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Regression background

Regression

I (X ,Y ) a random vector with X ∈ Rd and Y ∈ R
I If E[Y 2] <∞, there exists h∗ : Rd → R such that for all h : Rd → R

E[(Y − h∗(X))2] ≤ E[(Y − h(X))2]

I h∗ is the conditional expectation of Y given X :
the “best prediction” of Y we can get from X

I GOAL:
Estimating h∗

(which is unknown as it depends on the underlying probability measure)

Estimation from data
I (X ,Y ), (Xi ,Yi )i∈{1,...,n} iid random vectors
I The estimate of h∗ (that depends on the data) is

ĥ : Rd → R
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The big picture (Györfi et al., 2006)
Global modeling methods

I Polynomial regression

I Spline approximation

I RKHS methods
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Linear fit

NB: Often conducted with penalization

Local averaging methods

I Nadaraya-Watson (NW)

I nearest neighbor (k-NN)

I extreme value estimates (when
conditioning upon large values)

I partitioning methods s 1

s 2

s 3

s 4

x  1

x  2
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NW and k-NN

x ∈ Rd , ‖ · ‖ is a norm on Rd , B(x , τ) is the closed ball,

NW (1964)
I Let τ > 0

I ĥ(NW )(x) =
∑n

i=1
Yi1B(x,τ)(Xi )∑n

i=1
1B(x,τ)(Xi )

k-NN (1951)
I Let Nk (x) denote the k-NN of x

among {X1, . . . ,Xn}

I ĥ(NN)(x) = 1
k
∑

i∈Nk (x) Yi

Both part of Stone (1977)’s theorem framework:
∑n

i=1
Yi wn,i (x) where

∑n
i=1

wn,i (x) = 1
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Stylized facts about k-NN and NW

I intuitive yet powerful methods
⇒ both match the optimal convergence rate (Einmahl and Mason,

2000; Jiang, 2019)
I kNN is bandwidth adaptive

⇒ free from boundary problems; adapts to covariate space (Kpotufe,
2011)

I can be enhanced with metric learning (Weinberger et al., 2006);
parallelization (Qiao et al., 2019); bagged version (Biau et al., 2010)

I can be used in residual variance (Devroye et al., 2018) and sparse gradient
(Ausset et al., 2021) estimation

Different behavior at the boundary
6 / 28



Stylized facts about k-NN and NW

I intuitive yet powerful methods
⇒ both match the optimal convergence rate (Einmahl and Mason,

2000; Jiang, 2019)
I kNN is bandwidth adaptive
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Metric learning with kNN
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Stylized facts about k-NN and NW

I intuitive yet powerful methods
⇒ both match the optimal convergence rate (Einmahl and Mason,

2000; Jiang, 2019)
I kNN is bandwidth adaptive

⇒ free from boundary problems; adapts to covariate space (Kpotufe,
2011)

I can be enhanced with metric learning (Weinberger et al., 2006);
parallelization (Qiao et al., 2019); bagged version (Biau et al., 2010)

I can be used in residual variance (Devroye et al., 2018) and sparse gradient
(Ausset et al., 2021) estimation

Recursive kNN
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Bias-Variance decomposition

Definition
The k-NN radius is τ̂k,x = inf{τ ≥ 0 :

∑n
i=1 1B(x,τ)(Xi ) ≥ k}

We consider

ĥ(NN)(x) =
∑n

i=1 Yi1B(x,τ̂k,x )(Xi )∑n
i=1 1B(x,τ̂k,x )(Xi )

(always defined even when ties occurs)

Decomposition

ĥ(NN)(x)− h∗(x) =
n∑

i=1

(Yi − h∗(Xi ))wn,i (x)︸ ︷︷ ︸
the variance

+
n∑

i=1

(h∗(Xi )− h∗(x))wn,i (x)︸ ︷︷ ︸
the bias

If h∗ is L-Lipschitz,
|the bias| ≤ Lτ̂k,x
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Useful results 1 (for k-NN radius)

Lemma (Chernoff bound)
Let (Zi )i≥1 be a sequence of i.i.d. random variables valued in {0, 1}. Set
µ = nE[Z1] and S =

∑n
i=1 Zi . For any δ ∈ (0, 1) and all n ≥ 1, we have with

probability 1− δ:

S ≥

(
1−

√
2 log(1/δ)

µ

)
µ.
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Property 1 (k-NN radius)
Let x ∈ Rd be a continuity point of fX such that fX (x) > 0. If k →∞ and
k/n→ 0,

τ̂k,x = OP ((k/n)1/d )
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Useful results 2 (for the variance)

sub-Gaussian random variable
A centered random variable ε is sub-Gaussian whenever

E[exp(λε)] ≤ exp(λ2v/2)) ∀λ ∈ R

where v > 0 is called the sub-Gaussian factor

Lemma (subGaussian concentration inequality)

(i) If ε is subGaussian, P(ε > t) ≤ exp(−t2/(2v))
(ii) If (εi ) are iid subGaussians with factor v , then

∑
i wiεi is subGaussian with

factor v
∑

i w2
i .
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Property 2 (k-NN variance)
Suppose that (ε,X), (εi ,Xi )i=1,...,n is iid such that ε is subGaussian with
variance σ2 and ε ⊥ X . Then we have that with probability 1− δ:∣∣∣∣∑n

i=1 εi1B(x,τ̂k,x )(Xi )∑n
i=1 1B(x,τ̂k,x )(Xi )

∣∣∣∣ ≤
√

2σ2 log(2/δ)
k
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Suppose the following is fulfilled
I x ∈ Rd is a continuity point of fX such that fX (x) > 0.
I The function g is Lipschitz
I For each i , εi = Yi − h∗(Xi ) is subGaussian with variance σ2 and is

independent from Xi

Proposition (k-NN rate)
If k →∞ and k/n→ 0

|ĥ(NN)(x)− h∗(x)| = OP

(√
1
k + (k/n)1/d

)

The optimal bound n−1/(2+d) is reached whenever k = n2/(2+d) (similar to NW)

Proposition (asymptotic variance) (Mack, 1981)

I NW σ2(x)
∫

K 2dλ

(nτ d )f (x) I k-NN 2σ2(x)
∫

K 2dλ

k

Textbook: Biau and Devroye (2015)
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Empirical process theory
I Let (Zi )i≥1 be a sequence of iid random variables with distribution µ on Z
I Let G be a collection of functions g : Z → R
I Let `∞(G) be the space of bounded functions defined on G

Definition
The empirical process is an element of `∞(G) defined as

Gn(g) =
√

n(µn(g)− µ(g)), (g ∈ G)

where µn(g) = n−1∑n
i=1 g(Xi ) and µ(g) =

∫
gdµ.

Leading question: what is the behavior of the process {Gn(g)}g∈G?

I Answer1: When G is not too large E[supg∈G |Gn(g)|] = O(σG)
I Usefulness1: Provide theoretical guarantee on (nonparametric) estimate

such as Quantile, Copulas, Kaplan-Meier, NW
I Answer2: When G is not too large {Gn(g)}g∈G converges weakly in the

space `∞(G)
I Usefulness2: Provide distribution of meaningful statistical object (see next)

van der Vaart and Wellner (1996); Nolan and Pollard (1987); Massart (1990); Giné and
Guillou (2002)
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Illustrative example: independence testing
Framework
Testing if two random variables Z (1) and Z (2) are independent, that is

H0 : Z (1) ⊥ Z (2) ⇔ ‖F1,2 − F1F2‖∞ = 0

where F1,2 the joint cdf and FJ each marginal’s cdf.

Empirical process results
Consider

G =
{

(Z (1),Z (2)) 7→ 1Z (1)≤z(1)1Z (2)≤z(2) : z = (z (1), z (2)) ∈ R2}
The class G being sufficiently small, we have{√

n(F̂1,2(z (1), z (2))− F1,2(z (1), z (2)))
}

(z(1),z(2))∈R2

(where the F̂1,2 is the estimated cdf) converges weakly to a Gaussian process W

Consequence: Under H0,
√

n‖F̂1,2 − F̂1F̂2‖∞  ‖W‖∞

Classically, independence testing is based on copula (Fermanian et al., 2004;
Segers, 2012)
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Weak convergence via bracketing entropy (what is it to be small?)
I Let f and f be two functions in L2(µ) bracket

[f , f ] = {g ∈ L2(µ) : f ≤ g ≤ f }

I A bracket [f , f ] such that ‖f − f ‖L2(µ) ≤ ε is called an ε-bracket.

N[ ](G, L2(µ), ε) is the smallest N such that:

there exists an (L2(µ), ε)-bracketing of cardinal N

Bracketing condition
for any positive sequence (δn)n≥1 going to 0, it holds that∫ δn

0

√
log
(
N[ ]
(
G, L2(P), ε‖G‖L2(P)

))
dε→ 0 as n→∞,

where G is an envelope for G, i.e., |g(z)| ≤ G(z)
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Weak convergence via bracketing entropy

Theorem (van der Vaart and Wellner, 1996)
Under the bracketing condition, it holds that {Gn(g)}g∈G converges weakly in
`∞(G) to a Gaussian process with covariance function µ(g1g2)− µ(g1)µ(g2).

Research question:

I can we obtain similar results for local averaging method?
I useful whenever we are interested in specific parts of the feature space

I testing conditional independence
I Conditional copula (Veraverbeke et al., 2011)
I conditional quantile estimation (Härdle and Tsybakov, 1988)
I M-smoothers (Härdle et al., 1988)
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Definition of the k-NN process

k-NN
I Let x ∈ Rd , ‖ · ‖ is a norm on Rd ; B(x , τ) is the closed ball

I µx is the conditional measure of Y given X = x , i.e.,

µx (A) = P(Y ∈ A|X = x)

I The k-NN measure is

µ̂(NN)
x (A) =

∑n
i=1 1A(Yi )1B(x,τ̂k,x )(Xi )∑n

i=1 1B(x,τ̂k,x )(Xi )

I The k-NN process defined on G is

{
√

k(µ̂(NN)
x (g)− µx (g))}g∈G

21 / 28



Local bracketing

For any x ∈ Rd , u > 0, define the probability measure

µx,u(A) =
E(µX (A)1B(x,u1/d )(X))

E(1B(x,u1/d )(X))

Local bracketing entropy
There is δ > 0 such that for any positive sequence (δn)n≥1 going to 0, it holds
that

sup
|u|≤δ

∫ δn

0

√
log
(
N[ ]
(
G, L2(µx,u), ε‖G‖L2(µx,u)

))
dε→ 0 as n→∞ (1)

(same as before except that µ became µx,u)
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Main result

Suppose the following is fulfilled
I fX (x) > 0 and that fX is continuous at x
I µx (g) is Lipschitz at x (uniformly over g)
I The covariance x 7→ µx (g1g2)− µx (g1)µx (g2) is continuous at x

Theorem
Under the local bracketing condition, if k →∞ and k(d+2)/2/n→ 0 we have

{
√

k(µ̂(NN)
x (g)− µx (g))}g∈G

converges weakly to a Gaussian process with covariance function
µx (g1g2)− µx (g1)µx (g2).
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Uniform bounds via Vapnik-Chervonenkis approach

N (G, L2(Q), ε) is the smallest N such that:

there exists an (L2(Q), ε)-cover of cardinal N

Definition (VC-class)
A class G of functions in [−1, 1] is called a VC with parameters (v > 0,A > 1)
if for any 0 < ε < 1 and any probability measure Q, we have

N (G, L2(Q), ε) ≤ (A/ε)v .

Successes of VC classes
I Same rate as standard empirical process results (Massart, 1990)
I Helpful in statistical learning (Bousquet et al., 2003)
I Nadaraya-Watson estimate (Nolan and Pollard, 1987; Giné and Guillou, 2002)
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Uniform bound

Assumptions

I fX = 1[0,1]d

I K(d ∨ v) log(2An/δ) ≤ k where K > 0 universal

I ∀(x , x ′) ∈ Sx × Sx , g ∈ G, |µx (g)− µx′ (g)| ≤ L‖x − x ′‖

Result
With probability at least 1− δ:

sup
x∈Sx

|µ̂(NN)
x (g)− µx (g)| ≤ K

{√
(d ∨ v)

k log(2An/δ) + L
( k

nVd

)1/d
}

with Vd = λ(B(0, 1))

Auxiliary results: Plassier et al. (2020) for the variance term, Lhaut et al.
(2021) for the k-NN radius
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