A guided tour in Monte Carlo

François Portier

Télécom Paris Institut Polytechnique de Paris

March, 14 2019

Introduction: Why bother with random sampling?

- PART 1: Adaptive importance sampling
 - Independent importance sampling
 - Adaptive sampling
 - Main result
 - Illustration
- PART 2: Control variates
 - Presentation
 - Main result
 - Application: GLM with random effects

The underlying integration problem

Let μ be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and $\varphi : \mathbb{R}^d \to \mathbb{R}$ be integrable.

► Goal : Estimate

$$\mu(\varphi) = \int \varphi \, \mathrm{d}\mu$$

- ▶ Constraint: only based on $\varphi(x_1), \ldots, \varphi(x_n)$, where x_1, \ldots, x_n are called nodes. Here φ might be black-box function¹.
- ▶ Central question: number of nodes *n* necessary to obtain a given accuracy

 $^{^1}$ if φ has an explicit form, e.g., $\varphi(x)=\exp(-\|x\|^2),$ then some approximation techniques are probably more appropriate

Riemann's sums method for $\int_{[0,1]^d} \varphi(x) dx$:

$$n^{-d}\sum_{x_i\in Grid}\varphi(x_i),$$

where Grid =
$$\{(i_1/n, ..., i_d/n) : 1 \le i_k \le n, \forall k = 1, ..., d\}$$

Define

$$\Phi_d = \left\{ arphi : [0,1]^d \mapsto \mathbb{R} \, : \, |arphi(x) - arphi(y)| \leq \max_{k=1,...,d} |x_k - y_k|
ight\}$$

Error bound

We have

$$\sup_{\varphi \in \Phi_d} \left| n^{-d} \sum_{x \in \mathsf{Grid}} \varphi(x) - \int_{[0,1]^d} \varphi(x) \, \mathrm{d}x \right| \leq n^{-1}.$$

Consider linear integration rules

$$\sum_{i=1}^{n^d} w_i \varphi(x_i).$$

The accuracy of the best algorithm over a class Φ is

$$e(n^d, \Phi) = \inf_{(w_i, x_i)_{i=1...n}} \sup_{\varphi \in \Phi} \left| \sum_{i=1}^{n^d} w_i \varphi(x_i) - \int_{[0,1]^d} \varphi(x) dx \right|$$

Complexity results (Novak, 2016)

$$e(n^d, \Phi_d) = \left(\frac{d}{2d+2}\right) n^{-1}$$

The midpoint rule is the optimal algorithm².

 $^{^2}$ If $\Phi_{k,d} = \{ \varphi : [0,1]^d \to \mathbb{R} \,, \, \|D_{\alpha}\varphi\|_{\infty} \le 1, \forall |\alpha| \le k \}$, then $e(n^d, \Phi_{k,d}) \simeq n^{-k}$.

Monte Carlo

Let $(X_1, \ldots, X_n) \stackrel{iid}{\sim} \mathcal{U}[0, 1]^d$, the Monte Carlo estimate of $\int_{[0, 1]^d} \varphi(x) \, \mathrm{d}x$ is

$$n^{-1}\sum_{i=1}^n \varphi(X_i)$$

Uniform results (Talagrand, 1996; McDiarmid, 1998; Giné and Guillou, 2001)

with probability larger than $1-\delta$,

$$\sup_{\varphi \in \Phi} \left| n^{-1} \sum_{i=1}^n \varphi(X_i) - \int_{[0,1]^d} \varphi(x) \, \mathrm{d}x \right| \leq 2 \mathbb{E} |R_n(\Phi)| + \sqrt{\frac{2 \log(2/\delta)}{n}}$$

If for instance, Φ is of VC-type, $\mathbb{E}|R_n(\Phi)| \simeq n^{-1/2}$.

Summary

	determisitic	random	Monte Carlo
$e(n, \Phi_d)$	$n^{-1/d}$	$n^{-1/d} n^{-1/2}$	$n^{-1/2}$
$e(n,\Phi_d^k)$	$n^{-k/d}$	$n^{-k/d}n^{-1/2}$	$n^{-1/2}$

Quasi-Monte Carlo methods provide rates in $n^{-1}\log(n)^{d-1}$ but under more complicated smoothness assumptions (Novak, 2016)

Popular methods

Monte Carlo

- 1. Draw $X_1, \ldots, X_n \stackrel{iid}{\sim} P$
- 2. Compute $\frac{1}{n} \sum_{i=1}^{n} \varphi(X_i)$

Control variates

▶ Use the knowledge of $\mathbb{E}[h_j(X)] = 0$ for functions h_1, \ldots, h_m

Others

- Quasi-Monte Carlo
- Quadrature rules

Books: Evans and Swartz (2000), Robert and Casella (2004), Glasserman (2003), Owen (2013)

Introduction: Why bother with random sampling?

PART 1: Adaptive importance sampling

- Independent importance sampling
- Adaptive sampling
- Main result
- Illustration

PART 2: Control variates

- Presentation
- Main result
- Application: GLM with random effects

The importance sampling game

Let μ be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and $\varphi : \mathbb{R}^d \to \mathbb{R}$ be integrable.

▶ Goal: Estimate

$$\mu(\varphi) = \int \varphi \, \mathrm{d}\mu = \int \varphi f \, \mathrm{d}\lambda$$

where $d\mu = f d\lambda$

Based on

$$\hat{l}_{is}^{(n)}(q) = n^{-1} \sum_{i=1}^{n} \varphi(X_i) \frac{f(X_i)}{q(X_i)}$$

where X_1, \ldots, X_n are iid from q, a density

Importance sampling question

How to choose q?

Basic results

- $lacksymbol{\hat{l}}_{is}^{(n)}(q)$ is unbiased whenever $\operatorname{supp}(q)\supseteq\operatorname{supp}(\varphi f)$
- ▶ The variance is given by

$$\operatorname{Var}(\hat{I}_{is}^{(n)}(q)) = n^{-1}V(\varphi f, q)$$

with
$$V(\varphi f, q) = Var_q(\varphi f/q)$$

The accuracy heavily depends on the choice of q

Optimal sampler (Evans and Swartz, 2000)

The following holds

$$q^* \stackrel{\mathrm{def}}{=} \underset{q: \operatorname{supp}(q) \supseteq \operatorname{supp}(\varphi f)}{\operatorname{arg\,min}} V(\varphi f, q)$$
 is unique

2.

$$q^* \propto |\varphi| f$$

3.

$$\mathsf{Var}(\hat{l}_{is}^{(n)}(q^*)) = n^{-1} \left\{ \left(\int |\varphi| f \mathrm{d}\lambda \right)^2 - \left(\int \varphi f \mathrm{d}\lambda \right)^2 \right\}$$

Basic method

2-stage parametric importance sampling (Kloek and Van Dijk, 1978)

input: A family of samplers $\mathcal Q$ and an initial sampler q_0

- lacksquare Generate $(X_1^{(1)},\ldots,X_{n_1}^{(1)})\stackrel{\it iid}{\sim} q_0$
- Compute

$$\hat{q}_1 \in \operatorname*{arg\,min}_{q \in \mathcal{Q}} \ n_1^{-1} \sum_{i=1}^{n_1} \frac{\varphi(X_i^{(1)})^2 f(X_i^{(1)})^2}{q(X_i^{(1)}) q_0(X_i^{(1)})}$$

▶ Generate $(X_1^{(2)}, \dots, X_{n_2}^{(2)}) \stackrel{\textit{iid}}{\sim} \hat{q}_1$ and compute $\hat{l}_{\textit{is}}^{(n_2)}(\hat{q}_1)$

Adaptive sampling

Goal

► To efficiently visit the space : one must learn from the past action (similar to reinforcement learning) and update the policy at each step

Examples

- Metropolis Hastings (surveyed in Robert (2010))
 - particular MCMC, well suited for Bayesian estimation
 - ▶ polynomial complexity in the dimension $\|Q_N Q^*\|_{tv} \le \epsilon$ whenever $N \ge O(d^2 \log(M/\epsilon))$ (Belloni and Chernozhukov, 2009); concentration inequality (Bertail and Portier, 2018)
 - Adaptive Metropolis (Haario et al., 2001)
- ▶ Adaptive/sequential sampling (surveyed in Iba (2001))
 - adaptive importance sampling (Oh and Berger, 1992; Cappé et al., 2004; Douc et al., 2007a; Cornuet et al., 2012)
 - sequential Monte Carlo (Doucet et al., 2001)

Adaptive importance sampling (Oh and Berger, 1992; Cappé et al., 2004; Richard and Zhang, 2007; Douc et al., 2007a,b)

input: A family of samplers Q, an initial sampler $\hat{q}_0 \in Q$, an allocation policy $(n_t)_{t=1,...,T}$

For $t = 1, \ldots, T$

- lacksquare Generate $X_1^{(t)},\dots,X_{n_t}^{(t)}\stackrel{iid}{\sim} \hat{q}_{t-1}$ and compute $\hat{J}^{(t)}=\hat{J}_{is}^{(n_t)}(\hat{q}_{t-1})$
- ▶ Update:

$$\hat{q}_t = rg \min_{q \in \mathcal{Q}} \, \hat{\ell}_{\mathcal{F}_t}(q)$$

where $\hat{\ell}_{\mathcal{F}_t}$ depends on the past particles

$$\hat{l}_{ais}^{(T)} = \frac{\sum_{t=1}^{T} n_t \hat{l}_{is}^{(n_t)}(\hat{q}_{t-1})}{\sum_{t=1}^{T} n_t}$$

Choice of the loss

Variance

$$\hat{\ell}_{\mathcal{F}_1}(q) = n_1^{-1} \sum_{i=1}^{n_1} rac{arphi(X_i^{(1)})^2 f(X_i^{(1)})^2}{q(X_i^{(1)}) q_0(X_i^{(1)})}$$

$$\ell(q) = \int \varphi^2 f^2 / q \, \mathrm{d}\lambda$$

Kullback-Leibler divergence

$$\hat{\ell}_{\mathcal{F}_1}(q) = -n_1^{-1} \sum_{i=1}^{n_1} \log(q(X_i^{(1)})) \frac{f(X_i^{(1)})}{q_0(X_i^{(1)})}$$

$$\ell(q) = -\int \log(q) f \,\mathrm{d}\lambda$$

Generalized method of moments

$$\hat{\ell}_{\mathcal{F}_1}(q) = \left\| E_q[g] - n_1^{-1} \sum_{i=1}^{n_1} g(X_i^{(1)}) \frac{f(X_i^{(1)})}{q_0(X_i^{(1)})} \right\|_2^2 \left\| \ell(q) = \left\| \int gq \, \mathrm{d}\lambda - \int gf \, \mathrm{d}\lambda \right\|_2^2$$

where $g: \mathbb{R}^d \to \mathbb{R}^q$ is some moment function.

- ▶ Previous results obtained when T is fixed and $n_T \to \infty$
- ▶ Our framework: $\sum_{t=1}^{T} n_t \rightarrow \infty$

Based on 1 simple remark

AIS averages over the terms

$$rac{arphi(X_j)f(X_j)}{q_{j-1}(X_j)}, \qquad ext{with } X_j \sim q_{j-1}$$

where j is the sample index and corresponds to $n_1 + \ldots + n_t + i$ for some (t, i)

Define

$$M_n = \sum_{j=1}^n \left(\frac{\varphi(X_j) f(X_j)}{q_{j-1}(X_j)} - \int \varphi f \, \mathrm{d}\lambda \right)$$

Property

Assume that for all $1 \le j \le n$, the support of q_j contains the support of φf , then the sequence (M_n, \mathcal{F}_n) is a martingale. The quadratic variation of M satisfies $\langle M \rangle_n = \sum_{j=1}^n V(\varphi f, q_{j-1})$.

Main result

We consider

a loss :
$$\ell(q) = \int m_q \, \mathrm{d}\lambda,$$
 a (parametric) set of samplers : ζ

Theorem (Delyon and P., 2018)

Under some technical assumptions but without any restriction on $(n_t)_{t=1,...,T}$, as $T \to \infty$,

$$\sqrt{\left(\sum_{t=1}^{T} n_{t}\right)} \left(\hat{I}_{ais}^{(T)} - \int \varphi f \, \mathrm{d}\lambda\right) \rightsquigarrow \mathcal{N}(0, v^{*}),$$

where

$$v^* = V(\varphi f, q^*)$$
 with $q^* \in rg \min_{q \in \mathcal{Q}} \ell(q)$

Remark 1: optimality

If $\ell(q)=\int \varphi f/qd\lambda$, then v^* is the best variance that we can achieve over the class of sampler $\mathcal Q$

Remark 2: fast rate

Whenever $\varphi > 0$ and $\varphi f/(\int \varphi f d\lambda) \in \mathcal{Q}$,

$$\hat{I}_{ais}^{(T)} - \int \varphi f \, d\lambda = o_P \left(\left(\sum_{t=1}^T n_t \right)^{-1/2} \right)$$

Remark 3: normalized estimates

$$\sum_{i} \varphi(X_{i}) \frac{f(X_{i})}{q(X_{i})} / \sum_{i} \frac{f(X_{i})}{q(X_{i})}$$

are studied as a corollary

A re-weighting to forget bad samplers

Define the weighted estimate, for any function ψ ,

$$I_T^{(\alpha)}(\psi) = N_T^{-1} \sum_{t=1}^T \alpha_{T,t} \sum_{i=1}^{n_t} \frac{\psi(X_i^{(t)})}{q_{t-1}(X_i^{(t)})}.$$

with $\sum_{t=1}^{T} n_t \alpha_{T,t} = N_T$ (for unbiasedness)

Optimal choice (Douc et al., 2007a)

$$lpha_{T,t}^{-1} \propto \mathsf{Var}_{q_t}(\varphi f/q_t)$$

Our proposal

$$lpha_{T,t}^{-1} \propto \mathsf{Var}_{q_t}(f/q_t) \simeq \sum_{i=1}^{n_t} \left(rac{f(X_i^{(t)})}{q_{t-1}(X_i^{(t)})} - 1
ight)^2$$

Illustration on a toy example

- Aim is to compute $\mu_* = \int x \phi_{\mu_*,\sigma_*}(x) dx$ where $\phi_{\mu,\sigma}$ is the pdf of $\mathcal{N}(\mu,\sigma^2 I_d)$, $\mu_* = (5,\ldots5)^T \in \mathbb{R}^d$, $\sigma_* = 1$
- $\mathcal Q$ the collection of multivariate Student distributions of degree $\nu=3$ and $\Sigma_0=5I_d(\nu-2)/\nu$, parametrized by the mean
- $q\mapsto \ell(q)$ is the GMM loss
- ▶ The initial sampling policy is set as $\mu_0 = (0, \dots 0) \in \mathbb{R}^d$
- ▶ methods in competition : AIS, wAIS and adaptive MH
- ▶ For each method that returns μ , the mean squared error (MSE) is computed as the average of $\|\mu \mu_*\|^2$ computed over 100 replicates of μ

Illustration on a toy example

Figure: From left to right d=2,4,8,16. AIS and wAIS are computed with T=50 with constant $n_t=2e3$. Plotted is the logarithm of the MSE (computed for each method over 100 replicates) with respect to the number of requests to the integrand.

Illustration on a toy example

Figure: From left to right d=2,4,8,16. AIS and wAIS are computed with T=5,20,50, with a constant allocation policy, resp. $n_{\rm t}=2e4,5e3,2e3$. Plotted is the logarithm of the MSE (computed for each method over 100 replicates) with respect to the number of requests to the integrand.

Introduction: Why bother with random sampling?

PART 1: Adaptive importance sampling

- Independent importance sampling
- Adaptive sampling
- Main result
- Illustration

PART 2: Control variates

- Presentation
- Main result
- Application: GLM with random effects

Let μ be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and $\varphi : \mathbb{R}^d \to \mathbb{R}$ be integrable.

The Control variates game

▶ Goal: Estimate

$$\mu(\varphi) = \int \varphi \, \mathrm{d}\mu$$

- ▶ Constraint: only based on $\varphi(X_1), \ldots, \varphi(X_n)$, where X_1, \ldots, X_n are iid from μ
- ▶ New piece of information is available: $h_1, ..., h_m$ test functions such that, for every $\ell = 1, ..., m$,

$$\mu(h_k) = \int h_k \,\mathrm{d}\mu$$
 is known

Control variates issue

How to use this auxiliary information efficiently?

Control variates method heuristic

Consider the unbiased family

$$\hat{I}_{cv}(\alpha) = n^{-1} \sum_{i=1}^{n} \left\{ \varphi(X_i) - \sum_{k=1}^{m} \alpha_k (h_k(X_i) - \mu(h_k)) \right\}$$

Two steps approach

input : the sample size n, the space span (h_1, \ldots, h_m)

▶ Step 1. Estimate the optimal control variate

$$lpha \in rg \min_{lpha \in \mathbb{R}^m} \ \operatorname{var} \left(arphi - \sum_{k=1}^m lpha_k h_k
ight)$$

▶ Step 2. Compute the modified Monte Carlo estimate

$$\hat{I}_{cv}(\hat{\alpha})$$

Theorem (Glynn and Szechtman, 2002)

Under suitable moments conditions, we have as $n \to \infty$,

$$n^{1/2}\left(\hat{l}_{cv}(\hat{lpha})-\int arphi\,\mathrm{d}\mu
ight)\overset{\mathrm{d}}{ o}\mathcal{N}(\mathsf{0},\sigma_{\mathit{m}}^{2})$$

where $\sigma_m^2 = \min_{\alpha \in \mathbb{R}^m} \mathsf{Var} (\varphi - \sum_{k=1}^m \alpha_k h_k) \le \mathsf{Var} (\varphi)$ (= Monte Carlo variance)

- This applies to 6 different versions of control variates
- ▶ The one we promote and study is the OLS version:

$$(\hat{\alpha}_0, \hat{\alpha}) = \operatorname*{arg\,min}_{(\alpha_0, \alpha) \in \mathbb{R} \times \mathbb{R}^m} \sum_{i=1}^n \left(\varphi(X_i) - \alpha_0 - \sum_{k=1}^m \alpha_k h_k(X_i) \right)^2$$

- Among the six control variates, this is the only one that integrates without errors functions $\varphi \in \text{span}(1, h_1, \dots, h_m)$.
- Linear integration rule : $\hat{\alpha}_0 = \sum_{i=1}^n w_{i,n} \varphi(X_i)$

Growing number of control variates $m = m_n$

Theorem (P. and Segers, 2018)

Under suitable moments conditions, we have as $n \to \infty$, $m_n = o(n^{1/2})$,

$$\left(\frac{n^{1/2}}{\sigma_{m_n}}\right)\left(\hat{\alpha}_0-\int\varphi\,\mathrm{d}\mu\right)\overset{\mathrm{d}}{\to}\mathcal{N}(0,1)$$

where $\sigma_m^2 = \min_{\alpha \in \mathbb{R}^m} \text{Var}(\varphi - \sum_{k=1}^m \alpha_k h_k)$

Related works

- ▶ Oates et al. (2016): control variates taken in a RKHS. They provide a bound on the error when 2 independent samples are used in step 1 and 2.
- ► Gobet and Surana (2014): sequential approximation of the regression coefficients. Bound when 2 independent samples are used.

Example (The smoother f, the faster the rate)

Suppose that

- ▶ Let (h_j) be the Legendre polynomials
- ▶ Let f be k + 1 times continuously differentiable

then
$$\sigma_{\mathit{m_n}}^2 = \mathit{O}(\mathit{m_n}^{-2k-1})$$
 and

$$\hat{\alpha}_0 - \int \varphi \,\mathrm{d}\mu = O_{\rho}(m_n^{-k-1/2}n^{-1/2})$$

Applications

Importance sampling

- random variable generation (Erraqabi et al., 2016)
- Bayesian statistics, e.g., Cornuet et al. (2012)
- option pricing, e.g., Douc et al. (2007a)
- optimization (Hashimoto et al., 2018)
- reinforcement learning (Jie and Abbeel, 2010)

Control variates

- lacktriangle numerical integration, e.g., $\mathbb{E}[\varphi(W_1,W_2)]$ and we know $\mathbb{E}[W_1],\mathbb{E}[W_2]$
- queuing network (Lavenberg and Welch, 1981)
- option pricing (Hull and White, 1988)
- ▶ Bayesian statistics e.g., (Oates et al., 2016)
- variance reduction for stochastic gradient descent (Wang et al., 2013)
- ▶ latent variable model (P. and Segers, 2018)

Logit model with random effect

Observations $(y_{j,k},x_{j,k}) \in \{0,1\} \times \mathbb{R}$

- ightharpoonup classes $k = 1, \dots, q$
- observations j = 1, ..., N in each class

Model

Random effects u_1, \ldots, u_q iid $\mathcal{N}(0,1)$ (latent) such that

$$y_{j,k} \mid u_1, \dots, u_q \sim \mathsf{Bernoulli}(p_{j,k})$$

 $\mathsf{logit}(p_{j,k}) = \beta x_{j,k} + \sigma u_k$

Likelihood proportional to:

$$\prod_{k=1}^q \int_{\mathbb{R}} \prod_{j=1}^N \left(\frac{\mathrm{e}^{y_{j,k}(\beta x_{j,k} + \sigma u)}}{1 + \mathrm{e}^{\beta x_{j,k} + \sigma u}} \right) \mathrm{e}^{-u^2/2} \, \mathrm{d} u$$

More generally: generalized linear models with random effects (McCulloch and Searle, 2001)

Maximum simulated likelihood

	EM	N	MC		OLSMC	
n	sd	sd	rMSE	sd	rMSE	
100	0.1227	0.1027	0.1027	2e-4	3e-4	
500	0.0546	0.0468	0.0467	2e-5	2e-4	
1000	0.0388	0.0334	0.0334	3e-6	2e-4	

Methods:

- Expectation—Maximization
 - ► E-step: Monte Carlo
- ► Monte Carlo
- ► OLS Monte Carlo
 - change of variables to [0, 1]
 - polynomial basis
 - $m = \lfloor 2\sqrt{n} \rfloor$

Artificial data set (Booth and Hobert, 1999)

- ightharpoonup q = 10 classes
- ► N = 15 observations per class
- $\beta = 5, \ \sigma = 1/2$
- fixed design $x_{i,k} = j/N$
- ▶ 200 replications

target: MLE (deterministic integration)

Multinomial logit model with random effects

Booth and Hobert (1999): Medical studies i = 1, ..., N

- $ightharpoonup n_{i1}$ (n_{i2}) nb of (non-)smokers
- \triangleright y_{i1} (y_{i2}) nb of patients with lung cancer among (non-)smokers

Model

Latent random $\mathcal{N}(0,1)$ effects u_i , v_{i1} , v_{i2} such that

$$y_{ij} \sim \mathsf{Binom}(\pi_{ij}, n_{ij})$$

 $\mathsf{logit}(\pi_{ij}) = \beta_0 + \beta_1 \mathbb{1}_{\{j=1\}} + \sigma_u u_i + \sigma_v v_{ij}$

Likelihood proportional to

$$\prod_{i=1}^{N} \int_{\mathbb{R}^{3}} b_{i,1}(u, v_{1}) b_{i,2}(u, v_{2}) \phi_{\sigma_{u}}(u) \phi_{\sigma_{v}}(v_{1}) \phi_{\sigma_{v}}(v_{2}) d(u, v_{1}, v_{2})$$

where
$$b_{i,j}(u,v) = \pi_j(u,v)^{y_{ij}} \left\{ 1 - \pi_j(u,v) \right\}^{n_{ij} - y_{ij}}$$

 $\pi_j(u,v) = \operatorname{logit}^{-1}(\beta_0 + \beta_1 1_{\{j=1\}} + \sigma_u u + \sigma_v v)$

Maximum simulated likelihood

N=20 studies $n_{i1}+n_{i2}=50$ persons per study 200 replications

- ▶ N integrals on $[0,1]^3$
- cubic B-splines or polynomials
- tensor products
- ▶ *k* functions per dimension
- $\implies m = (k+1)^3 1 \text{ control}$ functions

▶ points X_i and weights $w_{n,i}$ common for all N integrals

Work in progress: AIS with flexible nonparametric methods

References:

- Bertail, P. and Portier, F. (2019). Rademacher complexity for markov chains: Applications to kernel smoothing and metropolis-hasting. To appear in Bernoulli
- Delyon, B. and Portier, F. (2018). Asymptotic optimality of adaptive importance sampling. NIPS18, pp. 3138–3148.
- Portier, F. and Segers, J. (2018). Monte carlo integration with a growing number of control variates. arXiv preprint arXiv:1801.01797.

Bibliography I

- Belloni, A. and V. Chernozhukov (2009). On the computational complexity of mcmc-based estimators in large samples. The Annals of Statistics, 2011–2055.
- Bertail, P. and F. Portier (2018). Rademacher complexity for markov chains: Applications to kernel smoothing and metropolis-hasting. arXiv preprint arXiv:1806.02107.
- Booth, J. G. and J. P. Hobert (1999). Maximizing generalized linear mixed model likelihoods with an automated monte carlo em algorithm. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology) 61(1), 265–285.
- Cappé, O., A. Guillin, J.-M. Marin, and C. P. Robert (2004). Population monte carlo. Journal of Computational and Graphical Statistics 13(4), 907–929.
- Cornuet, J.-M., J.-M. Marin, A. Mira, and C. P. Robert (2012). Adaptive multiple importance sampling. Scandinavian Journal of Statistics 39(4), 798–812.
- Delyon, B. and F. P. (2018). Asymptotic optimality of adaptive importance sampling. In Advances in Neural Information Processing Systems, pp. 3138–3148.
- Douc, R., A. Guillin, J.-M. Marin, and C. P. Robert (2007a). Convergence of adaptive mixtures of importance sampling schemes. The Annals of Statistics, 420–448.
- Douc, R., A. Guillin, J.-M. Marin, and C. P. Robert (2007b). Minimum variance importance sampling via population monte carlo. ESAIM: Probability and Statistics 11, 427–447.
- Doucet, A., N. De Freitas, and N. Gordon (2001). An introduction to sequential monte carlo methods. In Sequential Monte Carlo methods in practice, pp. 3–14. Springer.
- Erraqabi, A., M. Valko, A. Carpentier, and O. Maillard (2016). Pliable rejection sampling. In *International Conference on Machine Learning*, pp. 2121–2129.
- Evans, M. and T. Swartz (2000). Approximating integrals via Monte Carlo and deterministic methods. Oxford Statistical Science Series. Oxford University Press, Oxford.

Bibliography II

- Giné, E. and A. Guillou (2001). On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann. Inst. H. Poincaré Probab. Statist. 37(4), 503–522.
- Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. New York: Springer.
- Glynn, P. W. and R. Szechtman (2002). Some new perspectives on the method of control variates. In *Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong)*, pp. 27–49. Springer, Berlin.
- Gobet, E. and K. Surana (2014). A new sequential algorithm for I2-approximation and application to monte-carlo integration.
- Haario, H., E. Saksman, and J. Tamminen (2001). An adaptive metropolis algorithm. Bernoulli 7(2), 223–242.
- Hashimoto, T. B., S. Yadlowsky, and J. C. Duchi (2018). Derivative free optimization via repeated classification. arXiv preprint arXiv:1804.03761.
- Hull, J. and A. White (1988). The use of the control variate technique in option pricing. *Journal of Financial and Quantitative analysis* 23(03), 237–251.
- Iba, Y. (2001). Population monte carlo algorithms. Transactions of the Japanese Society for Artificial Intelligence 16(2), 279–286.
- Jie, T. and P. Abbeel (2010). On a connection between importance sampling and the likelihood ratio policy gradient. In Advances in Neural Information Processing Systems, pp. 1000–1008.
- Kloek, T. and H. K. Van Dijk (1978). Bayesian estimates of equation system parameters: an application of integration by monte carlo. *Econometrica: Journal of the Econometric Society*, 1–19.
- Lavenberg, S. S. and P. D. Welch (1981). A perspective on the use of control variables to increase the efficiency of Monte Carlo simulations. *Management Sci.* 27(3), 322–335.
- McCulloch, C. E. and S. R. Searle (2001). Generalized, linear, mixed models.

Bibliography III

- McDiarmid, C. (1998). Concentration. In Probabilistic methods for algorithmic discrete mathematics, Volume 16 of Algorithms Combin., pp. 195–248. Springer, Berlin.
- Novak, E. (2016). Some results on the complexity of numerical integration. In Monte Carlo and Quasi-Monte Carlo Methods, pp. 161–183. Springer.
- Oates, C. J., M. Girolami, and N. Chopin (2016). Control functionals for monte carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
- Oh, M.-S. and J. O. Berger (1992). Adaptive importance sampling in Monte Carlo integration. J. Statist. Comput. Simulation 41(3-4), 143–168.
- Owen, A. B. (2013). Monte Carlo Theory, Methods and Examples. http://statweb.stanford.edu/~owen/mc/.
- P., F. and J. Segers (2018). Monte carlo integration with a growing number of control variates. arXiv preprint arXiv:1801.01797.
- Richard, J.-F. and W. Zhang (2007). Efficient high-dimensional importance sampling. J. Econometrics 141(2), 1385–1411.
- Robert, C. P. (2010). The metropolis-hastings algorithm. Wiley StatsRef: Statistics Reference Online.
- Robert, C. P. and G. Casella (2004). Monte Carlo statistical methods (Second ed.). Springer Texts in Statistics. Springer-Verlag, New York.
- Talagrand, M. (1996). New concentration inequalities in product spaces. *Inventiones mathematicae* 126(3), 505–563.
- Wang, C., X. Chen, A. J. Smola, and E. P. Xing (2013). Variance reduction for stochastic gradient optimization. In *Advances in Neural Information Processing Systems*, pp. 181–189.