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The underlying integration problem

Let 41 be a probability measure on (R?, B(R?)) and ¢ : RY — R be integrable.

) = /sodu

» Constraint: only based on ¢(x1),...,p(xs), where xi, ..., x, are called
nodes. Here ¢ might be black-box function®.

» Goal : Estimate

> number of nodes n necessary to obtain a given accuracy

Lif © has an explicit form, e.g., ¢(x) = exp(—||x||?), then some approximation techniques are
probably more appropriate



for ‘[[0,1]’1 o(x) dx:

nd Z o(xi),

x; €Grid
where Grid = {(i/n,...,ia/n) : 1 <ix <n Vk=1,...,d}

Define

.....

Error bound
We have

sup
PpEPy

S o) / () dx

x€Grid [0,1¢




Consider linear integration rules

nd
Z wip(x;).
i=1

The accuracy of the best algorithm over a class ® is

nd
e(n®,®) = inf sup Z wip(xi) — / p(x)dx
i1 [0,1]9

(Wi xi)i=1..n  pEd

Complexity results (Novak, 2016)

d _ d =il
e(n®, ®q) = (2d+2)n

The midpoint rule is the optimal algorithm?.

Af g ={p:[0,1] 5 R, ||Da¢lleo < 1,V]a| < k}, then e(n, &y 4) =~ nk.



Monte Carlo
iid

Let (Xi,...,Xa) ~U[0,1]%, the Monte Carlo estimate of f[0,1]d o(x)dx is

Y e(X)
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HetHH
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n=10 n= 20 n=30

Uniform results (Talagrand, 1996; McDiarmid, 1998; Giné and Guillou,
2001)

with probability larger than 1 — 4,

o) - [ et
i—1 [0,1]¢

If for instance, ® is of VC-type, E|R,(®)| ~ n~ /2.
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< 2E|R.(®)| + -
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Summary

S
H 3
st =
‘ determisitic ‘ H Monte Carlo
e(n, ®q) n~t/d n~t/d n~1/2
e(n’ ¢5) nfk/d nfk/d n71/2

b
b
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WELCOME BONUS

Quasi-Monte Carlo methods provide rates in n~! log(n)¢~! but under more complicated
smoothness assumptions (Novak, 2016)



Popular methods

Monte Carlo
1. Draw Xi,..., X, 2 P
2. Compute 137" o(X;)

n

Control variates
> Use the knowledge of
E[hj(X)] = 0 for functions
hiy..., hm

Importance sampling,
stratified sampling...

8

Others
» Quasi-Monte Carlo

» Quadrature rules

Books : Evans and Swartz (2000), Robert and Casella (2004), Glasserman

(2003), Owen (2013)
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The importance sampling game

Let 1 be a probability measure on (R?, B(R?)) and ¢ : RY — R be integrable.

» Goal: Estimate
u(¢)=/<pdu=/<pfd/\

where du = fdA

» Based on

1) — 1S o) [0
Iis (q) - ;@(X’)q(xl)

where Xi, ..., X, are , a density

Importance sampling question

How to choose g?



Basic results

> 7,.(5")(q) is unbiased whenever supp(q) 2 supp(¢f)

» The variance is given by
Var(I{(q)) = n*V(¢f, q)

with V(¢f, q) = Varg(¢f/q)

The accuracy heavily depends on the choice of g
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Optimal sampler (Evans and Swartz, 2000)
The following holds

1.
q" & arg min V(ef,q)
q : supp(q) 2supp(¢f)
2.
q" o |o|f
3.

is unique

Var(I"(g*)) = n* { </|<p|fd)\> = (/ apfd)\) }



Basic method

2-stage parametric importance sampling (Kloek and Van Dijk, 1978)

input: A family of samplers Q and an initial sampler qo

> Generate (Xl(l), e ,X,(,ll)) X qo

» Compute

XM)2e(x
g1 € argmin n; Z # (1 ( (1)
9cQ a(XM)ao(X)

i=1

» Generate (Xl(z), e ,X,(, )) X4 ~ @1 and compute I (Eyl)
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Adaptive sampling

Goal

» To efficiently visit the space : one must learn from the past action (similar
to reinforcement learning) and update the policy at each step

Examples

» Metropolis Hastings (surveyed in Robert (2010))
> particular MCMC, well suited for Bayesian estimation

> polynomial complexity in the dimension ||Qy — Q*||+v < € whenever
N > O(d? log(M/¢)) (Belloni and Chernozhukov, 2009); concentration
inequality (Bertail and Portier, 2018)

> Adaptive Metropolis (Haario et al., 2001)

» Adaptive/sequential sampling (surveyed in Iba (2001))
> (Oh and Berger, 1992; Cappé et al., 2004;
Douc et al., 2007a; Cornuet et al., 2012)
> sequential Monte Carlo (Doucet et al., 2001)



Adaptive importance sampling (Oh and Berger, 1992; Cappé et al., 2004;
Richard and Zhang, 2007; Douc et al., 2007a,b)

input: A family of samplers Q, an initial sampler §o € Q, an allocation policy
(nt)tzl,...,T

Fort=1,..., T
» Generate Xl(t), .. 7X,(,,t) X &1 and compute 1) = 7,.(s"t)(€]t,1)

» Update:

4 = argmin /,(q)
qeQ

where é\}‘t depends on the past particles

AT _ Z;l "t7i(snt)(fh71)

ais Z;r:l e
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Choice of the loss

Variance

n

(XA
= g ao(x")

é-7"'1(‘7) = ’71_1

Kullback-Leibler divergence

(1)
(1 f(Xi )
ix(q E log(q(X; qo(X.(l))

Generalized method of moments

i _ — (1 i )
U7,(q) = || Edlg] — i Z g(X] qo(x ),

where g : RY — RY is some moment functlon

2 Uq) = H/quk—/gfdA

(q) = / 0’ f2/qdX

Uq) = —/log(q)fdA

2

2
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» Previous results obtained when T is fixed and nt — oo

>

Based on 1 simple remark

AlS averages over the terms

e(X)f(X)
gi-1(X;)

where j is the sample index and corresponds to ny + ... + n; + i for some (t, i)

with )</ ~ Qj—1

Define

~ (o(X)F(X
=2 (wc(v,-l)o(w) -/ *”f‘“)

j=1

Property

Assume that for all 1 < j < n, the support of g; contains the support of f,
then the sequence (M,, F,) is a martingale. The quadratic variation of M
satisfies (M), = Zj';l V(of,qj—1).
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Main result

We consider

a loss : (q) = /mq dx,

a (parametric) set of samplers : Q

Theorem (Delyon and P., 2018)

Under some technical assumptions but without any restriction on (n¢)e=1,...,7,
as T — oo,
T
<Z m) (72,? —/gofd)\) ~ N(0, v¥),
t=1
where

v’ = V(pf,q") with qg* € argmin¥(q)
qeQ



Remark 1: optimality

If £(q) = [ f/qdX, then v* is the best variance that we can achieve over the
class of sampler Q

Remark 2: fast rate
Whenever ¢ > 0 and of /([ ¢fd)) € Q,

T —1/2
1o —/Apfd)\ = op (Z nt>

t=1

Remark 3: normalized estimates

| F(Xi) f(X)
2R3 2 ax)

are studied as a corollary
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A re-weighting to forget bad samplers

Define the weighted estimate, for any function 1,

(a d’
I = N;? Za ;qm t)).

with 327 ncar. = Nr (for unbiasedness)

Optimal choice (Douc et al., 2007a)
g, o< Varg,(¢f/qe)

Our proposal

aTt(xVarqt f/qe) ~ Z( f(X ) 1>

qt1



[llustration on a toy example

> Aim is to compute p. = fxqbu*,a* (x)dx where ¢, » is the pdf of
N(p, 02lg), ps = (5,...5)T €R?, g, =1

v

Q the collection of multivariate Student distributions of degree v = 3 and
Yo = 5l4(v — 2)/v, parametrized by the mean

> g+ £(q) is the GMM loss

v

The initial sampling policy is set as po = (0,...0) € R?
» methods in competition : AlS, wAIS and adaptive MH

» For each method that returns y, the mean squared error (MSE) is
computed as the average of ||i — i ||* computed over 100 replicates of



[llustration on a toy example
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Figure: From left to right d = 2,4,8,16. AIS and wAIS are computed with T = 50
with constant n; = 2e3. Plotted is the logarithm of the MSE (computed for each
method over 100 replicates) with respect to the number of requests to the integrand.
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[llustration on a toy example
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Figure: From left to right d = 2,4,8,16. AIS and wAIS are computed with

T =5,20,50, with a constant allocation policy, resp. n; = 2e4,5e3,2e3. Plotted is
the logarithm of the MSE (computed for each method over 100 replicates) with
respect to the number of requests to the integrand.
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Let 1 be a probability measure on (R?, B(R?)) and ¢ : RY — R be integrable.

The Control variates game

» Goal: Estimate

) = /tpdu

» Constraint: only based on ¢(X1),...,¢(Xs), where Xi,..., X, are

> hi, ..., hm test functions such
that, for every £ =1,..., m,

u(he) = /hk du  is known

Control variates issue
How to use this auxiliary information efficiently?



Control variates method

Consider the unbiased family

le@)=n"") " {so(Xf) =D ou(hul(Xi) - u(hk))}

i=1

Two steps approach

input : the sample size n, the space span(h, ..., hn)
> Estimate the optimal control variate
m
« € argmin var | ¢ — Zakhk
aeRM
k=1
> Compute the modified Monte Carlo estimate

T (&)
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Theorem (Glynn and Szechtman, 2002)

Under suitable moments conditions, we have as n — oo,
n'/? <7cv(a) - / Lpd/.t) 4 N(0,02)
where 0',27, = Mingerm Var(ap = Z;(n:1 Olk hk) < Var(ap) (= Monte Carlo variance)

> This applies to 6 different versions of control variates

» The one we promote and study is the OLS version:
n

(6o,&) = argmin Z <¢(X,-) —ag — Zakhk(xi)>

(vg,a) ERXRM i—1

» Among the six control variates, this is the only one that integrates without
errors functions ¢ € span(1, hy, ..., hm).

» Linear integration rule : &o = 27:1 wi,np(Xi)
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Growing number of control variates m = m,

Theorem (P. and Segers, 2018)

Under suitable moments conditions, we have as n — oo, m, = o(n1/2),

(21/2> <&0/g0d,u> 4 N(0,1)

where o7, = mingerm Var(p — ka:1 ahy)

Related works

> Oates et al. (2016): control variates taken in a RKHS. They provide a
bound on the error when 2 independent samples are used in step 1 and 2.

> Gobet and Surana (2014): sequential approximation of the regression
coefficients. Bound when 2 independent samples are used.



Example (The smoother f, the faster the rate)

Suppose that
> Let (h;) be the Legendre polynomials
> Let f be k + 1 times continuously differentiable

then o2, = O(m,?*7!) and

o — /wdu = Op(m, */2n71/?%)
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Applications

Importance sampling

>
>
>
>
>

random variable generation (Erraqgabi et al., 2016)
Bayesian statistics, e.g., Cornuet et al. (2012)
option pricing, e.g., Douc et al. (2007a)
optimization (Hashimoto et al., 2018)
reinforcement learning (Jie and Abbeel, 2010)

Control variates

>
>
>
>
>
>

numerical integration, e.g., E[o(W1, W5)] and we know E[W;], E[W>]
queuing network (Lavenberg and Welch, 1981)

option pricing (Hull and White, 1988)

Bayesian statistics e.g., (Oates et al., 2016)

variance reduction for stochastic gradient descent (Wang et al., 2013)

latent variable model (P. and Segers, 2018)



Logit model with random effect

Observations (yj«, x.«) € {0,1} xR

> classes k=1,...,q
» observations j =1,..., N in each class
Model

Random effects u, ..., uq iid A(0,1) (latent) such that

Yjk | u, ..., uq ~ Bernoulli(pj )

logit(pj,x) = Bk + ouk
Likelihood proportional to:

i X ou
1+e£xjk+0u

]R

More generally: generalized linear models with random effects
(McCulloch and Searle, 2001)



Maximum simulated likelihood

EM MC oLsSmMC
n sd sd rMSE sd rMSE
100 0.1227 0.1027 0.1027 2e-4 3e-4
500 0.0546 0.0468 0.0467 2e-5 2e-4
1000 0.0388 0.0334 0.0334 3e-6 2e-4

Methods: Artificial data set (Booth and Hobert, 1999)
» Expectation—Maximization > g = 10 classes
> E-step: Monte Carlo » N = 15 observations per class
» Monte Carlo > 3=50=1/2
» OLS Monte Carlo > fixed design x4 = j/N
> change of variables to [0, 1] > 200 replications

> polynomial basis

> m=[27)

target: MLE (deterministic integration)



Multinomial logit model with random effects

Booth and Hobert (1999): Medical studies i =1,..., N
> nj1 (ni2) nb of (non-)smokers

> yi (yi2) nb of patients with lung cancer among (non-)smokers

Model
Latent random N(0, 1) effects uj, vi1, vi2 such that

yij ~ Binom(mjj, njj)
logit(m;) = Bo + Prlyj=1} + ouli + ovvy

Likelihood proportional to

N
T [ ) ) (6, (02, 12) 1 )
i=1 R3

where bij(u, v) = mj(u, v)"7 {1 — m;(u, v)}"5 0

mj(u, v) = logit ™ (8o + Bilgj—1y +ouu +oyv)



Maximum simulated likelihood

—— mc
—©— olsmc bspline3
= olsmc polynomial

107

std dev

107

300 600 1200 2400
sample size

N = 20 studies
ni1 + njz = 50 persons per study
200 replications

> N integrals on [0,1]3

> cubic B-splines or polynomials
> tensor products

> k functions per dimension

= m=(k+1)3 -1 control
functions
k 3 4 5 6
m 63 124 215 342
n | 300 600 1200 2400

> points X; and weights wj ;
common for all N integrals
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Work in progress: AlIS with flexible nonparametric methods
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References:
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> Delyon, B. and Portier, F. (2018). Asymptotic optimality of adaptive importance
sampling. NIPS18, pp. 3138-3148.
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