A guided tour in Monte Carlo

François Portier

Télécom Paris
Institut Polytechnique de Paris

March, 142019

Introduction: Why bother with random sampling?

PART 1 : Adaptive importance sampling

- Independent importance sampling
- Adaptive sampling
- Main result
- Illustration

PART 2 : Control variates

- Presentation
- Main result
- Application: GLM with random effects

The underlying integration problem

Let μ be a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be integrable.

- Goal : Estimate

$$
\mu(\varphi)=\int \varphi \mathrm{d} \mu
$$

- Constraint: only based on $\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)$, where x_{1}, \ldots, x_{n} are called nodes. Here φ might be black-box function ${ }^{1}$.
- Central question: number of nodes n necessary to obtain a given accuracy

[^0]Riemann's sums method for $\int_{[0,1]^{d}} \varphi(x) \mathrm{d} x$:

$$
n^{-d} \sum_{x_{i} \in \text { Grid }} \varphi\left(x_{i}\right)
$$

where Grid $=\left\{\left(i_{1} / n, \ldots, i_{d} / n\right): 1 \leq i_{k} \leq n, \forall k=1, \ldots, d\right\}$

$n=10$

$n=20$

$n=\mathbf{3 0}$

Define

$$
\Phi_{d}=\left\{\varphi:[0,1]^{d} \mapsto \mathbb{R}:|\varphi(x)-\varphi(y)| \leq \max _{k=1, \ldots, d}\left|x_{k}-y_{k}\right|\right\}
$$

Error bound

We have

$$
\sup _{\varphi \in \Phi_{d}}\left|n^{-d} \sum_{x \in \text { Grid }} \varphi(x)-\int_{[0,1]^{d}} \varphi(x) \mathrm{d} x\right| \leq n^{-1}
$$

Consider linear integration rules

$$
\sum_{i=1}^{n^{d}} w_{i} \varphi\left(x_{i}\right)
$$

The accuracy of the best algorithm over a class Φ is

$$
e\left(n^{d}, \Phi\right)=\inf _{\left(w_{i}, x_{i}\right)_{i=1 \ldots n}} \sup _{\varphi \in \Phi}\left|\sum_{i=1}^{n^{d}} w_{i} \varphi\left(x_{i}\right)-\int_{[0,1]^{d}} \varphi(x) \mathrm{d} x\right|
$$

Complexity results (Novak, 2016)

$$
e\left(n^{d}, \Phi_{d}\right)=\left(\frac{d}{2 d+2}\right) n^{-1}
$$

The midpoint rule is the optimal algorithm ${ }^{2}$.

$$
{ }^{2} \text { If } \Phi_{k, d}=\left\{\varphi:[0,1]^{d} \rightarrow \mathbb{R},\left\|D_{\alpha} \varphi\right\|_{\infty} \leq 1, \forall|\alpha| \leq k\right\} \text {, then } e\left(n^{d}, \Phi_{k, d}\right) \simeq n^{-k} .
$$

Monte Carlo

Let $\left(X_{1}, \ldots, X_{n}\right) \stackrel{i i d}{\sim} \mathcal{U}[0,1]^{d}$, the Monte Carlo estimate of $\int_{[0,1]^{d}} \varphi(x) \mathrm{d} x$ is

$$
n^{-1} \sum_{i=1}^{n} \varphi\left(X_{i}\right)
$$

$n=20 \quad n=30$
Uniform results (Talagrand, 1996; McDiarmid, 1998; Giné and Guillou, 2001)
with probability larger than $1-\delta$,

$$
\sup _{\varphi \in \Phi}\left|n^{-1} \sum_{i=1}^{n} \varphi\left(X_{i}\right)-\int_{[0,1]^{d}} \varphi(x) \mathrm{d} x\right| \leq 2 \mathbb{E}\left|R_{n}(\Phi)\right|+\sqrt{\frac{2 \log (2 / \delta)}{n}}
$$

If for instance, Φ is of VC-type, $\mathbb{E}\left|R_{n}(\Phi)\right| \simeq n^{-1 / 2}$.

Summary

	determisitic	random
$e\left(n, \Phi_{d}\right)$	$n^{-1 / d}$	$n^{-1 / d} n^{-1 / 2}$
$e\left(n, \Phi_{d}^{k}\right)$	$n^{-k / d}$	$n^{-k / d} n^{-1 / 2}$

Monte Carlo
 $n^{-1 / 2}$
 $n^{-1 / 2}$

Quasi-Monte Carlo methods provide rates in $n^{-1} \log (n)^{d-1}$ but under more complicated smoothness assumptions (Novak, 2016)

Popular methods

Monte Carlo

1. Draw $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P$
2. Compute $\frac{1}{n} \sum_{i=1}^{n} \varphi\left(X_{i}\right)$

Control variates

- Use the knowledge of $\mathbb{E}\left[h_{j}(X)\right]=0$ for functions h_{1}, \ldots, h_{m}

Importance sampling, stratified sampling...

Others

- Quasi-Monte Carlo
- Quadrature rules

Books : Evans and Swartz (2000), Robert and Casella (2004), Glasserman (2003), Owen (2013)

Introduction: Why bother with random sampling?

PART 1 : Adaptive importance sampling

- Independent importance sampling
- Adaptive sampling
- Main result
- Illustration

PART 2: Control variates

- Presentation
- Main result
- Application: GLM with random effects

The importance sampling game
Let μ be a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right.$) and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be integrable.

- Goal: Estimate

$$
\mu(\varphi)=\int \varphi \mathrm{d} \mu=\int \varphi f \mathrm{~d} \lambda
$$

where $\mathrm{d} \mu=f \mathrm{~d} \lambda$

- Based on

$$
\hat{\imath}_{i s}^{(n)}(q)=n^{-1} \sum_{i=1}^{n} \varphi\left(X_{i}\right) \frac{f\left(X_{i}\right)}{q\left(X_{i}\right)}
$$

where X_{1}, \ldots, X_{n} are iid from q, a density

Importance sampling question
How to choose q ?

Basic results

- $\hat{i}_{i s}^{(n)}(q)$ is unbiased whenever $\operatorname{supp}(q) \supseteq \operatorname{supp}(\varphi f)$
- The variance is given by

$$
\operatorname{Var}\left(\hat{l}_{i s}^{(n)}(q)\right)=n^{-1} V(\varphi f, q)
$$

with $V(\varphi f, q)=\operatorname{Var}_{q}(\varphi f / q)$

The accuracy heavily depends on the choice of q

Optimal sampler (Evans and Swartz, 2000)
The following holds
1.

$$
q^{*} \stackrel{\text { def }}{=} \underset{q: \operatorname{supp}(q) \supseteq \operatorname{supp}(\varphi f)}{\arg \min } V(\varphi f, q) \quad \text { is unique }
$$

2.

$$
q^{*} \propto|\varphi| f
$$

3.

$$
\operatorname{Var}\left(\hat{l}_{i s}^{(n)}\left(q^{*}\right)\right)=n^{-1}\left\{\left(\int|\varphi| f \mathrm{~d} \lambda\right)^{2}-\left(\int \varphi f \mathrm{~d} \lambda\right)^{2}\right\}
$$

Basic method

2-stage parametric importance sampling (Kloek and Van Dijk, 1978) input: A family of samplers \mathcal{Q} and an initial sampler q_{0}

- Generate $\left(X_{1}^{(1)}, \ldots, X_{n_{1}}^{(1)}\right) \stackrel{i i d}{\sim} q_{0}$
- Compute

$$
\hat{q}_{1} \in \underset{q \in \mathcal{Q}}{\arg \min } n_{1}^{-1} \sum_{i=1}^{n_{1}} \frac{\varphi\left(X_{i}^{(1)}\right)^{2} f\left(X_{i}^{(1)}\right)^{2}}{q\left(X_{i}^{(1)}\right) q_{0}\left(X_{i}^{(1)}\right)}
$$

- Generate $\left(X_{1}^{(2)}, \ldots, X_{n_{2}}^{(2)}\right) \stackrel{i d}{\sim} \hat{q}_{1}$ and compute $\hat{i}_{i s}^{\left(n_{2}\right)}\left(\hat{q}_{1}\right)$

Adaptive sampling

Goal

- To efficiently visit the space : one must learn from the past action (similar to reinforcement learning) and update the policy at each step

Examples

- Metropolis Hastings (surveyed in Robert (2010))
- particular MCMC, well suited for Bayesian estimation
- polynomial complexity in the dimension $\left\|Q_{N}-Q^{*}\right\|_{t v} \leq \epsilon$ whenever $N \geq O\left(d^{2} \log (M / \epsilon)\right)$ (Belloni and Chernozhukov, 2009); concentration inequality (Bertail and Portier, 2018)
- Adaptive Metropolis (Haario et al., 2001)
- Adaptive/sequential sampling (surveyed in Iba (2001))
- adaptive importance sampling (Oh and Berger, 1992; Cappé et al., 2004;

Douc et al., 2007a; Cornuet et al., 2012)

- sequential Monte Carlo (Doucet et al., 2001)

Adaptive importance sampling (Oh and Berger, 1992; Cappé et al., 2004; Richard and Zhang, 2007; Douc et al., 2007a,b)
input: A family of samplers \mathcal{Q}, an initial sampler $\hat{q}_{0} \in \mathcal{Q}$, an allocation policy $\left(n_{t}\right)_{t=1, \ldots, T}$

For $t=1, \ldots, T$

- Generate $X_{1}^{(t)}, \ldots, X_{n_{t}}^{(t)} \stackrel{i i d}{\sim} \hat{q}_{t-1}$ and compute $\hat{\jmath}^{(t)}=\hat{l}_{i s}^{\left(n_{t}\right)}\left(\hat{q}_{t-1}\right)$
- Update:

$$
\hat{q}_{t}=\underset{q \in \mathcal{Q}}{\arg \min } \hat{\ell}_{\mathcal{F}_{t}}(q)
$$

where $\hat{\ell}_{\mathcal{F}_{t}}$ depends on the past particles

$$
\hat{l}_{a i s}^{(T)}=\frac{\sum_{t=1}^{T} n_{t} \hat{\jmath}_{i s}^{\left(n_{t}\right)}\left(\hat{q}_{t-1}\right)}{\sum_{t=1}^{T} n_{t}}
$$

Choice of the loss

Variance

$$
\hat{\ell}_{F_{1}}(q)=n_{1}^{-1} \sum_{i=1}^{n_{1}} \frac{\varphi\left(X_{i}^{(1)}\right)^{2} f\left(X_{i}^{(1)}\right)^{2}}{q\left(X_{i}^{(1)}\right) q_{0}\left(X_{i}^{(1)}\right)}
$$

$$
\ell(q)=\int \varphi^{2} f^{2} / q \mathrm{~d} \lambda
$$

Kullback-Leibler divergence

$$
\left.\hat{\ell}_{\mathcal{F}_{1}}(q)=-n_{1}^{-1} \sum_{i=1}^{n_{1}} \log \left(q\left(X_{i}^{(1)}\right)\right) \frac{f\left(X_{i}^{(1)}\right)}{q_{0}\left(X_{i}^{(1)}\right)} \quad \right\rvert\, \quad \ell(q)=-\int \log (q) f \mathrm{~d} \lambda
$$

Generalized method of moments

$$
\left.\hat{\ell}_{\mathcal{F}_{1}}(q)=\left\|E_{q}[g]-n_{1}^{-1} \sum_{i=1}^{n_{1}} g\left(X_{i}^{(1)}\right) \frac{f\left(X_{i}^{(1)}\right)}{q_{0}\left(X_{i}^{(1)}\right)}\right\|_{2}^{2} \right\rvert\, \ell(q)=\left\|\int g q \mathrm{~d} \lambda-\int g f \mathrm{~d} \lambda\right\|_{2}^{2}
$$

where $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q}$ is some moment function.

- Previous results obtained when T is fixed and $n_{T} \rightarrow \infty$
- Our framework: $\sum_{t=1}^{T} n_{t} \rightarrow \infty$

Based on 1 simple remark

AIS averages over the terms

$$
\frac{\varphi\left(X_{j}\right) f\left(X_{j}\right)}{q_{j-1}\left(X_{j}\right)}, \quad \text { with } X_{j} \sim q_{j-1}
$$

where j is the sample index and corresponds to $n_{1}+\ldots+n_{t}+i$ for some (t, i)
Define

$$
M_{n}=\sum_{j=1}^{n}\left(\frac{\varphi\left(X_{j}\right) f\left(X_{j}\right)}{q_{j-1}\left(X_{j}\right)}-\int \varphi f \mathrm{~d} \lambda\right)
$$

Property

Assume that for all $1 \leq j \leq n$, the support of q_{j} contains the support of φf, then the sequence $\left(M_{n}, \mathcal{F}_{n}\right)$ is a martingale. The quadratic variation of M satisfies $\langle M\rangle_{n}=\sum_{j=1}^{n} V\left(\varphi f, q_{j-1}\right)$.

Main result

We consider

$$
\begin{aligned}
& \text { a loss: } \quad \ell(q)=\int m_{q} \mathrm{~d} \lambda \\
& \text { a (parametric) set of samplers : } \quad \mathcal{Q}
\end{aligned}
$$

Theorem (Delyon and P., 2018)

Under some technical assumptions but without any restriction on $\left(n_{t}\right)_{t=1, \ldots, T}$, as $T \rightarrow \infty$,

$$
\sqrt{\left(\sum_{t=1}^{T} n_{t}\right)}\left(\hat{l}_{a i s}^{(T)}-\int \varphi f \mathrm{~d} \lambda\right) \rightsquigarrow \mathcal{N}\left(0, v^{*}\right)
$$

where

$$
v^{*}=V\left(\varphi f, q^{*}\right) \quad \text { with } \quad q^{*} \in \underset{q \in \mathcal{Q}}{\arg \min } \ell(q)
$$

Remark 1: optimality

If $\ell(q)=\int \varphi f / q d \lambda$, then v^{*} is the best variance that we can achieve over the class of sampler \mathcal{Q}

Remark 2: fast rate

Whenever $\varphi>0$ and $\varphi f /\left(\int \varphi f d \lambda\right) \in \mathcal{Q}$,

$$
\hat{\imath}_{a i s}^{(T)}-\int \varphi f \mathrm{~d} \lambda=o_{P}\left(\left(\sum_{t=1}^{T} n_{t}\right)^{-1 / 2}\right)
$$

Remark 3: normalized estimates

$$
\sum_{i} \varphi\left(X_{i}\right) \frac{f\left(X_{i}\right)}{q\left(X_{i}\right)} / \sum_{i} \frac{f\left(X_{i}\right)}{q\left(X_{i}\right)}
$$

are studied as a corollary

A re-weighting to forget bad samplers
Define the weighted estimate, for any function ψ,

$$
I_{T}^{(\alpha)}(\psi)=N_{T}^{-1} \sum_{t=1}^{T} \alpha_{T, t} \sum_{i=1}^{n_{t}} \frac{\psi\left(X_{i}^{(t)}\right)}{q_{t-1}\left(X_{i}^{(t)}\right)}
$$

with $\sum_{t=1}^{T} n_{t} \alpha_{T, t}=N_{T}$ (for unbiasedness)
Optimal choice (Douc et al., 2007a)

$$
\alpha_{T, t}^{-1} \propto \operatorname{Var}_{q_{t}}\left(\varphi f / q_{t}\right)
$$

Our proposal

$$
\alpha_{T, t}^{-1} \propto \operatorname{Var}_{q_{t}}\left(f / q_{t}\right) \simeq \sum_{i=1}^{n_{t}}\left(\frac{f\left(X_{i}^{(t)}\right)}{q_{t-1}\left(X_{i}^{(t)}\right)}-1\right)^{2}
$$

Illustration on a toy example

- Aim is to compute $\mu_{*}=\int x \phi_{\mu_{*}, \sigma_{*}}(x) d x$ where $\phi_{\mu, \sigma}$ is the pdf of $\mathcal{N}\left(\mu, \sigma^{2} I_{d}\right), \mu_{*}=(5, \ldots 5)^{T} \in \mathbb{R}^{d}, \sigma_{*}=1$
- \mathcal{Q} the collection of multivariate Student distributions of degree $\nu=3$ and $\Sigma_{0}=5 l_{d}(\nu-2) / \nu$, parametrized by the mean
- $q \mapsto \ell(q)$ is the GMM loss
- The initial sampling policy is set as $\mu_{0}=(0, \ldots 0) \in \mathbb{R}^{d}$
- methods in competition : AIS, wAIS and adaptive MH
- For each method that returns μ, the mean squared error (MSE) is computed as the average of $\left\|\mu-\mu_{*}\right\|^{2}$ computed over 100 replicates of μ

Illustration on a toy example

Figure: From left to right $d=2,4,8,16$. AIS and wAIS are computed with $T=50$ with constant $n_{t}=2 e 3$. Plotted is the logarithm of the MSE (computed for each method over 100 replicates) with respect to the number of requests to the integrand.

Illustration on a toy example

Figure: From left to right $d=2,4,8,16$. AIS and wAIS are computed with $T=5,20,50$, with a constant allocation policy, resp. $n_{t}=2 e 4,5 e 3,2 e 3$. Plotted is the logarithm of the MSE (computed for each method over 100 replicates) with respect to the number of requests to the integrand.

Introduction: Why bother with random sampling?

PART 1 : Adaptive importance sampling

- Independent importance sampling
- Adaptive sampling
- Main result
- Illustration

PART 2 : Control variates

- Presentation
- Main result
- Application: GLM with random effects

Let μ be a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be integrable.

The Control variates game

- Goal: Estimate

$$
\mu(\varphi)=\int \varphi \mathrm{d} \mu
$$

- Constraint: only based on $\varphi\left(X_{1}\right), \ldots, \varphi\left(X_{n}\right)$, where X_{1}, \ldots, X_{n} are iid from μ
- New piece of information is available: h_{1}, \ldots, h_{m} test functions such that, for every $\ell=1, \ldots, m$,

$$
\mu\left(h_{k}\right)=\int h_{k} \mathrm{~d} \mu \quad \text { is known }
$$

Control variates issue
How to use this auxiliary information efficiently?

Control variates method heuristic

Consider the unbiased family

$$
\hat{I}_{c v}(\alpha)=n^{-1} \sum_{i=1}^{n}\left\{\varphi\left(X_{i}\right)-\sum_{k=1}^{m} \alpha_{k}\left(h_{k}\left(X_{i}\right)-\mu\left(h_{k}\right)\right)\right\}
$$

Two steps approach

input : the sample size n, the space $\operatorname{span}\left(h_{1}, \ldots, h_{m}\right)$

- Step 1. Estimate the optimal control variate

$$
\alpha \in \underset{\alpha \in \mathbb{R}^{m}}{\arg \min } \operatorname{var}\left(\varphi-\sum_{k=1}^{m} \alpha_{k} h_{k}\right)
$$

- Step 2. Compute the modified Monte Carlo estimate

$$
\hat{I}_{c v}(\hat{\alpha})
$$

Theorem (Glynn and Szechtman, 2002)

Under suitable moments conditions, we have as $n \rightarrow \infty$,

$$
n^{1 / 2}\left(\hat{I}_{c v}(\hat{\alpha})-\int \varphi \mathrm{d} \mu\right) \xrightarrow{\mathrm{d}} \mathcal{N}\left(0, \sigma_{m}^{2}\right)
$$

where $\sigma_{m}^{2}=\min _{\alpha \in \mathbb{R}^{m}} \operatorname{Var}\left(\varphi-\sum_{k=1}^{m} \alpha_{k} h_{k}\right) \leq \operatorname{Var}(\varphi) \quad$ (= Monte Carlo variance)

- This applies to 6 different versions of control variates
- The one we promote and study is the OLS version:

$$
\left(\hat{\alpha}_{0}, \hat{\alpha}\right)=\underset{\left(\alpha_{0}, \alpha\right) \in \mathbb{R} \times \mathbb{R}^{m}}{\arg \min } \sum_{i=1}^{n}\left(\varphi\left(X_{i}\right)-\alpha_{0}-\sum_{k=1}^{m} \alpha_{k} h_{k}\left(X_{i}\right)\right)^{2}
$$

- Among the six control variates, this is the only one that integrates without errors functions $\varphi \in \operatorname{span}\left(1, h_{1}, \ldots, h_{m}\right)$.
- Linear integration rule : $\hat{\alpha}_{0}=\sum_{i=1}^{n} w_{i, n} \varphi\left(X_{i}\right)$

Growing number of control variates $m=m_{n}$

Theorem (P. and Segers, 2018)

Under suitable moments conditions, we have as $n \rightarrow \infty, m_{n}=o\left(n^{1 / 2}\right)$,

$$
\left(\frac{n^{1 / 2}}{\sigma_{m_{n}}}\right)\left(\hat{\alpha}_{0}-\int \varphi \mathrm{d} \mu\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0,1)
$$

where $\sigma_{m}^{2}=\min _{\alpha \in \mathbb{R}^{m}} \operatorname{Var}\left(\varphi-\sum_{k=1}^{m} \alpha_{k} h_{k}\right)$

Related works

- Oates et al. (2016): control variates taken in a RKHS. They provide a bound on the error when 2 independent samples are used in step 1 and 2.
- Gobet and Surana (2014): sequential approximation of the regression coefficients. Bound when 2 independent samples are used.

Example (The smoother f, the faster the rate)

Suppose that

- Let $\left(h_{j}\right)$ be the Legendre polynomials
- Let f be $k+1$ times continuously differentiable then $\sigma_{m_{n}}^{2}=O\left(m_{n}^{-2 k-1}\right)$ and

$$
\hat{\alpha}_{0}-\int \varphi \mathrm{d} \mu=O_{p}\left(m_{n}^{-k-1 / 2} n^{-1 / 2}\right)
$$

Applications

Importance sampling

- random variable generation (Erraqabi et al., 2016)
- Bayesian statistics, e.g., Cornuet et al. (2012)
- option pricing, e.g., Douc et al. (2007a)
- optimization (Hashimoto et al., 2018)
- reinforcement learning (Jie and Abbeel, 2010)

Control variates

- numerical integration, e.g., $\mathbb{E}\left[\varphi\left(W_{1}, W_{2}\right)\right]$ and we know $\mathbb{E}\left[W_{1}\right], \mathbb{E}\left[W_{2}\right]$
- queuing network (Lavenberg and Welch, 1981)
- option pricing (Hull and White, 1988)
- Bayesian statistics e.g., (Oates et al., 2016)
- variance reduction for stochastic gradient descent (Wang et al., 2013)
- latent variable model (P. and Segers, 2018)

Logit model with random effect

Observations $\left(y_{j, k}, x_{j, k}\right) \in\{0,1\} \times \mathbb{R}$

- classes $k=1, \ldots, q$
- observations $j=1, \ldots, N$ in each class

Model

Random effects u_{1}, \ldots, u_{q} iid $\mathcal{N}(0,1)$ (latent) such that

$$
\begin{gathered}
y_{j, k} \mid u_{1}, \ldots, u_{q} \sim \operatorname{Bernoulli}\left(p_{j, k}\right) \\
\operatorname{logit}\left(p_{j, k}\right)=\beta x_{j, k}+\sigma u_{k}
\end{gathered}
$$

Likelihood proportional to:

$$
\prod_{k=1}^{q} \int_{\mathbb{R}} \prod_{j=1}^{N}\left(\frac{e^{y_{j, k}\left(\beta x_{j, k}+\sigma u\right)}}{1+e^{\beta x_{j, k}+\sigma u}}\right) e^{-u^{2} / 2} \mathrm{~d} u
$$

More generally: generalized linear models with random effects (McCulloch and Searle, 2001)

Maximum simulated likelihood

n	EM	MC		OLSMC	
	sd	sd	rMSE	sd	rMSE
100	0.1227	0.1027	0.1027	$2 \mathrm{e}-4$	3e-4
500	0.0546	0.0468	0.0467	2e-5	2e-4
1000	0.0388	0.0334	0.0334	$3 \mathrm{e}-6$	2e-4

Methods:

- Expectation-Maximization
- E-step: Monte Carlo
- Monte Carlo
- OLS Monte Carlo
- change of variables to [0, 1]
- polynomial basis
- $m=\lfloor 2 \sqrt{n}\rfloor$

Artificial data set (Booth and Hobert, 1999)

- $q=10$ classes
- $N=15$ observations per class
- $\beta=5, \sigma=1 / 2$
- fixed design $x_{j, k}=j / N$
- 200 replications
target: MLE (deterministic integration)

Multinomial logit model with random effects
Booth and Hobert (1999): Medical studies $i=1, \ldots, N$

- $n_{i 1}\left(n_{i 2}\right)$ nb of (non-)smokers
- $y_{i 1}\left(y_{i 2}\right) \mathrm{nb}$ of patients with lung cancer among (non-)smokers

Model

Latent random $\mathcal{N}(0,1)$ effects $u_{i}, v_{i 1}, v_{i 2}$ such that

$$
\begin{aligned}
y_{i j} & \sim \operatorname{Binom}\left(\pi_{i j}, n_{i j}\right) \\
\operatorname{logit}\left(\pi_{i j}\right) & =\beta_{0}+\beta_{1} 1_{\{j=1\}}+\sigma_{u} u_{i}+\sigma_{v} v_{i j}
\end{aligned}
$$

Likelihood proportional to

$$
\begin{aligned}
& \prod_{i=1}^{N} \int_{\mathbb{R}^{3}} b_{i, 1}\left(u, v_{1}\right) b_{i, 2}\left(u, v_{2}\right) \phi_{\sigma_{u}}(u) \phi_{\sigma_{v}}\left(v_{1}\right) \phi_{\sigma_{v}}\left(v_{2}\right) \mathrm{d}\left(u, v_{1}, v_{2}\right) \\
& \text { where } \quad \begin{aligned}
b_{i, j}(u, v) & =\pi_{j}(u, v)^{y_{i j}}\left\{1-\pi_{j}(u, v)\right\}^{n_{i j}-y_{i j}} \\
\pi_{j}(u, v) & =\operatorname{logit}^{-1}\left(\beta_{0}+\beta_{1} 1_{\{j=1\}}+\sigma_{u} u+\sigma_{v} v\right)
\end{aligned}
\end{aligned}
$$

Maximum simulated likelihood

- N integrals on $[0,1]^{3}$
- cubic B-splines or polynomials
- tensor products
- k functions per dimension
$\Longrightarrow m=(k+1)^{3}-1$ control functions

k	3	4	5	6
m	63	124	215	342
n	300	600	1200	2400

- points X_{i} and weights $w_{n, i}$ common for all N integrals

Work in progress: AIS with flexible nonparametric methods

References:

- Bertail, P. and Portier, F. (2019). Rademacher complexity for markov chains: Applications to kernel smoothing and metropolis-hasting. To appear in Bernoulli
- Delyon, B. and Portier, F. (2018). Asymptotic optimality of adaptive importance sampling. NIPS18, pp. 3138-3148.
- Portier, F. and Segers, J. (2018). Monte carlo integration with a growing number of control variates. arXiv preprint arXiv:1801.01797.

Bibliography I

Belloni, A. and V. Chernozhukov (2009). On the computational complexity of mcmc-based estimators in large samples. The Annals of Statistics, 2011-2055.
Bertail, P. and F. Portier (2018). Rademacher complexity for markov chains: Applications to kernel smoothing and metropolis-hasting. arXiv preprint arXiv:1806.02107.
Booth, J. G. and J. P. Hobert (1999). Maximizing generalized linear mixed model likelihoods with an automated monte carlo em algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(1), 265-285.
Cappé, O., A. Guillin, J.-M. Marin, and C. P. Robert (2004). Population monte carlo. Journal of Computational and Graphical Statistics 13(4), 907-929.
Cornuet, J.-M., J.-M. Marin, A. Mira, and C. P. Robert (2012). Adaptive multiple importance sampling. Scandinavian Journal of Statistics 39(4), 798-812.
Delyon, B. and F. P. (2018). Asymptotic optimality of adaptive importance sampling. In Advances in Neural Information Processing Systems, pp. 3138-3148.
Douc, R., A. Guillin, J.-M. Marin, and C. P. Robert (2007a). Convergence of adaptive mixtures of importance sampling schemes. The Annals of Statistics, 420-448.
Douc, R., A. Guillin, J.-M. Marin, and C. P. Robert (2007b). Minimum variance importance sampling via population monte carlo. ESAIM: Probability and Statistics 11, 427-447.

Doucet, A., N. De Freitas, and N. Gordon (2001). An introduction to sequential monte carlo methods. In Sequential Monte Carlo methods in practice, pp. 3-14. Springer.

Erraqabi, A., M. Valko, A. Carpentier, and O. Maillard (2016). Pliable rejection sampling. In International Conference on Machine Learning, pp. 2121-2129.

Evans, M. and T. Swartz (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford Statistical Science Series. Oxford University Press, Oxford.

Bibliography II

Giné, E. and A. Guillou (2001). On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann. Inst. H. Poincaré Probab. Statist. 37(4), 503-522.
Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. New York: Springer.
Glynn, P. W. and R. Szechtman (2002). Some new perspectives on the method of control variates. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), pp. 27-49. Springer, Berlin.
Gobet, E. and K. Surana (2014). A new sequential algorithm for I2-approximation and application to monte-carlo integration.
Haario, H., E. Saksman, and J. Tamminen (2001). An adaptive metropolis algorithm. Bernoulli 7(2), 223-242.
Hashimoto, T. B., S. Yadlowsky, and J. C. Duchi (2018). Derivative free optimization via repeated classification. arXiv preprint arXiv:1804.03761.
Hull, J. and A. White (1988). The use of the control variate technique in option pricing. Journal of Financial and Quantitative analysis 23(03), 237-251.
Iba, Y. (2001). Population monte carlo algorithms. Transactions of the Japanese Society for Artificial Intelligence 16(2), 279-286.
Jie, T. and P. Abbeel (2010). On a connection between importance sampling and the likelihood ratio policy gradient. In Advances in Neural Information Processing Systems, pp. 1000-1008.
Kloek, T. and H. K. Van Dijk (1978). Bayesian estimates of equation system parameters: an application of integration by monte carlo. Econometrica: Journal of the Econometric Society, 1-19.
Lavenberg, S. S. and P. D. Welch (1981). A perspective on the use of control variables to increase the efficiency of Monte Carlo simulations. Management Sci. 27(3), 322-335.
McCulloch, C. E. and S. R. Searle (2001). Generalized, linear, mixed models.

Bibliography III

McDiarmid, C. (1998). Concentration. In Probabilistic methods for algorithmic discrete mathematics, Volume 16 of Algorithms Combin., pp. 195-248. Springer, Berlin.
Novak, E. (2016). Some results on the complexity of numerical integration. In Monte Carlo and Quasi-Monte Carlo Methods, pp. 161-183. Springer.
Oates, C. J., M. Girolami, and N. Chopin (2016). Control functionals for monte carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
Oh, M.-S. and J. O. Berger (1992). Adaptive importance sampling in Monte Carlo integration. J. Statist. Comput. Simulation 41(3-4), 143-168.
Owen, A. B. (2013). Monte Carlo Theory, Methods and Examples. http://statweb.stanford.edu/~owen/mc/.
P., F. and J. Segers (2018). Monte carlo integration with a growing number of control variates. arXiv preprint arXiv:1801.01797.
Richard, J.-F. and W. Zhang (2007). Efficient high-dimensional importance sampling. J. Econometrics 141(2), 1385-1411.
Robert, C. P. (2010). The metropolis-hastings algorithm. Wiley StatsRef: Statistics Reference Online.

Robert, C. P. and G. Casella (2004). Monte Carlo statistical methods (Second ed.). Springer Texts in Statistics. Springer-Verlag, New York.
Talagrand, M. (1996). New concentration inequalities in product spaces. Inventiones mathematicae 126(3), 505-563.
Wang, C., X. Chen, A. J. Smola, and E. P. Xing (2013). Variance reduction for stochastic gradient optimization. In Advances in Neural Information Processing Systems, pp. 181-189.

[^0]: ${ }^{1}$ if φ has an explicit form, e.g., $\varphi(x)=\exp \left(-\|x\|^{2}\right)$, then some approximation techniques are probably more appropriate

