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Abstract—The evaluation of clustering quality has proven to
be a difficult task. While it is generally agreed that application-
specific human assessment can provide a reasonable gold
standard for clustering evaluation, the use of human assessors
is not practical in many real situations. As a result, machine
computable internal clustering quality measures (CQMs) are
often used in the evaluation process. However, CQMs have
their own drawbacks. Despite their extensive use in clustering
research and applications, many CQMs have been shown to
lack generality. In this paper we present a new CQM with
general applicability. The basis of our CQM is a pattern
recognition view of clustering’s purpose: the unsupervised
prediction of behavior from populations. This purpose translates
naturally into our new classifier based CQM which we refer
to as informativeness. We show that informativeness can satisfy
core CQM axioms defined in prior research. Additionally, we
provide experimental support, showing that informativeness
can outperform many established CQMs by detecting a larger
variety of meaningful structures across a range of synthetic
datasets, while at the same time exhibiting good performance
on each individual dataset. Our results indicate that informa-
tiveness provides a highly general and effective CQM.

Keywords-clustering methods;

I. INTRODUCTION

Despite the popularity of clustering in data mining re-

search and applications, it is an ill-posed problem [1]. In

particular, evaluating clustering quality has been shown to

be a complicated and confusing task. For a given data set, it

is often unclear what it means for one clustering to be better

than another.

Issues like these, combined with the recent demand for

big data analytics, have driven an increasing amount of

research towards clustering evaluation. Even though there

is a large volume of research on clustering evaluation [2]–

[7], it is widely accepted that the best way to evaluate a

clustering is through application-specific human assessment.

If a clustering helps with whatever task an individual has at

hand, then it is a good clustering for them.

Judging clusterings situationally with human assessors

would be sensible as it focuses on a clustering’s intended

use(s), but it is often not practical for various reasons.

To account for this issue, internal clustering quality mea-

sures (CQMs), requiring no external input about what is

expected from the clustering, are often used to aid people

in selecting good clusterings. CQMs have their own issues.

They have been found lacking in terms of generality, and

recent theoretical works have highlighted other issues with

them.

It seems that the design of a universally applicable CQM

may not be possible. However, that does not mean that we

cannot design a CQM that is more generally applicable than

those currently used, while still being effective in individual

situations. In this paper we present and evaluate a CQM that

meets this goal.

The basis of our new CQM is a pattern recognition

view of clustering’s purpose: the unsupervised prediction
of behavior from populations [1]. We present a classifier-

based CQM, which we refer to as informativeness, which is

a natural translation of this purpose to the domain of CQMs.

We show that informativeness can satisfy CQM axioms

defined in previous research [3]. Additionally, we analyze

experimental clustering of synthetic datasets with various

structures, which together suggest that informativeness is

highly general, while at the same time being effective on

individual datasets.

To the best of our knowledge, the use of classifiers

in the evaluation of clusterings has scarcely been directly

examined. Our previous work is one of the very few on the

subject [8]. Distinct from our simplistic use of classifiers

there, here we present a formal CQM that uses multiple

classifiers in evaluating clusterings.

The rest of this paper proceeds as follows. Section II

defines the notation used in this paper. In Section III, we

present informativeness, our new CQM that uses classifiers.

Section IV shows that informativeness can satisfy CQM

axioms from previous research. In Section V we compare

informativeness against several well-known CQMs using

clusterings on synthetic datasets of varying structures. The

results of this experiment indicate that informativeness is

more general than the competitors we considered, while

at the same time being effective on individual datasets.

Section VI provides a conclusion and discussion of future

work.

II. PRELIMINARIES

This section defines the notation used in this paper. Let

X be a dataset of n objects, and xi be the ith object of X .

A clustering C over X is a partitioning of X into k
disjoint sets referred to as clusters, where ci is the ith cluster

of C. The number of objects in ci is denoted as |ci|, and
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p(ci) = |ci|
n . The cluster xi belongs to in C is denoted as

c(xi). A clustering is trivial if it has only one cluster, or if

every cluster contains one object.
For a pair of objects xi, xj ∈ X , xi ∼C xj denotes that xi

and xj are members of the same cluster in C, and xi �C xj

denotes that they are in different clusters in C. A distance

function is denoted as d, where d(xi, xj) is that function’s

distance measurement between xi and xj . A C over (X, d)
refers to C being a clustering of X , where X’s object pair

distances are defined using d.
A classifier type is denoted as f , where fC,X is f , trained

on all of C and X , and fC,X,v(xi) is the predicted label for

an xi ∈ X , obtained through v-fold cross validation training

of f on C and X .
Finally, a CQM is a function of the form M(C,X, ∗)→

R, where ∗ is the additional parameters taken by M .

III. INFORMATIVENESS

In this section we present our new CQM. Recall from the

introduction that the basis of our new CQM is the notion

that clustering’s purpose is the unsupervised prediction of

behavior from populations. While prediction suggests some

form of classification, there are typically no labels during

clustering, preventing classification’s use. However, in the

context of a CQM, which is computed after a clustering

is complete, we do in-fact have a labeling that a classifier

can use—the clustering itself. Given this, and the prediction

oriented basis of our CQM, we argue that it is natural to

use classifiers in it. The formal definition of our classifier

based CQM, which refer to as informativeness, is given in

Algorithm 1.

Algorithm 1 Informativeness

1: Input: int v, clustering C, dataset X ,
2: classifier types f∗
3: AC,X,f∗,v ← 0
4: for all f ∈ f∗ do
5: for i← 1 to k do
6: rfC,X,v

(ci)← |{xj∈X:xj∈ci∧ci=fC,X,v(xj)}|
n

7: end for
8: AC,X,f,v ← −

k∑

i=1
rfC,X,v

(ci) log(p(ci))

9: AC,X,f∗,v ← max(AC,X,f∗,v ,AC,X,f,v)
10: end for
11: H(C)← −

k∑

i=1
p(ci) log(p(ci))

12: I(C,X, f∗, v)← AC,X,f∗,v− H(C)
k

(k−1)H(C)
k

13: return I(C,X, f∗, v)

The value I(C,X, f∗, v) is the informativeness of C. The

general process of informativeness is: measure how well
each classifier type can predict population behavior using
the clustering, and take the quality of the best prediction
from this as representing the clustering’s quality.

The rfC,X,v
(ci) values are the fraction of objects in X

that are correctly assigned to each cluster when using v-

fold cross validation labeling. They are used in computing

AC,X,f,v values, where each AC,X,f,v is informativeness’

estimation of how well fC,X will predict population behavior.

Note that it is principled to use our crossfold validation

labels for this prediction measure because clusterings are

typically considered to be independent and identically dis-

tributed samples of their populations.

The definition of AC,X,f,v has an encoding interpretation

to it. Consider the process of repeatedly classifying unseen

members of the population X was drawn from using fC,X.

Imagine the output of this process as a stream of cluster ids

from C. Then to minimize the stream size over infinitely

many classifications, each cluster id should be assigned a

code of length − log(p(ci)). Now, consider that only some

of the cluster ids fC,X produces will be correct. The expected

number of correct bits that we will receive from reading

a single cluster id from the stream produced by fC,X on

the population X was drawn from is exactly AC,X,f,v . In

essence, it is a direct measure of the amount of population

information C gives us. We argue it is an intuitive way to

measure C’s prediction quality, as we aimed to do.

Another aspect of note in informativeness is the use of

multiple classifiers, with only the best performing (the one

with the highest AC,X,f,v) being used in AC,X,f∗,v . Our

motivation for this feature was keeping informativeness as

general as possible. Classifier types are suited to specific

structures, so using many of them, and taking only the

best result, allows informativeness to detect more types of

clusterings as high quality, increasing its generality. This is

in contrast to typical CQMs, which will fail to detect cluster-

ings as high quality that do not match their singular notion

of what makes a clustering good. Admittedly, this generality

comes at a cost—using more classifier also means that

informativeness’ effectiveness may diminish with respect to

specific structures. However, our experiment suggests that

judicious selection of classifiers can mitigate this problem.

Line 12 is a correction of AC,X,f∗,v for chance. The

general form of the correction that we used is that of

the widely adopted Hubert and Arabie formula [4]. For

AC,X,f∗,v , the formula translates to:

AC,X,f∗,v − E[AC,X,f∗,v]

max(AC,X,f∗,v)− E[AC,X,f∗,v]
, (1)

where E[AC,X,f∗,v] is the expected AC,X,f∗,v by chance.

Defining a random classifier as one that places objects in

each cluster with equal likelihood, and using that as our

measure of E[AC,X,f∗,v], we have:

E[AC,X,f∗,v] = −
k∑

i=1

p(ci)

k
log(p(ci)) =

H(C)

k
, (2)

where:

H(C) = −
k∑

i=1

p(ci) log(p(ci)), (3)
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and:

max(AC,X,f∗,v) = H(C). (4)

Substituting Eq. 2 and 4 into Eq. 1, we obtain:

AC,X,f∗,v − H(C)
k

(k−1)H(C)
k

= I(C,X, f∗, v), (5)

As a final note with respect to this correction, when multiple

clusterings have the same I(C,X, f∗, v), the one(s) with the

most clusters should be considered better. This is due to them

scoring the same despite having to deal with a more com-

plicated classification problem (i.e., more clusters/classes),

which in turn suggests a clearer clustering structure. We

apply this notion in our experiment in Section V.

The final aspect of our implementation that we discuss

is its time complexity. In that respect, we note that it is

based on the classifier types and the v parameter. For our

experiment in Section V, we were able to compute all the

informativeness results in less than one day on a single

computer. This suggests that informativeness is fast enough

to run in practical situations.

Proving general superiority of a CQM is likely not possi-

ble for the same reason that designing a universal CQM is

not. However, one can provide evidence that may suggest it.

In that regard, we have already discussed informativeness’

basis, how it can account for quality by chance, and its

generality. In the following sections, we will provide more

evidence. We will show that informativeness can satisfy

CQM axioms suggested in previous research. Additionally,

we will provide an experiment on synthetic datasets that will

show that it can behave in a highly general yet effective

manner. Together, these results provide a strong motivation

for informativeness’ use in practice.

IV. CLUSTERING QUALITY MEASURE AXIOMS

Ackerman and Ben-David [3] suggest four axioms that

all CQMs should satisfy. While they are careful to note

that satisfying their axioms does not prove that a CQM

is reasonable, they provide a strong case for the converse,

i.e., if a CQM fails to satisfy them it is unreasonable. It

is therefore useful to show that informativeness can satisfy

them. In this section we will provide a theorem for each of

the four axioms that proves that informativeness can satisfy

it.

For our proofs, we consider informativeness when it

uses only an r-nearest neighbor classifier (RNN) and leave-

one-out crossfold validation. We denote the application of

informativeness with these settings to a C over X , where

the RNN classifies using d, as IRNN(C,X, d). We assume

that there are no tied object pair distances in X , and

further that every object has a unique c ∈ C which has

the most members in the object’s r-nearest neighborhood.

Note that these restrictions/parameters for informativeness

are used only to yield clearer proofs in this work. We have

similar proofs for many different parameterized versions of

informativeness.

Before presenting our axiom proofs, we define the cross-

fold validation labeling behavior of an RNN.

Definition 1 (Crossfold validation labels from an RNN).
Let f be an RNN, trained on C and X with leave-one-out
crossfold validation and some d. Then its labeling function
for all xi ∈ X is:

fC,X,n(xi)← arg max
cj∈C

r∑
l=1

α(cj , nn(xi)l), (6)

where nn(xi) is a list of all xj ∈ X other than xi, ordered
from least to greatest d(xi, xj), nn(xi)l is the lth object in
this list, and α is an indicator function of the form:

α(ci, xj) =

{
1, if c(xj) = ci

0, otherwise.

We now give our proofs.

A. Scale Invariance

Definition 2 (Scale Invariance [3]).
CQM M satisfies scale invariance if, for any C over (X ,
d), and every positive number λ, we have M(C,X, d) =
M(C,X, λd).

Lemma 1 (Informativeness’ score for a C over X , when

using f∗, is based only on the cluster sizes (|ci|s), and the

frequency of correct label predictions for each ci by each

f ∈ f∗ (rfC,X,v
(ci)s)).

Proof. This follows directly from the definition of
I(C,X, f∗, v) in Algorithm 1.

Theorem 1 (IRNN satisfies scale invariance).
Proof. The |ci| values remain unchanged in a test for scale
invariance. Further, multiplying all distances by a uniform
amount does not change ordering of nearest neighbors for
any object. By Definition 1, this means predicted labels do
not change either. Given this, and Lemma 1, it follows that
IRNN(C,X, d) = IRNN(C,X, λd).

B. Weak Local Consistency

Definition 3 (C-Weakly Locally Consistent Variant [3]).
Distance function d′ is a C-weakly locally consistent variant

for a C over (X ,d), if the following properties hold:
1. For all ci ∈ C there exists a constant λ ≤ 1 such that

for all xj , xk ∈ ci we have d(xj , xk) ≥ λd′(xj , xk).
2. For all xi, xj in different clusters, we have d(xi, xj) ≤

d′(xi, xj).
3. There exists some set R, where R contains exactly

one object from every cluster in C, such that for
some constant λ ≥ 1, for all xi, xj ∈ R we have
d(xi, xj) ≥ λd′(xi, xj).

Definition 4 (Weak Local Consistency [3]). CQM M sat-
isfies weak local consistency if, for any C over (X , d), and
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C-weakly locally consistent variant of d denoted as d′, we
have M(C,X, d) ≤ M(C,X, d′).

The proof that IRNN satisfies weak local consistency re-

quires first showing that adding a classifier f to informa-

tiveness’ computation never increases its score more than

when adding a classifier f ′ such that when trained, f ′ makes

at least as many correction label predictions as f does for

every cluster in C.

Lemma 2 (For a C over X , let f and f ′ be

classifier such that ∀ci∈CrfC,X,v
(ci) ≤ rf ′

C,X,v
(ci). Then

∀f∗ I(C,X, f∗ ∪ f, v) ≤ I(C,X, f∗ ∪ f ′, v)).
Proof. Given Lemma 1, and the use of the max function
in selecting which AC,X,f,v to use in I(C,X, f∗, v), it
suffices to show that AC,X,f,v ≤ AC,X,f ′,v . Let �ci =
rf ′C,X,v

(ci)− rfC,X,v(ci). Then:

AC,X,f ′,v = −
k∑

i=1

rf ′C,X,v
(ci) log(p(ci))

= −
k∑

i=1

(rfC,X,v(ci) +�ci) log(p(ci))

= AC,X,f,v −
k∑

i=1

�ci log(p(ci)).

As −
k∑

i=1

�ci log(p(ci)) ≥ 0, we have AC,X,f,v ≤ AC,X,f ′,v .

Theorem 2 (IRNN satisfies weak local consistency).
Proof. The |ci| values remain unchanged in a test for weak
local consistency. Given this, and Lemma 1 and 2, it suffices
to show that for any C over (X, d), and d′ that is a C-weakly
local consistent variant of d, all correct classifications made
using d are correct when using d′. If C consists of a single
cluster, this is trivially true. Otherwise, for some correctly
classified object xi let xj and xl be elements of X such that
xi ∼C xj , xi �C xl, and:

d(xi, xj) < d(xi, xl). (7)

From the definition of a C-weakly locally consistent variant
we have:

d(xi, xj) ≥ λd′(xi, xj)

and:
d(xi, xl) ≤ d′(xi, xl).

Setting λ = 1.0, and merging these two inequalities with
Eq. 7, we obtain:

d′(xi, xj) ≤ d(xi, xj) ≤ d(xi, xl) < d′(xi, xl). (8)

In order for it to be possible for some xi ∈ X to be-
come incorrectly classified when using d′ we must find an
xj ∼C xi, where xj is the uth element of nn(xi), and an

xl �C xi, where xl is u′th element nn(xi), u′ ≥ u, such that
d(xi, xj) < d(xi, xl) and d′(xi, xj) > d′(xi, xl). However,
Eq. 8 shows such a pair of objects cannot exist. Given this,
a correctly classified object using d is correctly classified
when using d′.

C. Co-final Richness

Definition 5 (C-Consistent Variant [3]). Distance function
d′ is a C-consistent variant for a C over (X ,d) if for all
xi, xj ∈ X , when xi ∼C xj we have d(xi, xj) ≥ d′(xi, xj),
and when xi �C xj we have d(xi, xj) ≤ d′(xi, xj).

Definition 6 (Co-final Richness [3]). CQM M satisfies co-
final richness if, for any non-trivial pair of clusterings C
over (X, d) and C ′ over (X, d′), there exists a C-consistent
variant of d, denoted as d′′, such that M(C,X, d′′) ≥
M(C ′, X, d′).

Theorem 3 (IRNN satisfies co-final richness if the size of

each cluster in the clusterings it is used on are always at

least r + 1).
Proof. For any C over (X, d), a C-consistent variant of d,
denoted as d′′, can be can defined in the following manner:

d′′(xi, xj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if xi = xj

max
xi,xj∈X

2d(xi, xj), if xi �C xj

min
xi,xj∈X

1
2d(xi, xj), otherwise.

(9)

Based on this definition of d′′, when computing
IRNN(C,X, d′′) the r nearest neighbors of every xi ∈ X will
share the same label as xi, ensuring correct classification.
This gives IRNN(C,X, d′′) = 1, the maximum possible.
Therefore we have IRNN(C,X, d′′) ≥ IRNN(C

′, X, d′).

D. Isomorphism Invariance

Definition 7 (Clustering Isomorphism [3]). Clusterings C
and C ′ over (X, d) are isomorphic, denoted as C ≈d C ′, if
there exists a distance preserving isomorphism φ : X → X
such that xi ∼C xj if and only if φ(xi) ∼C′ φ(xj).

Definition 8 (Isomorphism Invariance [3]). CQM M satis-
fies isomorphism invariance if for any C and C ′ over (X, d),
where C ≈d C ′, we have M(C,X, d) = M(C ′, X, d).

Theorem 4 (IRNN satisfies isomorphism invariance).
Proof. For any C and C ′ over (X, d), C ≈d C ′ implies
a mapping φ′ from clusters in C to C ′ exists, such that
|φ′(ci)| = |ci|, and the labeling behavior of fC’,X,v is:

fC’,X,n(φ(xi))← arg max
φ′(cj)∈C′

r∑
l=1

α(φ′(cj), nn(φ(xi))l).

This gives:

∀φ′(ci)∈C′rfC,X,v(ci) = rfC’,X,v(φ
′(ci)).

It then follows from Lemma 1 that we have I(C,X, d) =
I(C ′, X, d) when C ≈d C ′.
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In the context of the entire paper, our axiom proofs some

additional motivation for informativeness’ use in practice.

V. SYNTHETIC DATASET EXPERIMENT

In our synthetic dataset experiment we compared informa-

tiveness to other CQMs on clusterings of synthetic datasets

with a variety of structures. The synthetic datasets we used

are detailed in Section V-A, the clustering algorithms in Sec-

tion V-B, the CQMs we compared informativeness against

in Section V-C, and the classifiers used by informativeness

in Section V-D.

For the experiment, we generated 50 instances of each

dataset and clustered each instance with each clustering algo-

rithm using from two to 20 clusters, giving 4750 (50*5*19)

clusterings of each dataset. We then computed each CQM

for each clustering.

In Section V-E we analyze the results of our experiment

using a classical number of clusters estimation approach [9].

A. Datasets

We used five synthetic datasets in our experiment, each

of which is detailed below.

6GAUSS consisted of six Gaussian clusters with identity

covariance, each with 500 points in five dimensions. Their

means were randomly assigned a value from zero to 10 in

each dimension. Cluster means were required to be at least

four Euclidean distance apart, and points were required to

within two Euclidean distance of their cluster mean.

PAIRED consisted of three pairs of Gaussian clusters with

identity covariance, each with 500 points in five dimensions.

Each pair of Gaussians was placed around a mean with

a randomly assigned value in each dimension from zero

to 20 such that the Euclidean distance between paired

Gaussian clusters was between four and eight, and the

Euclidean distance between non-paired Gaussians was at

least 12. Additionally, points were required to be within two

Euclidean distance of their cluster mean.

ELONG consisted of five Gaussian clusters with identity

covariance, each with 300 points in five dimensions. Their

means were randomly assigned a value from zero to 50 in

each dimension. To create elongated clusters in different

dimensions, we multiplied the values of a single, distinct

dimension for each cluster by 15. Cluster means were

required to be at least five Euclidean distance apart.

UNIFORM consisted of eight clusters, each with 300

points in three dimensions. Each cluster had its points

uniformly distributed in a 3x3x3 box around a randomly

assigned center in a 10x10x10 cube. Cluster centers were

required to be five Euclidean distance apart.

RINGS consisted of 2 ring clusters centered around (0,0),

a larger outer ring with radius 2 and a smaller inner ring of

radius 1. 400 points were evenly spaced by degrees on the

inner ring. A random noise component between 0 and 0.1

was then added to the x and y coordinates of all the points.

The outer ring was created in a similar fashion, except 1200

points were used.

B. Clustering Algorithms
We used five well-known clustering algorithms in our

experiment: k-means [10], repeated bisecting k-means, UP-

GMA [11], complete linkage [12], and single linkage [12].

Our k-means algorithm used Lloyd’s method [10], with the

initial centroids being selected randomly from objects in the

dataset. Our implementation of repeated bisecting k-means

split the largest remaining cluster in two using our k-means

algorithm, until the desired number of clusters was reached.

Finally, we used Euclidean distance for UPGMA, complete

linkage, and single linkage.

C. Competing Evaluation Measures
We compared informativeness against four well-known

and studied CQMs; silhouette width [13] (SW), the Davies-
Bouldin index [14] (DB), the Calinski-Harabasz index [15]

(CH), and the Dunn index [16] (DN).

D. Classification Algorithms
For efficiency reasons we restricted ourselves to three

classifier types: a five nearest neighbor classifier, a C4.5

decision tree, and a Rocchio classifier. For the latter two, we

used Weka1 implementations. We implemented the Rocchio

classifier ourselves. For parameters, our Rocchio classifier

used Euclidean distance. For the other two, we used their

default parameter settings in Weka. Ten-fold cross validation

was when computing informativeness.

E. Results and Discussion
To analyze each CQM’s behavior with respect to picking

the optimal number of clusters, we grouped our clusterings

of each dataset by sample. Then, for each sample, we

recorded the number of clusters in the optimal scoring

clustering for each CQM. We also recorded the adjusted

mutual information [7] of those clusterings with their true

labelings. This provided us with a measure how good the

clusterings actually were that was more robust than simply

counting the number of clusters. Table I gives number of

clusters estimations, AMI from those estimations, and a

Tukey’s honestly significantly different test on the AMI

values.
It is clear from Table I that no CQM had significantly

higher AMI than informativeness for any dataset we tested.

On the other hand, all the other CQMs had significantly

worse average AMI than informativeness for two or more

of the datasets. The actual magnitude of the differences

was often substantial as well. Based on these results, we

concluded that informativeness was the best at selecting

the single optimal clustering for datasets in our experiment.

This suggests that informativeness might be of use in real

clustering applications.

1http://www.cs.waikato.ac.nz/ml/weka/
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Table I
FREQUENCY OF NUMBER OF CLUSTER ESTIMATIONS BY EACH CQM

FOR EACH DATASET, ALONG WITH THE AVERAGE AMI FROM THE

CLUSTERINGS USED IN THOSE ESTIMATIONS. BOLDED VALUES DENOTE

THE COLUMN FOR THE TRUE NUMBER OF CLUSTERS IN EACH DATASET.
WE INCLUDE THE RESULTS OF A TUKEY’S HONESTLY SIGNIFICANTLY

DIFFERENT (HSD) TEST ON THE AMI VALUES WITH p = 0.01. AN O
INDICATES THAT THE ROW IS SIGNIFICANTLY BETTER THAN THE

COLUMN, AN X INDICATES THE OPPOSITE, AND A − INDICATES NO

STATISTICALLY SIGNIFICANT DIFFERENCE.

Number of Clusters Estimations Tukey’s Test
6GAUSS 2 3 4 5 6 7 8 9+ AMI SW DB CH DN
Inf. 0 0 0 0 49 1 0 0 .999 - - - O
SW 0 1 2 5 42 0 0 0 .983 - - -
DB 1 2 2 12 33 0 0 0 .958 - -
CH 0 0 0 0 50 0 0 0 1 O
DN 3 3 2 0 42 0 0 0 .950

PAIRED 2 3 4 5 6 7 8 9+ AMI SW DB CH DN
Inf. 0 1 10 20 19 0 0 0 .911 O O O O
SW 0 50 0 0 0 0 0 0 .783 - - -
DB 0 50 0 0 0 0 0 0 .783 - -
CH 0 48 0 0 2 0 0 0 .791 -
DN 1 49 0 0 0 0 0 0 .779

ELONG 2 3 4 5 6 7 8 9+ AMI SW DB CH DN
Inf. 0 1 4 9 13 12 4 7 .910 - O O -
SW 0 1 11 25 1 1 2 9 .916 O O -
DB 0 0 1 2 1 2 2 42 .808 O -
CH 0 0 0 0 0 0 0 50 .738 X
DN 8 5 5 22 6 1 0 3 .851

UNIFORM 2 3 4 5 6 7 8 9+ AMI SW DB CH DN
Inf. 0 0 0 0 0 0 47 3 .997 - - - O
SW 0 0 0 0 0 0 50 0 1 - - O
DB 0 0 0 0 0 0 50 0 1 - O
CH 0 0 0 0 0 0 50 0 1 O
DN 27 5 5 1 2 1 2 7 .590

RINGS 2 3 4 5 6 7 8 9+ AMI SW DB CH DN
Inf. 22 7 3 10 2 3 2 1 .670 O O O O
SW 0 0 0 0 0 6 34 10 .527 - - O
DB 0 0 0 0 0 0 0 50 .494 - O
CH 0 0 0 0 0 0 0 50 .431 O
DN 21 12 0 0 0 11 4 2 .181

VI. CONCLUSION

In this paper we presented informativeness, a novel CQM

based on the notion that clustering’s purpose is the prediction

of behavior from populations. We adapted classifiers to

estimate the quality of this prediction for an individual clus-

tering in informativeness, accounting for chance as well as

generality in our implementation. Additionally, we showed

that informativeness can satisfy CQM axioms defined in

previous research, and that it performs better overall than

a number of well-known CQMs on synthetic datasets of

varied structures. Together, our implementation, results, and

analysis suggest that informativeness can be of genuine use

in practical clustering situations.

As future work on informativeness, we aim to study its

behavior when using a variety of classifiers. In particular, we

would like to identify a set of classifiers that makes it highly

general and effective, but also fast to compute. We also plan

to investigate if certain classifiers are particularly suited to

use with informativeness in particular domains. Finally, we

are currently investigating the use of informativeness in real

applications.
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