to the calling application - the
application controlled by the attacker- , or gives the End-User the option to reply to the
attacker’s application and the End-User chooses this option.

6. The attacker’s application posts the Authentication Response to the attacker’s web server.

7. The attacker’s web server passes the Authentication Response to the Relying Party.

8. The Relying Party confirms that the attacker is logged in under an identity of the End-
User.

Figure 1 illustrates the information flow of the attack.

3.3 Suggested Mitigation
We see that an honest Self-Issued OP should not trust the requests it receives, and should be
wary of the context they originate from. In particular, a Self-Issued OP needs to act in the
awareness that it emits sensitive data and needs to take care to where it passes the response
data to - the response must remain known only by the Self-Issued OP, the RP and the browser
as a trusted intermediary. Valid recipients include only trustworthy browsers (and potentially
the Relying Party directly if it is a local app).

We suggest to add to the Security Considerations a note, for the Self-Issued OP implementers
to take (OS dependent) measures to ensure the response of the Self-Issued OP is only given to
trustworthy recipients and thus remains confidential.

The remainder of this section sketches some possible measures to achieve this.

Local RP Application If the Self-Issued OP wants to support RPs that are applications on
the same device as the Self-Issued OP, the Self-Issued OP needs to check if the a legitimate
App is installed for handling the redirect_uri of the RP and ensure that only this app receives
the response. For this the Self-Issued OP needs to take considerations for secure App2App
Communication3 into account.

If the Self-Issued OP cannot verify that a legitimate RP app is installed, it needs to take OS
dependent measures such that only legitimate browsers are called.

Default Browser A very restrictive possibility to ensure that the response only is passed to
a good browser is to limit the Self-Issued OP to only pass its responses to the default browser
of the system4. While this is promising to prevent leakage of data, it obstructs cases where the
End-User uses different browsers.

3https://danielfett.de/2020/11/27/improving-app2app/
4We assume that this browser is a good one.

3

https://danielfett.de/2020/11/27/improving-app2app/

January 20, 2022 Self-Issued OpenID Provider - Same Device Flow Christina Bauer

List of trusted Browsers The Self-Issued OP might be configured to give responses back
only to a fixed list of trusted browsers (e.g. ones that the implementers of the Self-Issued
OP have verified to be legitimate and compatible with the Self-Issued OP) when they cannot
verify a local application as a legitimate recipient. If the Self-Issued OP can identify the calling
application, they can then filter out requests from malicious callers and give back responses
only to good ones. If the Self-Issued OP cannot verify the identity of the calling application,
then they can present the list of trusted browsers to the user and let the user choose one of
these.

Depending on the required security level a Self-Issued OP could also only warn the End-User
if the origin of a request5 cannot be verified to be a trusted browser, or simply drop the request.

3.4 In Practice
The process of applications (including browsers) calling applications looks different depending
on the OS and there seems to be no unifying standard. As such, general statements about the
behavior of applications are difficult. In this section we take a look at the plausibility of this
attack in Android.

3.4.1 Android

For the attack, the attacker needs to control an app on the End-Users device with an Intent
Filter like in Figure 2 or, alternatively, with the specific RP redirect_uri instead of the wildcard
* in their manifest.

Note: From Android 12 (API 31) onwards these kind of deep links without ’proof’ for
authorization to handle the URL are to be prevented.a It will however take time until a
majority of Android devices run this OS version. Currently, Android 11 and 10 are the
most prevalent versionsb.

ahttps://developer.android.com/training/app-links/deep-linking (first note)
bhttps://gs.statcounter.com/android-version-market-share/mobile/worldwide/

#monthly-202102-202201

If the End-User now authorizes a request, and the Self-Issued OP replies with code like
Intent httpsIntent = new Intent (Intent . ACTION_VIEW , response_uri));
startActivity (httpsIntent);

the End-User is presented with the choice of the malicious application and possible legitimate
browsers for the response. An implementer also might be tempted to obtain the calling appli-
cation by using the getReferrer6 method of the Activity class (even if the documentation
states its result should not be trusted).
Uri referrer = getReferrer ();
Intent httpsIntent = new Intent (Intent . ACTION_VIEW , response_uri));
httpsIntent . setPackage (referrer . getHost ());

5It might suffice to verify where the response is passed to. Even cases where the attacker can spoof the origin
to look legitimate, or no ’origin’ is available, it might be sufficient to check that the response is passed to a
legitimate recipient and not an arbitrary, potentially malicious app.

6https://developer.android.com/reference/android/app/Activity#getReferrer()

4

https://developer.android.com/training/app-links/deep-linking
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/#monthly-202102-202201
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/#monthly-202102-202201
https://developer.android.com/reference/android/app/Activity#getReferrer()

January 20, 2022 Self-Issued OpenID Provider - Same Device Flow Christina Bauer

<intent - filter >
<action android:name =" android . intent . action .VIEW" />

<category android:name =" android . intent . category . DEFAULT " />
<category android:name =" android . intent . category . BROWSABLE " />

<data
android:scheme ="https"
android:host ="*" />

</intent - filter >

Figure 2: Intent Filter for URLs

startActivity (httpsIntent);

In this case, if the attacker application invokes the Self-Issued OP (for an honest RP), and
the user authorizes the response, the Self-Issued OP directly responds to the attackers app -
leaking a valid ID token for a nonce and an RP of the attackers choice.

4 Conclusion
Even if the attack requires strong assumptions to be viable in practice, the openness (with
respect to possible OS / environments for the protocol to run in) of the specification does not
explicitly disallow the scenario.

As such, we advise to clarify in the security considerations of the specification the need
for confidentiality of the authentication response sent by the Self-Issued OP when calling the
browser (or potentially a native RP application). Then, implementers can evaluate options in
their respective OS / environment to secure the response.

5

	Introduction
	Attacker model
	Same-Device Token Leak
	Result of the Attack
	Attack Flow
	Suggested Mitigation
	In Practice
	Android

	Conclusion

