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Introduction

Let S ⊂ Rd be a set and S be a σ-algebra over S. Let µ denote a non-negative measure on S. Given an
integrable function g : S → R, i.e., g is measurable and

∫
|g|dµ < ∞, the aim is to study some integration

algorithm that returns an approximated value of

Iµ(g) =

∫
g(x) dµ(x).

Of course when the value of Iµ(g) might be analytically computed, any integration algorithm is useless. The
point is that most of the time, we are not able to compute Iµ(g) analytically. A classical example is the
standard Gaussian density, given by, for every x ∈ R,

φ(x) =
1√
2π

exp

(
−x

2

2

)
.

Since we don’t know any primitive of φ, the computation of Φ(y) =
∫ y
−∞ φ(x) dx must be done with the help

of approximation methods. The previous example corresponds to the case when µ is the standard Gaussian
distribution and g(x) = I{x≤y}. Many examples arise from multidimensional integration problem especially

when the integration domain S is not a product of segments. For instance, if S = {x ∈ Rd : h(x) ≤ 1},
λ(S) =

∫
S

dx might be unknown. In some applications, we do not even have any analytic expression for the
integrand ϕ. In such case, ϕ is called a “black-box” function, i.e., one can only evaluate the function ϕ at
some points of the domain. For instance, if t(x) denotes the temperature at the location x of the ambient
space, then we usually don’t have an exact formula. It is then tempting to evaluate the temperature at some
points x1, . . . , xn, of the domain S, which gives t(x1), . . . , t(xn) and use those evaluation to approximate the
average temperature

∫
S
t(x) dx.

When a closed-formula is available for g it might be preferable to rely on some approximations of g based
for instance on analytic function theory. For instance, if we know the integral value of g and g, and if we
have g ≤ g ≤ g, where

∫
|g − g|dµ ≤ ε, then the value of the integral is known with precision ε/2 (consider

g̃ = (g + g)/2).
Consequently, when no analytic expression for the function function g is known or no approximation is

sufficiently accurate, we are bounded to the following Monte Carlo types of procedures:

1. Choose randomly some points, called nodes or particles, X1, . . . , Xn in S, n ∈ N∗.

2. Evaluate g(X1), . . . , g(Xn).

3. Compute an approximation of Iµ(g) based on ((X1, g(X1)), . . . , (Xn, g(Xn))).

In this course, we only focus on the case when g is evaluated exactly, i.e., without any noise. Hence we
focus on the first step and the last step. Moreover, we shall only be concerned by stochastic integration
methods, also called Monte Carlo methods, where the points X1, . . . , Xn are random variables. In contrast,
deterministic methods consider point grids that are fixed by the user and the main differences between both
approaches should be given in the first chapter.

Monte Carlo integration methods are widely used in many domains of sciences including Biology, Physics,
Economics and Finance. For instance, in Physics sensors are often used to measure some physical attribute
(e.g., the temperature) at different locations (hence g is unknown). In Finance, option prices are expectations
under the risk-neutral measure (Hull and White, 1988). Other important fields of application are Statistics
and Machine-Learning where many algorithms are calibrated using Monte Carlo methods. It includes for
instance stochastic gradient descent (Wang et al., 2013), anomaly detection, bootstrap resampling methods
and the branch of Bayesian statistics (Robert and Casella, 2004; Oates et al., 2017) where complex models
often provides expectations analytically intractable.
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Running any Monte Carlo algorithm is associated to some computational time. The computation time can
be expressed in terms of elementary operations needed to produce the approximated value of the integral. In
some cases, for each x ∈ S, the evaluation of g(x) can be given by a single elementary operation. In some other
cases, the evaluation of g is heavy. The same can be stated concerning the generation of random variables
according to µ. The previous rules depend of course on the context. For instance, generating random
variables from a particular distribution can involve some difficulty, e.g., rejection methods, Metropolis-
Hastings algorithm or computing g might take more than a single elementary operation, e.g., crash test
simulation.

We shall have a particular interest in the following aspects:

• The analysis of the integration error regarding the number of nodes. The estimation of the integration
error.

• The adaptation to the function to integrate.

• The computation time of the algorithms.
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Chapter 1

The Monte Carlo method

In this chapter, we introduce and study the classical Monte Carlo method. It is the occasion to recall some
basic probability concepts on asymptotic convergence. These concepts shall be useful in the other chapters.

1.1 Definition of Monte Carlo and basic properties

Let (S,S, µ) be a probability space. The Monte Carlo method is dedicated to approximate quantities of the
form Iµ(g) =

∫
g dµ where g is an integrable function with respect to µ. The Monte Carlo method follows

from the law of large numbers, i.e., whenever X1, . . . , Xn is an independent and identically distributed (i.i.d.)
sequence of random variables with common distribution µ, we have that, almost surely,

n−1
n∑
i=1

g(Xi)→
∫
g dµ, as n→∞.

The Monte Carlo algorithm is as follows.

Algorithm 1 (Monte Carlo).
Input: the sample number n ∈ N∗.

(i) Let n ∈ N∗. Generate X1, . . . , Xn independently with common distribu-
tion µ.

(ii) Compute

Î(mc)
n (g) = n−1

n∑
i=1

g(Xi).

The first properties associated to the Monte Carlo method are listed in the following proposition and
results from basic calculations and the strong law of large numbers.

Proposition 1.1.1. Suppose that
∫
|g|dµ <∞, then

• Î(mc)
n (g) is an unbiased estimator of Iµ(g),

• Î(mc)
n (g) is strongly consistent estimating Iµ(g).

Based-on the central limit theorem, we can obtain the rate of convergence of Î
(mc)
n as claimed in the

following proposition.

Proposition 1.1.2. Suppose that
∫
|g|2 dµ <∞, then
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• var(Î
(mc)
n (g)) = n−1σ2

µ(g) where σ2
µ(g) = var(g(X1)),

• the random sequence n1/2(Î
(mc)
n (g)− Iµ(g)) converges in distribution to N (0, σ2

µ(g)).

1.2 Estimation error

1.2.1 Asymptotic confidence intervals

We have just seen that the variance associated to Monte Carlo is n−1σ2. In order to have an idea (through
confidence interval) of the accuracy of Monte Carlo, it is tempting to estimate the variance. The most
classical estimator of σ2(g) is given by

σ̂2
n(g) = (n− 1)−1

n∑
i=1

(g(Xi)− În(g))2.

Using some algebra and Slutsky’s Lemma, one can extend Proposition 1.1.1 to the analysis of σ̂2
n(g).

Proposition 1.2.1. Suppose that
∫
|g|2 dµ <∞, then

• σ̂2
n(g) is an unbiased and strongly consistent estimator of σ2(g),

• the random sequence
(
n1/2/σ̂n(g)

)
(Î

(mc)
n (g)− Iµ(g)) converges in distribution to N (0, 1).

A consequence of the last point is that we are able to build asymptotically consistent confidence intervals.
Indeed defining, for every α ∈ (0, 1),

Ĉ(α) =

[
Î(mc)
n (g)−

(
σ̂n(g)

n1/2

)
Φ−(1− α/2), Î(mc)

n (g)−
(
σ̂n(g)

n1/2

)
Φ−(α/2)

]
,

some algebra gives that

P
(
Iµ(g) ∈ Ĉ(α)

)
→ 1− α, as n→∞.

1.2.2 Concentration inequalities

The limitation of the previous approach is that the confidence intervals are based on the asymptotic distri-
bution. If for a given n ∈ N∗, one prefers to obtain confidence intervals for which the probability that the
true value of the integral lies in the interval truly larger than 1− α, one should rely on inequalities valid at
finite sample size. The most basic of such inequalities, follows from Markov’s inequality, i.e., for any random
vector X, any number k ≥ 1 and ε > 0, P(|X| > ε) ≤ E[|X|k]/εk. The previous applied with k = 2 and

X = Î
(mc)
n (g)− Iµ(g), gives that for any ε > 0 and any n ≥ 1,

P(|Î(mc)
n (g)− Iµ(g)| > ε) ≤

σ2
µ(g)

nε2
.

It follows that

Ĉ2(α) =

[
Î(mc)
n (g)−

(
σµ(g)

n1/2

)
1√
α
, Î(mc)
n (g) +

(
σµ(g)

n1/2

)
1√
α

]
.

Then we have

P(Iµ(g) ∈ Ĉ2(α)) = 1− P
(
|Î(mc)
n (g)− Iµ(g)| >

(
σµ(g)

n1/2

)
1√
α

)
≥ 1− α.
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Following the previous approach the resulting interval is generally larger than the asymptotic confidence
interval (1/

√
α > Φ−(1 − α/2) for all α ∈ (0, 1)) and requires to know the variance or a bound for the

variance. Applications include the case where g(x) = 1{S}(x) for which σ2
µ(g) = Iµ(g)(1− Iµ(g)) ≤ 1/4. In

such a case, we obtain the interval[
Î(mc)
n (g)−

(
1

2
√
nα

)
, Î(mc)
n (g) +

(
1

2
√
nα

)]
.

A more accurate approach for bounded random variables relies on Hoeffding’s inequality, stated in the
following theorem.

Theorem 1.2.2. Let X1, . . . , Xn be independent real-valued random variables such that for all 1 ≤ i ≤ n,
a ≤ Xi ≤ b almost surely, then

P

(∣∣∣∣∣
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 2ε2

n(b− a)2

)
.

Proof. We admit that for any random variable Y ∈ R, such that c ≤ Y ≤ d almost surely and EY = 0, we
have for all s > 0,

E[esY ] ≤ es
2(d−c)2/8

Then using that for any ε > 0, x ∈ R, s > 0, it holds that 1{x>ε} ≤ e(sx−sε) we find

P

(
n∑
i=1

(Xi − E[Xi]) > ε

)
≤ E

[
e(s(

∑n
i=1(Xi−E[Xi]))−sε)

]
= e−sε

n∏
i=1

E
[
es((Xi−E[Xi]))

]
≤ ens

2(b−a)2/8e−sε,

where the last line is because d − c = b − a for Y = Xi − E[Xi]. The minimum in s is achieved when

s∗ = 4ε/(n(b−a)2), leading to the bound e
− 2ε2

n(b−a)2 . Conclude by considering the event
∑n
i=1(Xi−E[Xi]) <

−ε.

Following the previous, we have that

Ĉ2(α) =

[
Î(mc)
n (g)−

√
(b− a)2 log(2/α)

2n
, Î(mc)
n (g) +

√
(b− a)2 log(2/α)

2n

]
.

In the case where g(x) = 1{S}(x), we obtain[
Î(mc)
n (g)−

√
log(2/α)

2n
, Î(mc)
n (g) +

√
log(2/α)

2n

]
.

1.2.3 Illustration

We consider the estimation of λ(S) where S is the set of points in (x, y) ∈ R2 such that

h(x, y) =

(
x− 1

2

)2

+

(
y − 1

2

)2

≤ 1

4
.
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Figure 1.1: In red are the points of two i.i.d. samples of size 100 with comon distribution U [0, 1]2. In grey
is the unit sphere with center (.5, .5).

This could be generalized to any function h. We generate independent random variables X1, . . . , Xn with
common distribution U [0, 1]2. Then we compute the Monte Carlo estimator of

λ(S) =

∫
1{h(x,y)≤1/4}

dxdy

λ([0, 1]2)
,

given by

Î(mc)
n (S) = n−1

n∑
i=1

1{h(Xi)≤1/4}.

For the two samples of size 100 presented in Figure 1.1 and for the three methods discussed previously,
asymptotic, Markov and Hoeffding (for Markov we used the bound σ2 = 1/4), we give the confidence
intervals with level α = 0.05,

Asymptotic Ĉ(0.05) [0.68, 0.84] [0.74, 0.90]

Markov Ĉ1(0.05) [0.54, 0.98] [0.60, 1.04]

Hoeffding Ĉ2(0.05) [0.62, 0.90] [0.68, 0.96].

The true value λ(S) = π/4 ' 0.79.

1.3 The effect of the dimension

Monte Carlo procedures are often promoted over deterministic methods when the dimension exceeds 3. In
high dimension, deterministic methods become hard to compute and their accuracies deteriorate quickly
with the dimension. In the literature, this is often referred to as the curse of dimensionality. To illustrate
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our point, we consider the Riemann’s sums method, which estimate Iµ(g) =
∫

[0,1]d
g(x) dx by

I(rs)
n (g) = n−d

∑
x∈G

g(x),

where the summation is over x in the grid G = {(i1, . . . , id) : 1 ≤ ik ≤ n, ∀k = 1, . . . , d}. We have the
following proposition.

Proposition 1.3.1. Suppose that g : [0, 1]d → R is a Lipschitz function, i.e.,

|g(x)− g(y)| ≤ L‖x− y‖, ∀(x, y) ∈ [0, 1]d × [0, 1]d,

then

|I(rs)
n (g)− Iµ(g)| ≤ L

√
d

n
.

Proof. Define for any (i1, . . . , id) ∈ G, the rectangle R(i1,...,id) = [(i1 − 1)/n, i1/n) × . . . × [(id − 1)/n, id/n)
and write

Iµ(g) =
∑
x∈G

∫
Rx

g(x) dx.

Then use the Lipschitz property to conclude.

The natural competitor of the previous method is the following Monte-Carlo procedure with nd generated
random variables (assuming that generating according to U [0, 1]d is of the same order as evaluating g and
represents one single operations). Such an estimator satisfies

var(Î
(mc)

nd
(g)) =

1

nd
σ2
µ(g).

Consequently,

E[|Î(mc)

nd
(g)− Iµ(g)|] ≤ σµ(g)

nd/2
.

More generally, using a grid of nd nodes, deterministic methods such as Riemann sums or Gaussian quadra-
ture reach an accuracy of order n−s (Novak, 2016, Theorem 1), where s stands for the regularity of the
integrand. Monte Carlo methods are, in contrast, subjected to an optimal error bound of order n−sn−d/2

(Novak, 2016, Theorem 3). For instance, as demonstrated before, the naive Monte Carlo method, which
does not use any regularity of the integrand, has an expected error bound of order n−d/2.

Exercises

Exercise 1.3.1 (generation by cdf inversion). 1. Let F be a cumulative distribution function on R. We
define the generalized inverse of F , for any u ∈ (0, 1),

F−(u) = inf{x ∈ R : F (x) ≥ u} .

Show that for any x ∈ R, u ∈ (0, 1), F−(u) ≤ x iff u ≤ F (x). Deduce that if U ∼ U [0, 1], F−(U) has
the same distribution as F .

2. Propose a method to generate some random numbers with exponential distribution E(λ).
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3. Let X be a real random variable and F its cumulative distribution function. Show that for any a < b
such that F (b)− F (a) > 0,

F−1 (F (a) + U(F (b)− F (a))) , where U ∼ U([0, 1]),

is a random variable with distribution P(X ∈ ·|X ∈]a, b]).

4. Write an algorithm based on the inversion method to sample from the truncated Gaussian distribution
∝ exp(−0.5x2)1[a,∞)(x)

Exercise 1.3.2 (generation by rejection sampling). a) Let f and g be two densities on the real line such
that, for all x ∈ R, f(x) ≤ cg(x) for some c > 0. Let Y be distributed according to g and U be uniformly
distributed on [0, 1]. Show that the conditional distribution of Y given U ≤ f(Y )/cg(Y ) has density f .

b) For each sample generated, what is the probability to reject? Discuss the limit of such an approach.

c) Let Z ∼ E(1/2) (exponential distribution with parameter 1/2) and a > 0. Show that the density of√
a2 + Z is x exp(−0.5(x2 − a2))1[a,∞)(x).

d) Propose an (envelope) rejection algorithm to sample from the truncated Gaussian distribution ∝ exp(−0.5x2)1[a,∞)(x)
?

Exercise 1.3.3. Let f : [0, 1]→ [0, 1] a mesurable function such that
∫

[0,1]
fdλ <∞. Our goal is to compute

θ =
∫ 1

0
f(x) dx. Let U1, . . . , Un be a sequence of i.i.d. random variables distributed according to U [0, 1].

(a) Express θ̂
(1)
n , the Monte Carlo estimator based on (Ui), and compute its variance.

(b) Let g(x, y) = 1{y ≤ f(x)}. Express
∫ 1

0
g(x, y) dy with the help of f(x).

(c) We call U -statistique with kernel h any quantity of the type

1

n(n− 1)

∑
i6=j

h(Ui, Uj).

Using the sequence (Ui), define a U -statistic θ̂
(2)
n which is unbiased for

∫ 1

0
f(x) dx. Verify it is unbiased.

12



Chapter 2

Importance sampling

Importance sampling relies on a simple change of measure. Suppose that f : Rd → R is a density function
whose support is Sf ⊂ Rd. Let X be a random variable whose distribution admits a density q (with respect
to the Lebesgue measure) which support contains Sf . Then for any measurable function g, we have∫

g(x)f(x) dx = Eq
[
f

q
g

]
.

A Monte-Carlo estimator is then introduced to estimate the expectation that appears in the right-hand side.
In this section, a particular interest should be dedicated to the optimal choice of q.

2.1 Change of measure

Let µf and µq be two probability measures on (Rd,B(Rd)). Denote by f : Rd → R≥0 and q : Rd → R≥0

their respective density with respect to the Lebesgue measure. Hence, for any A ∈ B(Rd), we have

µf (A) =

∫
A

fdλ and µq(A) =

∫
A

qdλ.

The following concept of dominated measures will be useful.

Definition 2.1.1. The measure µ dominates ν, µ� ν, whenever for all A ∈ B(Rd), µ(A) = 0 implies that
ν(A) = 0.

As soon as µq dominates µf , a change of measure will be valid as explained in the following proposition.
For that, we introduce the importance function w : Rd → R≥0 ∪ {+∞} defined as

w(x) =
f(x)

q(x)
, x ∈ Rd.

Proposition 2.1.1. The following points are equivalent:

(i) Eq[w] = 1

(ii) µq � µf

(iii) for all measurable positive function g, Eq[wg] =
∫
gfdλ

Proof. We have E[w] =
∫
q>0

fdλ = 1−
∫
q=0

fdλ. Hence (i) is equivalent to∫
q=0

fdλ = µf (q = 0) = 0.

13



Since any A such that µq(A) = 0 is contained in the set q = 0 we have that (i) implies (ii). Suppose now that
(ii) holds and take A = {q = 0}. we have that µq(A) = 0 and hence 0 = µf (A) =

∫
q=0

fdλ. The previous

equation has been shown to be equivalent to (i). We finish the proof showing that (i) holds if and only if
(iii) holds. The if part is obvious. For the only if part, we have that

∫
q=0

f = 0. Then for any measurable

set A, we have
∫
A,q=0

fdλ = 0 which implies that E[wIA] =
∫
q>0

fIAdλ = µf (A). As a consequence for any

simple function f , (iii) holds. This can be extended to any positive function as follows. First, approximate
f by fn, a sequence of nondecreasing simple functions and then invoke the monotone convergence theorem.

2.2 Importance sampling

Suppose that g : Rd → R is such that
∫
|g|f < +∞. We are interested in estimating

If (g) =

∫
gf dλ.

From the previous proposition, if q is a density with respect to the Lebesgue measure such that q � f . Then
it holds that

If (g) = Eq [gw] .

Importance sampling follows from applying the Monte Carlo principle the the previous expectation. Let
X1, ..., Xn be an i.i.d. sequence with common density q,

Î(is)
n = n−1

n∑
i=1

w(Xi)g(Xi)

The distribution associated to q is usually called the sampling distribution, the sampler or the proposal. The
following result is simple consequence of strong law of large numbers.

Proposition 2.2.1. Suppose that
∫
|g|f dλ <∞ and that q � f , then

lim
n→∞

Î(is)
n = If (g).

Define the variance

r2
q(g, f) =

∫ (
g(x)f(x)

q(x)
− If (g)

)2

q(x) dx

and its empirical estimate

r̂2
n = n−1

n∑
i=1

(
w(Xi)g(Xi)− Î(is)

n

)2

.

The result that follows is a simple consequence of the central limit theorem and Slutsky’s lemma.

Proposition 2.2.2. Suppose that
∫
|g|f dλ < ∞ and that q � f , if moreover,

∫
g(x)2f(x)2/q(x) dx < ∞,

then

n1/2(Î(is)
n − If (g)) N (0, r2

q(g, f))

and

(n/r̂n)
1/2

(Î(is)
n − If (g)) N (0, 1).
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Figure 2.1: The two above samplers are likely to provide different results in estimating If (g).
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Example 2.2.1. Suppose that g = 1 and f is the standard Gaussian density and that the sampler q is the
density of the distribution N (θ, 1). Then If (g) = 1 and

r2
q(g, f) + 1 =

∫
f2

q

=
1√
2π

∫
e−x

2

e−
(x−θ)2

2

dx

=
1√
2π

∫
e−

−x2−2xθ−θ2+2θ2

2 dx

=
1√
2π

∫
e−

−(x+θ)2

2 +θ2 dx

= eθ
2

The previous example is rather important as it permits to understand the two extreme cases of importance
sampling:

1. if θ = 0, i.e. q = f . Then r2
q(1, f) = 0. More generally, when gf is not a density but a non-negative

function, then taking q ∝ gf shall imply a variance equal to 0. Such a choice is not possible as it
requires that q = gf∫

gf
, i.e., the knowledge of

∫
gf , the quantity we are looking for.

2. If θ � 1, then r2
q(1, f)� 1. The observations X1, ..., Xn often falls in non interesting part of Sf , where

f is small. This could lead to a very poor estimation of If (1).

2.3 Minimum variance

The question raised in this section is the one of variance optimality: does it exist an optimal sampler q that
would minimize the variance r2

q(g, f)? We start by writing

r2
q(g) =

∫
(gf)2/qdλ− If (g)2.

As the quantity in the right does not depend on q, what really matter when minimizing the variance is the
value of

∫
(gf)2/qdλ. Consequently, a key quantity thereafter is

Cϕ(q) =

∫
ϕ2/qdλ.

Lemma 2.3.1 (variance optimality). Let ϕ be a measurable function such that 0 <
∫
|ϕ| <∞. The minimum

of Cϕ over the set of densities q is achieved if and only if q = |ϕ|/
∫
|ϕ|dλ a.e. and

Cϕ(q∗) =

(∫
|ϕ|dλ

)2

.

Proof. Let q∗ = |ϕ|/
∫
|ϕ|dλ. If q does not dominate q∗ then

∫
q∗2/q = +∞. If it does, using the Cauchy-

Schwarz inequality, we obtain 1 = (
∫
q∗)2 = (

∫
(q∗/
√
q)
√
q)2 ≤

∫
q∗2/q. As a consequence(∫

|ϕ|dλ
)2

≤ Cϕ(q).

From this we deduce that q = q∗ is an argmin. If now q is such that
∫
q∗2/q = 1, then equality holds in the

Cauchy-Schwarz inequality meaning that q∗ = κq a.e. with κ > 0. But κ needs to be 1 because q and q∗ are
densities.
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Define the density

q∗ = |g|f/
∫
|g|fdλ.

Proposition 2.3.2 (variance optimality). Let g be a measurable function such that 0 <
∫
|g|f < ∞. The

minimum of rq(g, f) over the set of densities q is achieved if and only if q = q∗ a.e. and

rq∗(g, f) =

(∫
|g|fdλ

)2

−
(∫

gfdλ

)2

.

Hence we have the following conclusion depending on the sign of g:

• If g changes its sign on a non-zero measure set, then it is not possible to reduce the variance to 0.

• Else choosing q∗ ∝ |g|f gives a 0 variance.

2.4 Two-stage importance sampling

2.4.1 A parametric family of sampler

According to the previous section, a first way to proceed is to represent the function q∗ on a graph and
then to select the sampler according to this representation. Such an approach remains very limited as it
will certainly fail in high dimension where the patterns of q∗ are difficultly observable on a graph. Another
strategy is to obtain an approximation of the best sampler among a parametric family. Hence we shall use
some simulations to approximate the variance and then optimize it to get a parametric estimate of q∗. This
approach is presented in Section 2.4.2. Another way to proceed, presented in Section 2.4.3 is to rely on
the Kullback-Leibler (KL) divergence. We stress that the KL approach is more general than the variance
approach in the sense that it works for any target density (not necessarily q∗) and especially densities that
does not depend on g. This is of particular interest when several functions g need to be integrated. This suits
well the Bayesian context where one is interested in computing EP [X] where P stands for the distribution
a posteriori and whose density is usually known up to a scale factor. Finally, in the same spirit as the KL
approach, another approach follows from the method of moments. This is presented in Section 2.4.4.

In the following, we let

Q = {qθ : θ ∈ Θ},

where Θ ⊂ Rq and for each θ ∈ Θ, qθ is a density with respect to the Lebesgue measure. We assume further
on that for every θ ∈ Θ, qθ � f . Define the importance weights associated to θ as

wθ(x) =
f(x)

qθ(x)
, x ∈ Rd.

For g integrable with respect to f , the fact that qθ dominates f ensures the unbiasedness and the consistency
of n−1

∑n
i=1 g(Xi)wθ(Xi) for each θ ∈ Θ.

2.4.2 The variance criterion

Let

θ∗ ∈ argminθ∈Θ r
2
qθ

(g, f) = arg min
θ∈Θ

∫
g2f2

qθ
dλ.

A first problem is that, generally, we cannot evaluate the function θ 7→
∫

(g2f2/qθ) dλ as it is an integral
involving g and f . A variance estimator of the same type as r̂n is not suitable as it would require to draw
some points with respect to qθ for each θ. We define in the following a simulation based estimator of θ∗.
This shall give us a near-optimal qθ̂n from which we are going to apply an importance sampling procedure
as detailed in the introduction.
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Algorithm 2 (Importance sampling via variance minimization).
Input: the sample number n ∈ N∗, the parametric family Q, the initial density q0.

(i) Let 1 < n1 < n. Generate X1, . . . , Xn1
independently with common dis-

tribution q0. Compute θ̂1 as the minimizer over θ ∈ Θ of

n−1
1

n1∑
i=1

(gf)(Xi)
2

qθ(Xi)q0(Xi)
.

(ii) Let n2 = n− n1. Generate Z1, . . . , Zn2 according to qθ̂1 , and compute

n−1
2

n2∑
i=1

g(Zi)wθ̂1(Zi).

2.4.3 The Kullback-Leibler approach

In what follows, the target density is f . Define the likelihood function

L(θ) =

∫
log(qθ/f)f dλ.

If the model Q is identifiable, i.e., qθ = qθ∗ almost everywhere implies that θ = θ∗, and if f belongs to Q,
it is well known that L is uniquely maximized at θ∗ and that qθ∗ = f (van der Vaart, 1998). The proof is
based on the use of the inequality log(x) ≤ 2(

√
x − 1), ∀x > 0, to obtain the following inequality, which

involves the Hellinger distance,

L(θ) ≤ −
∫

(
√
qθ −

√
q)2 dλ.

Moreover if f = f̃ c, we find

L(θ) = c

{∫
(log(qθ/f̃)− log(c))|f̃ |dλ

}
= c

∫
log(qθ/f̃)f̃ dλ− log(c).

Consequently, to maximize L is equivalent to maximize
∫

log(qθ/f̃)f̃ dλ. This can be estimated empirically
in the same way as the variance in the previous section. We obtain the following procedure.

Algorithm 3 (Importance sampling via KL).
Input: the sample number n ∈ N∗, the parametric family Q, the initial density q0.

(i) Let 1 < n1 < n. Generate X1, . . . , Xn1 independently with common dis-

tribution q0. Compute θ̂1 as the maximizer over θ ∈ Θ of

n−1
1

n1∑
i=1

log

(
qθ(Xi)

f(Xi)

)
f(Xi)

q0(Xi)
.

(ii) Let n2 = n− n1. Generate Z1, . . . , Zn2
according to qθ̂1 , and compute

n−1
2

n2∑
i=1

g(Zi)wθ̂1(Zi).
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2.4.4 Generalized method of moments

The generalized method of moments (GMM) consists in minimizing a certain Euclidean distance, say ‖ · ‖,
between the empirical moments associated to f , the targeted density, and the theoretical ones computed
according to qθ. The moments are computed according to the so called moment function h : Rd → Rq.
Applied to our problem and using the same notation as before, it consists in minimizing

θ 7→ ‖
n1∑
i=1

wi,nh(Xi)−
∫
hqθ‖2

where

wi,n ∝
f(Xi)

q0(Xi)
s.t.

n1∑
i=1

wi,n = 1.

Note that
∑n1

i=1 wi,nh(Xi) is an estimate of
∫
hf . We have that

θ̂n1 ∈ argminθ∈Θ

n1∑
i=1

f(Xi)

q0(Xi)

∥∥∥∥h(Xi)−
∫
hqθ

∥∥∥∥2

.

This can be shown by starting from the latter equation and writing h(Xi)−
∫
hqθ = h(Xi)−wnh+wnh−

∫
hqθ.

2.4.5 A unified view

Each of the approaches (variance, KL and GMM) is interested in estimating

ψ(θ) =

∫
mθ dλ,

with mθ corresponding to, respectively,

(g2f2/qθ), log(qθ)f, ‖g − Eθ(h)‖2f.

In each case, a natural estimator of ψ is given by

ψ̂n1(θ) = n−1
1

n1∑
i=1

mθ(Xi)

q0(Xi)
,

where (Xi) are i.i.d. radnom variables generated according to q0. The proof’s heuristic that lies behind each
approach, variance, KL and GMM, is as follows. From the law of large number,

|ψ̂n1
(θ)− ψ(θ)| → 0 as n1 →∞.

Therefore, we can expect that the minimizer of ψ̂n1 will converge, as n1 → ∞ to the minimizer of ψ (see
Lemma 2.5.1 below for more details). As a result, the first step consists in searching for a good sampler, For
the sake of generality and because the technical details for the variance, the KL approach and the GMM are
similar, we study all these approaches in the mean time by considering a function θ 7→ ψ̂n1

(θ) based on n1

sample points, which converges pointwise to ψ a function that is minimized at θ∗.

Algorithm 4 (Unified view).

Input: the sample number n ∈ N∗, the parametric family Q, the initial density q0, the function ψ̂n1
.

(i) Let n1 < n. Generate X1, . . . , Xn1
independently with common distribu-

tion q0. Compute θ̂1 as the minimizer over θ ∈ Θ of ψ̂n1 .

(ii) Let n2 = n− n1. Generate Z1, . . . , Zn2
according to qθ̂1 , and compute

Î
(is)
n,1 = n−1

2

n2∑
i=1

g(Zi)wθ̂1(Zi).
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2.5 Asymptotic optimality of the two-stage importance sampling

The aim of the section is to show that under mild condition, the asymptotic variance of two-stage importance
sampling achieves the same variance as the target density.

The following result explains formally why the first step of Algorithm 4 is working.

Lemma 2.5.1. Suppose that Θ ⊂ Rd is a compact set and that the function ψ is continuous. Assume there
exists a unique minimizer θ∗ ∈ Θ of ψ and that supθ∈Θ |ψ̂n1(θ) − ψ(θ)| → 0 in probability (resp. a.s.) and

that θ̂n1
minimizes ψ̂. Then |θ̂n1

− θ∗| → 0 in probability (resp. a.s.).

Proof. We focus on the proof for the convergence in probability. Let ε > 0, since the set Θ ∩ {|θ − θ∗| ≥ ε}
is a compact and the function ψ is continuous we have that

min
θ∈Θ∩{|θ−θ∗|≥ε}

ψ(θ) = ψ(θ̃∗),

for some θ̃∗ ∈ Θ. As θ∗ is the unique minimizer ψ(θ̃∗)−ψ(θ∗) = α > 0. As a result, for any θ ∈ Θ such that
|θ − θ∗| ≥ ε, we have

ψ(θ)− ψ(θ∗) ≥ α .

It follows that

P(|θ̂n1 − θ∗| ≥ ε) ≤ P(ψ(θ̂n1)− ψ(θ∗) ≥ α) .

Using that θ̂n1
minimizes ψ̂, we have

0 < ψ(θ̂n1)− ψ(θ∗) = (ψ(θ̂n1
)− ψ̂(θ̂n1

)) + (ψ̂(θ̂n1
)− ψ̂(θ∗)) + (ψ̂(θ∗)− ψ(θ∗))

≤ (ψ(θ̂n1
)− ψ̂(θ̂n1

)) + (ψ̂(θ∗)− ψ(θ∗))

≤ 2 sup
θ∈Θ
|ψ̂(θ)− ψ(θ)| .

Hence we find that

P(|θ̂n1
− θ∗| ≥ ε) ≤ P(sup

θ∈Θ
|ψ̂(θ)− ψ(θ)| ≥ α/2) ,

which goes to 0 by assumption.

We continue with the following nice property that the function θ 7→ Cϕ(qθ) is continuous under mild
conditions on the parametric family Q.

Lemma 2.5.2 (The variance is a continuous map). Let ϕ be a measurable function such that 0 <
∫
|ϕ| <∞.

Suppose that for |ϕ|-almost every x ∈ Rd, θ 7→ qθ(x) is continuous on Θ, for any θ ∈ Θ, qθ � |ϕ| and there
exists η > 0 such that supθ∈Θ

∫
|ϕ|2+η/q1+η

θ < +∞ then Cϕ : θ 7→ Cϕ(qθ) =
∫
ϕ2/qθ is continuous on Θ.

Proof. Let (θn)n≥1 ⊂ Θ such that θn → θ ∈ Θ. We have

Cϕ(qθn) =

(∫
|ϕ|dλ

)
Eϕ[fn]

Cϕ(qθ) =

(∫
|ϕ|dλ

)
Eϕ[f ]

where fn = (|ϕ|/qθn), f = (|ϕ|/qθ) and Eϕ denote the expectation with respect to q∗ = |ϕ|/
∫
|ϕ|. The proof

uses the concept of uniform integrability applied to the sequence (fn(X))n≥1, with X ∼ q∗. By Markov
inequality, we have that

Eϕ[fn1{fn>x}] ≤ x
−ηEϕ[f1+η

n ].
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It follows that limx→∞ supn≥1 Eϕ[fn1{fn>x}] = 0, which means that the sequence (fn(X))n≥1 is uniformly
integrable. In addition, fn(X) → f(X) almost surely by asumption. Then Proposition A.0.1 gives that
Eϕ[fn]→ Eϕ[f ] implying that Cϕ(qθn)→ Cϕ(qθ).

Theorem 2.5.3. Suppose that for q∗-almost every x ∈ Rd, θ 7→ qθ(x) is continuous, that 0 <
∫
|g|f < +∞

and there exists η > 0 such that supθ∈Θ

∫
|gf |2+η/q1+η

θ < +∞. Suppose that θ̂1 → θ∗ almost surely. Then,
as (n1, n2)→∞,

√
n2(Î

(is)
n,1 − I) N (0, v∗),

with v∗ =
∫
g2f2/qθ∗ − If (g)2.

Proof. The proof follows from the application of Theorem A.0.3 with Yn,i = ([gf ](Zi)/qθ̂1(Zi) − I)/
√
n2

according to the probability measure conditional on (X1, . . . , Xn1
). The mean zero property is obtained

using the support condition that qθ � f � f |g| for any θ ∈ Θ which is a consequence of the assumptions.
The Lindeberg condition is obtained using the Markov inequality and that supθ∈Θ

∫
[gf ]2+η/q1+η

θ <∞. The

convergence of the variance is obtained by the almost sure convergence of θ̂1 and the continuity of the map
θ 7→

∫
[gf ]2/qθ, provided by Lemma 2.5.2.

Remark 2.5.1. As the previous result indicates, the error committed on θ∗ is not of first importance. We
shall see that it only appears as a second-order error associated to the estimator.

2.6 On the choice of the allocation

The computation of the expectation and the variance is helpful to provide answers to the following questions:

• How should we split the computational resources between first and second step of the Algorithm 4?

• Shall we use the points generated in the first step?

The last question is related to this estimate

Î
(is)
n,2 = n−1

(
n1∑
i=1

g(Xi)w0(Xi) +

n2∑
i=1

g(Zi)wθ̂1(Zi)

)
.

The comparison is made with respect to the oracle estimator Î
(is*)
n which requires the knowledge of qθ∗ . Let

(Z∗1 , . . . , Z
∗
n) be independently distributed with distribution qθ∗ and define

Î(is*)
n =

1

n

n∑
i=1

g(Z∗i )wθ∗(Z∗i ).

An analysis of the bias and the variance of Î
(is)
n,k , k = 1, 2, under reasonable conditions gives some answers.

We rely principally on the property that given X1, . . . , Xn1
, the distribution of Z1 is fixed and equal qθ̂1

and that given X1, . . . , Xn1
, the sequence Z1, . . . , Zn2

is an independent sequence of random variables. Both

estimators Î
(is)
n,1 and Î

(is)
n,2 have the same expectation.

Proposition 2.6.1. Suppose that 0 <
∫
|g|f dλ < ∞ and that qθ � f for all θ ∈ Θ. For each k ∈ {1, 2},

the estimator Î
(is)
n,k is an unbiased estimator of

∫
gf dλ.
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Proof. We have

E[Î
(is)
n,2 ] =

1

n

(
n1∑
i=1

E
[

[gf ](Xi)

q0(Xi)

]
+

n2∑
i=1

E

[
[gf ](Zi)

qθ̂1(Zi)

])

=
1

n

(
n1E

[
[gf ](X1)

q0(X1)

]
+

n2∑
i=1

E

[
E

[
[gf ](Zi)

qθ̂1(Zi)
| (X1, . . . , Xn1

)

]])

=
1

n

(
n1

∫
[gf ] dλ+ n2

∫
[gf ] dλ

)
=

∫
gf dλ .

From similar calculations we obtain that E[Î
(is)
n,1 ] =

∫
gf dλ.

As given by the following proposition the variance of Î
(is)
n,2 and Î

(is)
n,1 are different. Define

u(θ) =

∫
[gf ]2/qθ.

Proposition 2.6.2. Suppose that qθ � f for all θ ∈ Θ. Let v0 = var([gf ](X1)/q0(X1)) and suppose that

v0 < +∞ and supθ∈Θ

∫ [gf ](x)2

qθ(x) dx < +∞. We have

var(Î
(is)
n,1 ) =

(E[u(θ̂1)]− If (g)2)

n2
,

var(Î
(is)
n,2 ) =

n1v0 + n2(E[u(θ̂1)]− If (g)2)

n2
.

Proof. Write

Î
(is)
n,2 −

∫
[gf ] dλ =

1

n

(
n1∑
i=1

(
[gf ](Xi)

q0(Xi)
− If (g)

)
+

n2∑
i=1

(
[gf ](Zi)

qθ̂1(Zi)
− If (g)

))
.

As we have seen before, the bias is 0. The variance is therefore equal to the expectation of the square. As
it holds that

E

[
n1∑
i=1

(
[gf ](Xi)

q0(Xi)
− If (g)

) n2∑
i=1

(
[gf ](Zi)

qθ̂1(Zi)
− If (g)

)]

= E

[
n1∑
i=1

(
[gf ](Xi)

q0(Xi)
− If (g)

)
E

[
n2∑
i=1

(
[gf ](Zi)

qθ̂1(Zi)
− If (g)

)
| (X1, . . . , Xn1

)

]]
= 0,

and using conditional independence, we find that

n2var
(
Î

(is)
n,2 − If (g)

)
= E

[
n1∑
i=1

(
[gf ](Xi)

q0(Xi)
− If (g)

)2
]

+ E

 n2∑
i=1

(
[gf ](Zi)

qθ̂1(Zi)
− If (g)

)2


= n1E

[(
[gf ](X1)

q0(X1)
− If (g)

)2
]

+ n2E

( [gf ](Z1)

qθ̂1(Z1)
− If (g)

)2


= n1v0 + n2E

E
( [gf ](Z1)

qθ̂1(Z1)
− If (g)

)2

| (X1, . . . , Xn1
)


= n1v0 + n2(E[u(θ̂1)]− If (g)2) .
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For the second statement, we use the previous calculus to obtain

var(Î
(is)
n,1 ) = var

(
Î

(is)
n,1 − If (g)

)
=

1

n2
2

E

 n2∑
i=1

(
[gf ](Zi)

qθ̂1(Zi)
− If (g)

)2


=
1

n2
(E[u(θ̂1)]− If (g)2) .

If the function u satisfies some regularity conditions, it holds that

|u(θ̂n1
)− u(θ∗)| = Op(n

−1
1 ) .

Indeed, the previous results from M and Z-estimation theory in which conditions are given to ensure that

θ̂n − θ∗ = Op(n
−1/2
1 ). Examples includes maximum likelihood estimators, least squares estimators, GLM

(van der Vaart, 1998). Suppose that θ∗ is an interior point and that u is differentiable, and for some
neighbourhood v(θ∗), there exists κ > 0 such that for all θ ∈ v(θ∗),

|u(θ)− u(θ∗)− ∂θu(θ∗)(θ − θ∗)| ≤ κ|θ − θ∗|2 .

Since u is minimized at θ∗, ∂θu(θ∗) = 0 and as P(θ̂n1 ∈ v(θ∗)) goes to 1 from Lemma 2.5.1, we have

P(|u(θ̂n1
)− u(θ∗)| ≤ κ|θ̂n1

− θ∗|2)→ 1 .

In the following, we make the slightly stronger condition that E[u(θ̂n1
)− u(θ∗)] = σ2/n1 + o(n−1

1 ).

Proposition 2.6.3. Assume that E[u(θ̂1)− u(θ∗)] = σ2/n1 + o(n−1
1 ) and that v0 > v(θ∗) = u(θ∗)− If (g)2.

We have that, whenever v(θ∗) > 0,

lim
n→+∞

n1/2 inf
1≤n1≤n

{
E[(
√
n(Î

(is)
n,1 − If (g))2]− E[(

√
n(Î(is*)

n − If (g))2]
}

= 2σ
√
v(θ∗),

whenever v(θ∗) = 0,

lim
n→+∞

n inf
1≤n1≤n

{
E[(
√
n(Î

(is)
n,1 − If (g))2]

}
= 4σ2.

Moreover,

lim
n→+∞

n1/2 inf
1≤n1≤n

{
E[(
√
n(Î

(is)
n,2 − If (g))2]− E[(

√
n(Î(is*)

n − If (g))2]
}

= 2σ
√

(v0 − v(θ∗)).

Proof. The variance of
√
n(Î

(is*)
n − If (g)) is indeed v(θ∗). By way of comparison, the variance of

√
n(Î

(is)
n,2 −

If (g)) is given by {n1v0 + n2(E[u(θ̂1)]− If (g)2)}/n. The difference between both variances expresses as

n1(v0 − v(θ∗)) + n2(E[u(θ̂1)− u(θ∗)])

n
=
n1(v0 − v(θ∗)) + n2σ

2/n1

n
+ o(n−1

1 )

=
n1(v0 − v(θ∗)) + (n− n1)σ2/n1

n
+ o(n−1

1 ) .
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We suppose the remainder to have no effect. Fixing n, optimizing over n1 gives the value n1 =
√

σ2n
(v0−v(θ∗)) .

Plugging-in this value gives the first statement. For Î
(is)
n,1 , the difference between variances is

nE[u(θ̂1)− If (g)2]

n2
− v(θ∗) =

n1

n2
E[u(θ̂1)− If (g)2] + E[u(θ̂1)− u(θ∗)]

=
n1

n− n1
E[u(θ̂1)− If (g)2] +

σ2

n1
+ o(n−1

1 )

=
n1

n− n1
(v(θ∗) + σ2/n1) +

σ2

n1
+ o(n−1

1 )

We distinguish between the two cases v(θ∗) = 0 and v(θ∗) > 0. In the first case, the previous equals

σ2n

(n− n1)n1
.

It is minimized for n1 = n/2. In the other case, denote by q the function to minimize, we have

f ′(x) =
x2(nv(θ∗) + σ2)− σ2(n− x)2

x2(n− x)2
.

As n is large enough, nv(θ∗)− σ2 > 0 implying that a “zero” of q′ verifies

x
√

(nv(θ∗) + σ2)− σ(n− x) = 0,

equivalently,

x(
√

(nv(θ∗) + σ2) + σ) = σn .

Hence, the value of n1 which minimizes the leading term is√
σ2n

v(θ∗)
(
√

1− σ2/v(θ∗)n+
√
σ2/v(θ∗)n)−1 =

√
σ2n

v(θ∗)
+O(1) .

The minimum is then given by√
σ2v(θ∗)/

√
n+O(1/n) +

√
σ2v(θ∗)/

√
n+O(1/n) .

Remark 2.6.1. According to the previous proposition, both estimators Î
(is)
n,1 and Î

(is)
n,2 behave similarly when

v(θ∗) > 0. The rates of convergence are both in n−1/2. Their variance are very close, i.e., O(n−1/2), from
the variance of the oracle estimator. The difference relies in the constants

√
v0 − v(θ∗) and

√
v(θ∗).

Remark 2.6.2. When g is positive and the density gf/
∫
gf dλ belongs to the class {qθ : θ ∈ Θ}, we have

that v(θ∗) = 0. When v(θ∗) = 0,

lim
n→+∞

n3/2 inf
1≤n1≤n

E[(Î
(is)
n,2 − If (g))2] = 2σ

√
v0 .

For Î
(is)
n,1 , we have already showed that the rate of convergence of the MSE is in n−2. Consequently, when

v(θ∗) = 0 we shall prefer Î
(is)
n,1 before Î

(is)
n,2 . In both cases, the convergence rate is no longer in n−1/2 (as

Monte Carlo) but in n−3/4 and n−1, respectively.
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Remark 2.6.3. From the previous proposition, for Î
(is)
n,2 the value that we should take is n1 = b

√
cnc, for

some c = σ2

(v0−v(θ∗)) . Unfortunately, the number c is unknown. A first possibility is to estimate c but this

should involve additional calculation. A maybe more reasonable way is to choose arbitrary, e.g., c = 2. As
the appropriate rate of convergence is already provided by n1 = O(

√
n), the influence of c shall not be of

fundamental importance. For Î
(is)
n,1 when v(θ∗) > 0 one should take n1 = b

√
cnc, for some c = σ2

v(θ∗) . But

when v(θ∗) = 0, the value n1 to take is simply n/2.

Remark 2.6.4. Another way around this problem is to apply the Lindeberg central limit theorem in order
to provide a central limit theorem with the specified variance. This approach is more difficult.

2.7 Computational consideration

Running any of the previous algorithms is associated to some computation time. The computing time is
given by the number of elementary operations needed to produce the approximated value of the integral.
To compute this we rely on some calculation rules. We follow these rules to evaluate the computational
complexity:

• Generate X1 is 1 elementary operation.

• Generate Z1,k is 1 elementary operation for each k.

• Evaluate [gf ](X1) is 1 elementary operation.

The previous rules depend of course on the context. For instance, generating random variables from a
particular distribution can involve some difficulty (e.g. rejection methods, Metropolis-Hastings algorithm)
or computing gf might take more than a single elementary operation (e.g. crash test simulation). When
this arises, the amount of observations ([gf ](X1), . . . , [gf ](Xn)) is fixed and all the methods are computed
with the same amount of observation.

We additionally assume that the optimization step requires k evaluations of ψ̂′ to produce a precision
|θk− θ?| ≤ 1/

√
k. Such an assumption is somehow optimistic as it essentially covers cases when the function

is differentiable and convex. This should not be necessarily the case in practice.

Computation time for Î
(is)
n,2 . Based on the previous rules, we evaluate the number of elementary op-

erations required to compute the method when n1 = b(cn)1/2c, for some c > 0. Suppose that θ̂1 is
known. We generate b(cn)1/2c random variable Z1, Z2, . . . and n − b(cn)1/2c random variables X1, X2, . . .,
for some c > 0. This is O(n) operations. We also compute [gf ](X1)/q0(X1), . . . , [gf ](Xn1)/q0(Xn1) and
[gf ](Z1)/qθ̂1(Z1), . . . , [gf ](Zn2)/qθ̂1(Zn2). This is O(n) more operations. Moreover, we have to conduct an

optimization step to compute θ̂1. This is the computation of θ̂1 define as the minimizer of

ψ̂(θ) := n−1
1

n1∑
i=1

[gf ](Xi)
2

qθ(Xi)2
.

With k evaluations of ψ′ (each evaluations is O(n1) operations; to evaluate and to compute the sum), we

obtain θ̂opt1 such that |θ̂opt1 − θ̂1| = 1/
√
k. Consequently, with k = n1, we have a precision in 1/

√
n1 and

this requires approximately n1 × n1 operations. This choice of k is such that the stochastic error and the
optimisation error have the same order. From question 17, this translates in a precision of

|ψ(θ̂opt1 )− ψ(θ∗)| = Op(n
−1
1 ) .

In summary, we obtain a total number of operations in O(n+ n2
1) = O(n).
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Exercises

Exercise 2.7.1.

(a) Let Σ ∈ Rd×d be a given matrix. Derive the first step importance sampling estimate (corresponding to

θ̂1) in the case of the KL approach for the parametric model {N (µ,Σ) : µ ∈ Rd}.

(b) Derive the first step importance sampling estimate (corresponding to θ̂1) in the case of the KL ap-
proach for the parametric model {N (µ,Σ) : µ ∈ Rd, Σ ∈ Rd×d} (hint: (∂/∂A) log(|A|) = A−T and
(∂/∂A) tr(AB) = (∂/∂A) tr(BA) = BT ).

Exercise 2.7.2.
Let (fk)k=1,...,K be a sequence of densities supported on R, i.e., strictly positive functions such that∫

R fkdλ = 1. We suppose that we can generate according to each fk. Our goal is to compute
∫
R gdλ, for

g : R→ R.

(a) Let α = (α1, . . . , αK) ∈ [0, 1]K be such that
∑K
k=1 αk = 1. Based on a uniform random variable

generation : U ∼ U [0, 1], show how to generate B = (B1, . . . , BK) such that each Bk ∼ B(αk) and∑K
k=1Bk = 1.

(b) Using the previous question, write an algorithm to generate X according to fα =
∑K
k=1 αkfk. Justify

that X is distributed according to fα.

(c) Let (α
(`)
k ) be such that for each ` = 1, . . . L, α(`) = (α

(`)
1 , . . . , α

(`)
K ) ∈ [0, 1]K and

∑K
k=1 α

(`)
k = 1. Let

(n1, . . . , nL) ∈ NL and N =
∑L
`=1 n`. Let (X

(`)
i )i=1,...,n`

i.i.d.∼ fα(`) . Based on Ŝ` =
∑n`
i=1 g(X

(`)
i )/fα(`)(X

(`)
i ),

` = 1, . . . , L, give an unbiased estimator of
∫
R gdλ (hint : one may look for estimate of the type

N−1
∑L
`=1 γ`Ŝ` for some (γ`) known).

(d) Express the variance of the estimator you defined in the previous question. Give a condition that guar-
antee the variance to be smaller than C/N , for some constant C > 0.

(e) In order to select optimally the weights (α
(`)
k ), provide an algorithm with ` = 1, . . . , L steps that updates

at each step the weights α
(`)
k (hint : you can propose to optimize some criterion at each step justifying

your choice. The algorithm should be clearly described).
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Chapter 3

Control variates

Control variates is based on the following one-sentence principle: if you wish to evaluate the (unknown)
integral of a certain function you better use functions of which you know the integral. The control variates
method consists in incorporating this new piece of information, the known integral value of some “‘control
functions”, in the basic Monte Carlo framework. The aim is to reduce the variance of the traditional Monte
Carlo estimate. In this chapter we first consider antithetic variate methods which is a particular method
among the family of control variates methods.

3.1 The antithetic variate method

The method of antithetic variate attempts to reduce the variance of Monte Carlo by introducing negative
dependence between pairs of replications. If we generate a independent sample of uniform random variables
U1, · · · , Un we also use the so called antithetic sample (1−U1), · · · , (1−Un) (which has the same distribution)
so that large values of one ample is balanced by small values of the other. The asymptotic study of the
method and the construction of confidence intervals are the same as for Monte Carlo. Consequently, we
rather focus in the following on comparing the variance between the antithetic technique and Monte Carlo.

3.1.1 Variance analysis

Let Z be a random variable with distribution µ. Assume that there exists a measurable map L : S → S
such that L(Z) and Z have the same distribution. Let g : S → R be such that E(g2(Z)) < +∞. Given
{Zk, k ≥ 1} independent and identically distributed random variables with common distribution µ. The
approximation of Iµ(g) = E[g(Z)] by the antithetic variate method is provided by the estimate

Î(av)
n (g) =

1

2n

n∑
i=1

{g(Zi) + g(L(Zi))} .

An example of such a map L is L(U) = a+b−U when U is a uniform random variable on [a, b]. If Z ∼ N (µ, 1),
then 2µ − Z ∼ N (µ, 1). More generally, if Z ∼ Nd(µ,Σ) where Σ > 0, then µ − Σ1/2HΣ−1/2(Z − µ) ∼
Nd(µ,Σ), where HHT = I. The variance of Î

(va)
n can be computed for each values of n ∈ N∗, leading to

var(Î(av)
n (g)) =

1

n
var

(
g(Z) + g(L(Z))

2

)
=

1

2n
var(g(Z)) {1 + corr(g(Z), g(L(Z)))} ,

where corr(X,Y ) = cov(X,Y )/
√

var(X) var(Y ).
Considering that evaluating g ◦ L represents the same budget as evaluating g and that generating Z is

negligible. The computational effort to furnish to compute Î
(av)
n is approximately twice the effort to compute
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Monte Carlo with n samples, as g is evaluated 2n-times. Hence a natural competitor of the method is µ2n

given by

Î
(mc)
2n (g) =

1

2n

2n∑
i=1

g(Zi).

A condition on the variance characterizes whether the antithetic variate method over-perform Monte Carlo.

Proposition 3.1.1. If E|g(Z)|2 <∞, then

• var(Î
(mc)
2n (g)) ≥ var(Î

(av)
2n (g)) ⇔ cov(g(Z), g(L(Z))) ≤ 0,

• if moreover, g is an increasing real function and g◦L is decreasing (or conversely), then cov(g(Z), g(L(Z))) ≤
0.

Proof. The first assertion is obtained by direct computation. For the second assertion, we apply Lemma
3.1.2 with h = g and h̃ = g ◦ L.

Lemma 3.1.2. Let Z be a real random variable and suppose that g : R→ R is increasing with E[h(Z)2] <∞
and h̃ : R→ R is decreasing with E[h̃(Z)2] <∞, then cov(h(Z), h̃(Z)) ≤ 0.

Proof. Note that, by assumption, (h(x) − h(y))(h̃(x) − h̃(y)) ≤ 0 for all (x, y) ∈ R2 and that, whenever X
and Y are independent copies of Z,

E[(h(X)− h(Y ))(h̃(X)− h̃(Y ))] = 2E[h(Z)h̃(Z)]− 2E[h(Z)]E[h̃(Z)]

= 2 cov(h(Z), h̃(Z)).

3.1.2 Examples

The previous proposition yields a general method for the construction of antithetic variate to evaluate E[Z]
when FZ , the cumulative distribution function of Z, is known. Define the generalized inverse of FZ by

FZ(u) = inf{x ∈ R : F (x) ≥ u}.

We are going to use the following result that if U ∼ U [0, 1], then F−Z (U) ∼ Z, which proof can be done as
an exercise (see Exercise 1.3.1). This leads to the following algorithm.

Algorithm 5 (Antithetic variate).
Input: the sample number n ∈ N∗.

(i) Let n ∈ N∗. Generate U1, . . . , Un independently with common uniform
distribution on [0, 1].

(ii) Compute

În =
1

2n

n∑
i=1

{
F−1
Z (Ui) + F−1

Z (1− Ui)
}
.

Another example is for computing integrals of an increasing function g over the segment line [a, b]. The
antithetic variate estimate is given by

1

2n

n∑
i=1

{g(Ui) + g((a+ b)− Ui)} ,
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where U1, . . . , Un are independent random variables with common distribution U [a, b].
In the special case when generating the random variables Z is expensive with respect to evaluating g,

the two methods, antithetic variate and Monte Carlo, might be compared with the same sample number.
Define the symmetric and antisymmetric part of g, respectively given by

g0(z) =
g(z) + g(L(z))

2
, g1(z) =

g(z)− g(L(z))

2
.

We have that cov(g0(Z), g1(Z)) = 0 implying that

var(g(Z)) = var(g0(Z)) + var(g1(Z)).

Hence

var(Î(mc)
n (g)) = var(Î(av)

n (g)) + n−1 var(g1(Z)) .

Consequently, in such a case, the antithetic variate method always reduces the variance of the näıve Monte
Carlo.

3.2 The control variates method

Let ((X1, Z1), . . . , (Xn, Zn)) be an independent and identically distributed sequence of random variables
valued in S × R and suppose that g : S → R is such that E[|g(X1)|] < ∞ and that E[Z1] is known. The
distribution of X1 is denoted by µ. The aim of the control variate method is to estimate Iµ = E[g(X1)] (the
dependence in g is removed in this section for ease of reading) using the knowledge of E[Z1]. Since E[Z1] is
known, we can suppose without any loss of generality that E[Z1] = 0. The control variates class of estimator
is given by

Î(cv)
n = n−1

n∑
i=1

(g(Xi)− Zi).

Some basic properties are easily derived.

Proposition 3.2.1. Suppose that E[|g(X1)|] <∞, E[|Z1|] <∞,

• Î(cv)
n is unbiased and strongly consistent.

Suppose moreover that E[|g(X1)|2] <∞, E[|Z1|2] <∞,

• var(Î
(cv)
n ) = var(g(X1)−Z1)/n and Î

(cv)
n is asymptotically normal with variance s2 = var(g(X1)−Z1),

i.e.,
√
n(Î

(cv)
n − Iµ)

d→ N (0, s2).

• The estimation of the variance can be done consistently by

ŝ2 = (n− 1)−1
n∑
i=1

{(g(Xi)− Zi)− Î(cv)
n }2.

Remark 3.2.1. The control variates is an extension of Monte Carlo, as when Z1 = 0 we recover the Monte
Carlo estimate. It also includes antithetic variates methods, when taking Z1 = (g(X1)− (g ◦ L)(X1))/2.

Remark 3.2.2. So far we can not be sure that the introduction of the control variates (Zi) reduces the
variance over Monte Carlo as it is not guaranteed that var(g(X1)−Z1) ≤ var(g(X1)). Hence it makes sense
to parametrize the control variate estimate in order to play on the influence of the control variates on the
estimation. This leads to the following control variates estimate

n−1
n∑
i=1

(g(Xi)− βZi),
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Control variates Importance sampling
e.g., antithetic variate e.g., stratified sampling

Idea : approximate g by control variates Idea : change the underlying measure
Post processing schemes
as X1, ..., Xn are fixed new sampling X1, ..., Xn

Figure 3.1: Control variates and importance sampling

where β ∈ R. For this estimate, we have the same properties as the one stated in Proposition 3.2.1. According
to the variance, which is a quadratic function of β, the best possible choice of β is E[g(X1)Z1]/E[Z2

1 ]. The
questions that naturally follows are:

• How to estimate β ?

• Does the choice of β influences the estimation?

• Does the choice of β influences the computation time?

Remark 3.2.3. In many examples, one should deal with the observation of several control variates Z1, . . . ,Zn
where for each i = 1, . . . , n, Zi ∈ Rm. This leads to the following estimator

Î(cv)
n (β) = n−1

n∑
i=1

(g(Xi)− βTZi),

where β ∈ Rm. According to the variance, the best possible choice of β is the solution of E[Z1Z
T
1 ]β =

E[Z1g(X1)]. The same questions as before are still interesting. We shall see in the following that all that
matter is the accuracy of the approximation in L2 of g(X1) by elements of the form βTZ1.

Remark 3.2.4. Importance sampling and control variates actually form 2 distinct groups of methods based
on different ideas as detailed in Figure 3.1.

Examples. We conclude this section by providing some examples.

1. One can use an antithetic variates to construct Z, i.e., by taking 1
2 (g − g ◦ L). The problem is that

functions like L are not always available. The canonical example is when computing E[W ] for which
FW is known (see previous section). Then one can take g(Xi) equal to F−1

W (Ui) and Zi equal to
(F−1
W (Ui)− F−1

W (1− Ui))/2.

2. In Finance, calculation of the price of an Asian option (see exercise class, TD2).

3. Numerical integration. We wish to evaluate
∫

[0,1]d
g(x)dx. Let f1, ..., fm be a family of functions such

that, for all k ∈ {1, . . . ,m}, ∫
[0,1]d

fk dλ = 0,

e.g., polynomials, Fourier, Splines.

3.3 Asymptotics

In this section we are interested in the choice of β in the multivariate case, i.e., we have at our disposal
m ∈ N∗ control variates. We observe ((X1, g(X1),Z1), (Xn, g(Xn),Zn)). For each β ∈ Rm, the control
variates estimate

Î(cv)
n (β) = n−1

n∑
i=1

(g(Xi)− βTZi),
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is an unbiased estimator. Hence among this class of estimator, it is tempting to characterize the one with
the smallest variance. It is the one associated with β∗ defined as the minimizer of

E

(g(X1)−
m∑
k=1

βkZ1,k

)2
 .

This can be estimated without bias (for each β) by

1

(n− 1)

n∑
i=1

(
g(Xi)−

m∑
k=1

βkZk,i − Î(cv)
n (β)

)2

Hence, we define β̂n as a minimizer of the previous quantity. By the Hilbert projection theorem, we obtain
that β̂n verifies the equation

(ZTn,mZn,m)β̂n = ZTn,mgn,

where Zn,m = (Z1 − Z
n
, . . . ,Zn − Z

n
)T , gn = (g(X1), . . . , g(Xn))T , Z

n
= n−1

∑n
i=1Zi. Among the

solutions of the previous equation, we define β̂n as

β̂n = (ZTn,mZn,m)+ZTn,mgn,

where A+ denotes the generalized inverse. The resulting control variate estimator is given by

Î(cv)
n (β̂n) = n−1

n∑
i=1

(
g(Xi)− β̂TnZi

)
.

This estimator is biased. We are going to study the convergence properties of Î
(cv)
n (β̂n). The convergence in

probability and the asymptotic normality are obtained in the following proposition.

Proposition 3.3.1. Suppose that E[|g(X1)|] < ∞, E[|g(X1)Zk,1|] < ∞, ∀k = 1, . . . ,m, and that E[Z1Z
T
1 ]

is invertible, then

• the estimator Î
(cv)
n (β̂n) is strongly consistent,

if moreover E[|g(X1)|2] <∞, then

•
√
n(Î

(cv)
n (β̂n)− E[g(X1)])

d→ N (0, σ2
m), where σ2

m = argminβ∈Rm var(g(X1)− βTZ1)

Proof. First we show that β̂n → β∗, almost surely. We have, by the law of large number that, almost surely,

n−1
n∑
i=1

ZiZ
T
i → E[Z1Z

T
1 ],

n−1
n∑
i=1

Zig(Xi)→ E[Z1g(Xi)].

Hence there exists N = N(ω) such that ∀n ≥ N , the previous estimated matrix ZTn,mZn,m/n is invertible.

Using the co-factor formula for the inverse, we get that (ZTn,mZn,m/n)+ → E[Z1Z
T
1 ]−1 almost surely. Hence

it follows that with probability 1,(
n−1

n∑
i=1

ZiZ
T
i

)−1(
n−1

n∑
i=1

Zig(Xi)

)
→ β∗ = E[Z1Z

T
1 ]−1E[Z1g(Xi)].
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An appropriate expression of the estimator is

Î(cv)
n (β̂n) =

(
1 −β̂Tn

)
n−1

n∑
i=1

(
g(Xi)
Zi

)
From the law of large number again, we deduce that, almost surely,

Î(cv)
n (β̂n) −→

(
1 −β∗T

)(E[g(X1]
0

)
= E[g(X1].

For the asymptotic normality, we rely on a similar decomposition as before,

√
n(Î(cv)

n (β̂n)− E[g(X1]) =
(
1 −β̂Tn

) 1√
n

n∑
i=1

(
g(Xi)− E[g(X)]

Zi

)
.

It follows that

√
n(Î(cv)

n (β̂n)− Î(cv)
n (β∗)) = (β∗ − β̂n)Tn−1/2

n∑
i=1

Zi.

Conclude using Slutsky’s Lemma and the central limit theorem
√
n(Î

(cv)
n (β̂n) − E[g(X1]) has the same

asymptotic law as
√
n(Î

(cv)
n (β∗)− E[g(X1]) The asymptotic variance is var(g(X1)− β∗TZ1) = σ2

m.

Remark 3.3.1. The estimation of β̂n has no effect on the asymptotics. Other estimators can be defined by
estimating differently var(g(X1) − βTZ1). They share the same properties as the one stated in Proposition
3.3.1 as long as they estimate consistently E[g(X1)Z1] and E[Z1Z

T
1 ].

Remark 3.3.2. Suppose that you have a sequence of control variates Z1,1, Z1,2, . . . , Z1,m, Z1,m+1, . . .. Then
σm+1 ≤ σm for any m ≥ 0. Note that the Monte Carlo variance correspond to σ0.

An estimator of the variance of Î
(cv)
n (β̂n) is given by

σ̂2
n = n−1

n∑
i=1

(
g(Xi)− β̂TnZi − Î(cv)

n (β̂n)
)2

.

Proposition 3.3.2. Suppose that E[|g(X1)|2] <∞, E[|g(X1)Zk,1|] <∞, ∀k = 1, . . . ,m, and that E[Z1Z
T
1 ]

is invertible, then σ̂2
n → σ2

m.

Proof. Define

σ̃2
n = n−1

n∑
i=1

(
g(Xi)− β∗TZi − Î(cv)

n (β∗)
)2

.

Write

σ̂2
n − σ̃2

n = n−1
n∑
i=1

(
2g(Xi)− (β̂n + β∗)TZi − Î(cv)

n (β̂n + β∗)
)(

(β̂n − β∗)TZi − Î(cv)
n (β̂n − β∗)

)
.

Then show that it goes to 0 almost surely, using that (β̂n − β∗)→ 0 almost surely (as shown in the proof of
Proposition 3.3.1). Then we conclude by showing that σ̃2

n → σm almost surely.
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3.4 Computational complexity

We recall the rules to evaluate the computational complexity.

• Generate X1 is 1 elementary operation.

• Generate Z1,k is 1 elementary operation for each k.

• Evaluate g(X1) is 1 elementary operation.

Both complexities of Monte Carlo and Control variates are linear in n, but the constant for Control
variates depends in m. Hence m can not be chosen as large as we want. Allowing m2n point for Monte-
Carlo we obtain a variance equal to (nm2)−1 var(g(X1) whereas, with n points for the control variates we
have an asymptotic variance n−1σ2

m. Hence the cornerstone of the control variate method is the accuracy
of the L2-approximation of g(X1) by

∑m
k=1 αkZk,1 with respect to m. The condition for control variate to

overperform Monte Carlo (without considering the constant in the computational time) is

σm
σ0
≤ m−1.

Monte Carlo number of operations
X1, ..., Xn n

g(X1), ..., g(Xn) n∑
g(Xi) n

total n

Computation of β̂n number of operations
ZTn,mgn mn
ZTn,mZn,m m2n

Solving Ax = b m3

total m2n+m3

Control variates (given β̂n) number of operations
X1, ..., Xn n
Z1, ...,Zn mn

g(Xi)− β̂TZi, i = 1 . . . n mn∑
(g(Xi)− β̂TnZi) n

total mn

Figure 3.2: Computation time associated to control variates

Exercises

Exercise 3.4.1 (Stratified Monte Carlo). This exercise investigates a Monte Carlo method for the approxi-
mation of I = E [φ(Z)]. Let X be an auxiliary random variable taking values in S. Let {Sk, k ∈ {1, · · · ,K}}
be a finite partition of S such that pk = P(X ∈ Sk) > 0. Let {Z(k)

i , i ≥ 1} be i.i.d. random variables with

distribution P(Z ∈ •|X ∈ Sk). We assume that the r.v. {Z(k)
i , i ≥ 1, k ∈ {1, · · · ,K}} are independent.

1. a) Show that

E [φ(Z)] =

K∑
k=1

pkE [φ(Z)|X ∈ Sk] .

b) Let n > 0 and an allocation policy {qk, k ∈ {1, · · · ,K}} i.e. {qk, k ∈ {1, · · · ,K}} is a probability

distribution on {1, · · · , I}. Propose a Monte Carlo estimator based on nk r.v. Z
(k)
i , k ∈ {1, · · · ,K}

where

n1 = bnq1c nk = bn
k∑
j=1

qjc − bn
k−1∑
j=1

qjc.
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Hereafter, we assume that for all k ∈ {1, · · · ,K}, qk > 0 and n is large enough so that nk > 0.

2. What is the bias of this estimator ? Is it asymptotically consistant ?

3. a) Show that its variance is given by

1

n

K∑
k=1

p2
k

qk
var(φ(Z)|X ∈ Sk) +

K∑
k=1

p2
k

(
1

nk
− 1

nqk

)
var(φ(Z)|X ∈ Sk)

∼n→∞
1

n

I∑
k=1

p2
k

qk
var(φ(Z)|X ∈ Sk) .

b) Show that the stratified estimator applied with proportional allocation (qk = pk) reduces the variance
of the näıve Monte Carlo estimator.

c) What is the optimal allocation i.e. the allocation minimizing the variance ?

4. a) Show that the stratified sampler satisfies a Central Limit Theorem. Provide (asymptotic) confidence
intervals.

b) How to compute such confidence intervals when var(φ(Z)|X ∈ Sk) is unknown ?

Exercise 3.4.2.
We are in the same context as Exercise 2.7.2 and we suppose to have at our disposal a good sequence of

weights (α
(`)
k ) which is now considered to be fixed (non random). Our goal now is to reduce the variance of the

procedure using the fk as control variables. For each ` = 1, . . . , L, let (X
(`)
i )i=1,...,n`

i.i.d.∼ fα(`) , i = 1, . . . , n`,
and define

Î` =

(
n−1
`

n∑̀
i=1

{
g(X

(`)
i )− fβ(`)(X

(`)
i )

fα(`)(X
(`)
i )

})
+ c(β(`)),

where β(`) = (β
(`)
1 , . . . , β

(`)
K ) ∈ RK .

(a) Give the value of c(β(`)) such that Î` is an unbiased estimate of
∫
R gdλ.

(b) Let w`i = 1/fα(`)(X
(`)
i )2. Show that

var(Î`) = n−1
`

E

w(`)
i

(
g(X

(`)
i )−

K∑
k=1

β
(`)
k Z

(`)
k,i

)2
− (∫ gdλ

)2
 ,

where Z
(`)
k,i is to be specified (hint : one might use the identity var(T ) = E[(T − ET )2] = E[T 2]− E[T ]2).

(c) Justify that β̂(`) minimizing

(β
(`)
1 , . . . , β

(`)
K ) 7→

n∑̀
i=1

w
(`)
i (g(X

(`)
i )−

K∑
k=1

β
(`)
k Z

(`)
k,i )

2

is a reasonable choice.

(d) Derive an expression for β̂(`) using suitable matrix notations.

(e) Using the β̂(`), derive an estimator of
∫
gdλ.

34



Chapter 4

Dependent sampling

4.1 Adaptive importance sampling

4.1.1 Presentation

Adaptive importance sampling (AIS) uses past samples to update the sampling policy qt. Each stage t is
formed with two steps : (i) to explore the space with nt points according to qt and (ii) to exploit the current
amount of information to update the sampling policy. The very fundamental question raised in this section
concerns the behavior of empirical sums based on AIS. Without making any assumption on the allocation
policy nt, the theory developed involves no restriction on the split of computational resources between the
explore (i) and the exploit (ii) step. It is shown that AIS is asymptotically optimal : the asymptotic behavior
of AIS is the same as some “oracle” strategy that knows the targeted sampling policy from the beginning.
From a practical perspective, weighted AIS is introduced, a new method that allows to forget poor samples
from early stages.

The adaptive choice of a sampling policy lies at the heart of many fields of Machine Learning where former
Monte Carlo experiments guide the forthcoming ones. This includes for instance reinforcment learning Jie
and Abbeel (2010); Peters et al. (2010); Schulman et al. (2015) where the optimal policy maximizes the
reward; inference in Bayesian Del Moral et al. (2006) or graphical models Lou et al. (2017); optimization
based on stochastic gradient descent Zhao and Zhang (2015) or without using the gradient Hashimoto et al.
(2018); rejection sampling Erraqabi et al. (2016). Adaptive importance sampling (AIS) Oh and Berger
(1992); Portier and Delyon (2018), which extends the basic Monte Carlo integration approach, offers a
natural probabilistic framework to describe the evolution of sampling policies.

Suppose we are interested in computing some integral value
∫
gf , where g : Rd → R is called the

integrand. The importance sampling estimate of
∫
gf based on the sampling policy q, is given by

n−1
n∑
i=1

[gf ](xi)

q(xi)
, (4.1)

where (x1, . . . xn)
i.i.d.∼ q. The previous estimate is unbiased. It is well known (Evans and Swartz, 2000)

(see also Chapter 2), that the optimal sampling policy, regarding the variance, is when q is proportional to
|g|f . A slightly different context where importance sampling still applies is Bayesian estimation. Here the
targeted quantity is

∫
gf and we only have access to an unnormalized version fu of the density f = fu/

∫
fu.

Estimators usually employed are

n∑
i=1

g(xi)fu(xi)

q(xi)

/
n∑
i=1

fu(xi)

q(xi)
. (4.2)

In this case, the optimal sampling policy q is proportional to |g −
∫
gf |f (Douc et al., 2007).
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Because appropriate policies naturally depend on g or f , we generally cannot simulate from them. They
are then approximated adaptively, by densities from which we can simulate, using the information gathered
from the past stages. This is the very spirit of AIS. At each stage t, the value It, standing for the current
estimate, is updated using i.i.d. new samples xt,1, . . . xt,nt from qt, where qt is a probability density function
that might depend on the past stages 1, . . . t−1. The distribution qt, called the sampling policy, targets some
optimal, at least suitable, sampling policy. The sequence (nt) ⊂ N∗, called the allocation policy, contains
the number of particles generated at each stage.

The following algorithm describes the AIS schemes for the classical integration problem. For the Bayesian
problem, it suffices to change the estimate according to (4.2). This is a generic representation of AIS as no
explicit update rule is specified (this will be discussed just below).

Algorithm 6 (AIS).
Inputs: The number of stages T ∈ N∗, the allocation policy (nt)t=1,...T ⊂ N∗, the
sampler update procedure, the initial density q0.

Set S0 = 0, N0 = 0. For t in 1, . . . T :

(i) (Explore) Generate (xt,1, . . . xt,nt) from qt−1

(ii) (Exploit)

(a) Update the estimate: St = St−1 +

nt∑
i=1

[gf ](xt,i)

qt−1(xt,i)

Nt = Nt−1 + nt

It = N−1
t St

(b) Update the sampler qt

The theoretical properties of adaptive schemes are difficult to derive due to the recycling of the past
samples at each stage and hence to the lack of independence between samples. Recently, a more realistic
asymptotic regime was considered in Marin et al. (2012) in which the allocation policy (nt) is a fixed growing
sequence of integers. The authors establish the consistency of the estimate when the update is conducted
with respect to a parametric family but depends only on the last stage. They focus on multiple adaptive
importance sampling Cornuet et al. (2012) which is different than AIS (see Remark 4.1.2 below for more
details).

4.1.2 Central limit theorems for AIS

The aim of the section is to provide conditions on the sampling policy (qt) under which a central limit
theorem holds for AIS and normalized AIS.

For the sake of generality and because it will be useful in the treatment of normalized estimators, we
consider the multivariate case where g = (g1, . . . gp) : Rd → Rp. In the whole paper,

∫
gf is with respect to

the Lebesgue measure, ‖ · ‖ is the Euclidean norm, Ip is the identity matrix of size (p, p).

To study the AIS algorithm, it is appropriate to work at the sample time scale as described below rather
than at the sampling policy scale as described in the introduction. The sample xt,i (resp. the policy qt) of
the previous section (t is the block index and i the sample index within the block) is now simply denoted xj
(resp. qj), where j = n1 + . . . nt + i is the sample index in the whole sequence 1, . . . n, with n = NT . The
following algorithm is the same as Algorithm 6 (no explicit update rule is provided) but is expressed at the
sample scale.

Algorithm 7 (AIS at sample scale).
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Inputs: The number of stages T ∈ N∗, the allocation policy (nt)t=1,...T ⊂ N∗, the
sampler update procedure, the initial density q0.

Set S0 = 0. For j in 1, . . . n :

(i) (Explore) Generate xj from qj−1

(ii) (Exploit)

(a) Update the estimate: Sj = Sj−1 +
[gf ](xj)

qj−1(xj)

Ij = j−1Sj

(b) Update the sampler qj whenever j ∈ {Nt =
∑t
s=1 ns : t ≥ 1}

The martingale property

Define ∆j as the j-th centered contribution to the sum Sj : ∆j = ϕ(xj)/qj−1(xj)−
∫
ϕ. Define, for all n ≥ 1,

Mn =

n∑
j=1

∆j .

The filtration we consider is given by Fn = σ(x1, . . . xn). The quadratic variation of M is given by 〈M〉n =∑n
j=1 E

[
∆j∆

T
j | Fj−1

]
. Set

V (q, ϕ) =

∫ (
ϕ(x)− q(x)

∫
ϕ
) (
ϕ(x)− q(x)

∫
ϕ
)T

q(x)
dx. (4.3)

Lemma 4.1.1. Assume that for all 1 ≤ j ≤ n, the support of qj contains the support of ϕ, then the sequence
(Mn,Fn) is a martingale. In particular, In is an unbiased estimate of

∫
ϕ. In addition, the quadratic

variation of M satisfies 〈M〉n =
∑n
j=1 V (qj−1, ϕ).

A central limit theorem for AIS

The following theorem describes the asymptotic behavior of AIS. The conditions will be verified for para-
metric updates (Portier and Delyon, 2018) in which case the asymptotic variance V∗ is explicitly given.

Theorem 4.1.2 (central limit theorem for AIS). Assume that the sequence qn satisfies

V (qn, gf)→ V∗, a.s. (4.4)

for some V∗ ≥ 0 and that there exists η > 0 such that

sup
j∈N

∫
‖gf‖2+η

q1+η
j

<∞, a.s. (4.5)

Then we have
√
n
(
In − If (g)

)
d→ N (0, V∗).

Remark 4.1.1 (zero-variance estimate). Suppose that p = 1 (recalling that g : Rd → Rp). Theorem 4.1.2
includes the degenerate case V∗ = 0. This happens when the integrand has constant sign and the sampling
policy is well chosen, i.e. qn → |g|f/

∫
|g|f . In this case, we have that

√
n(In − If (g)) = op(1), meaning

that the standard Monte Carlo convergence rate (1/
√
n) has been improved. This is inline with the results

presented in Zhang (1996) where fast rates of convergence (compared to standard Monte Carlo) are obtained
under restrictive conditions on the allocation policy (nt). Note that other techniques such as control variates,
kernel smoothing or Gaussian quadrature can achieve fast convergence rates Oates et al. (2017); Portier and
Segers (2018); Delyon et al. (2016); Bardenet and Hardy (2016).
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Remark 4.1.2 (adaptive multiple importance sampling). Another way to compute the importance weights,
called multiple adaptive importance sampling, has been introduced in Veach and Guibas (1995) and has been
successfully used in Owen and Zhou (2000); Cornuet et al. (2012). This consists in replacing qj−1 in the

computation of Sj by q̄j−1 =
∑j
i=1 qi−1/j, xj still being drawn under qj−1. The intuition is that this

averaging will reduce the effect of exceptional points xj for which f(xj)� qj−1(xj) (but |f(xj)| 6� q̄j−1(xj)).
Our approach is not able to study this variant, simply because the martingale property described previously
is not anymore satisfied.

Normalized AIS

The normalization technique described in (4.2) is designed to compute
∫
gf , where f is a density. It is

useful in the Bayesian context where f is only known up to a constant. As this technique seems to provide
substantial improvements compared to unnormalized estimates (as described in the previous section), we
recommend to use it even when the normalized constant of f is known. Normalized estimators are given by

I(norm)
n =

In(gf)

In(f)
, with In(ψ) = n−1

n∑
j=1

ψ(xj)/qj−1(xj).

Interestingly, normalized estimators are weighted least-squares estimates as they minimize the function

a 7→
∑n
j=1(f(xj)/qj−1(xj))(g(xj) − a)2. In contrast with In, I

(norm)
n has the following shift-invariance

property : whenever g is shifted by µ, I
(norm)
n simply becomes I

(norm)
n + µ. Because In(gf) and In(f) are

of the same kind as In defined in the second AIS algorithm, a straightforward application of Theorem 4.1.2
(with (gT f, f)T in place of gf).

Theorem 4.1.3 (central limit theorem for normalized AIS). Suppose that (4.4) and (4.5) hold with (gT f, f)T

(in place of gf). Then we have

√
n
(
I(norm)
n − If (g)

)
d→ N (0, UV∗U

T ),

with U = (Ip,−If (g)).

4.2 Metropolis-Hasting Algorithm

Bayesian estimation requires to compute moments of the so called posterior distribution whose probability
density function f is given by

f(θ) =
L(θ)∫
L(θ)dθ

θ ∈ Rd,

where L is a positive function which stands for the likelihood of the observed data. The (unknown) quantities
of interest writes as

∫
gf , for some given measurable functions g : Rd → R. A particular feature in this

framework is that the integral at the denominator of f is unknown and difficult to compute making impossible
to generate observations directly from f . Markov chains Monte Carlo (MCMC) methods aim to produce
samples X1, . . . , Xn in Rd that are approximately distributed according to f . Then

∫
gdf is classically

approximated by the empirical average over the chain :

n−1
n∑
i=1

g(Xi).

For inference, Bayesian credible intervals are usually computed using the quantiles the coordinate chains
(see below). We refer to Robert and Casella (2004) for a complete description of MCMC methods. In what
follows, we focus on the special MCMC method called Metropolis-Hasting (MH) algorithm which is one of
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the state of the art method in computational statistics and is frequently used to compute Bayesian estimators
(Robert and Casella, 2004).

Let us introduce the MH algorithm with target density f : Rd → R≥0 and proposal Q(x, dy) = q(x, y)dy,
where q is a positive function defined on Rd×Rd satisfying

∫
q(x, y)dy = 1. Define for any (x, y) ∈ Rd×Rd,

ρ(x, y) =

{
min

(
1, f(y)q(y,x)

f(x)q(x,y)

)
if f(x)q(x, y) > 0,

1 if f(x)q(x, y) = 0.

The MH chain starts at X0 ∼ ν and moves from Xn to Xn+1 according to the following rule:

(i) Generate

Y ∼ Q(Xn, dy) and W ∼ B(ρ(Xn, Y )).

(ii) Set

Xn+1 =

{
Y if W = 1,
Xn if W = 0.

In the particular case that q(x, y) = q0(x−y), the previous algorithm is refereed to as the random walk MH.
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Appendix A

Convergence results

In the context of importance sampling theory, the concept of uniform integrability is useful to obtain the
continuity of some integral with respect to some parameter. Actually, it permits to alleviate some assump-
tions that would be needed if the Lebesgue dominated convergence theorem would be used. Let (ω,F ,P) be
a probability space. A sequence of random variable (Xn)n≥1 is said to be uniformly integrable whenever

lim sup
x→∞

sup
n≥1

E[|Xn|1{|Xn|>x}] = 0.

The following property caracterizes the L1 convergence with the help of uniform integrability.

Proposition A.0.1. A sequence (Xn)n≥1 is uniformly integrable and Xn → X in probability if an only if
E[|Xn −X|]→ 0.

We present here a simple way to obtain the law of large numbers.

Theorem A.0.2. Let Un, n ≥ 1 be a sequence of random variables and Sn = U1 + U2 + ...Un such that:

Un ≥ 0 w.p.1

n−1E[Sn] −→ l

var(Sn) ≤ cn

for some real numbers c ≥ 0 and l ≥ 0, then

Sn
n
−→ l w.p.1.

Proof. The trick in this proof is to first derive the result for Sn2/n2. Then a sandwich formula will permit
to conclude for Sn/n. We have

E

[∑
n

(
Sn2 − E[Sn2 ]

n2

)2
]
≤
∑
n

c

n2
<∞.

Thus ∑
n

(
Sn2 − E[Sn2 ]

n2

)2

is finite w.p.1,

implying that (Sn2 −E[Sn2 ])/n2 converges to zero, almost surely. Hence Sn2/n2 converges to l. Notice that
if n2 ≤ k ≤ (n+ 1)2:

Sn2

n2

n2

(n+ 1)2
≤ Sk

k
≤

S(n+1)2

(n+ 1)2

(n+ 1)2

n2

and since both side terms tend to l, the result is proved.
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The following theorem will be usefull to deal with 2-steps importance sampling estimate. This theorem
is given in van der Vaart (1998).

Theorem A.0.3 (Lindeberg-Feller central limit theorem). For each n ≥ 1, let Yn,1, . . . , Yn,n be independent
random vectors with finite variance var(Yi,n) <∞ such that

n∑
i=1

E[‖Yn,i‖21{‖Yn,i‖>ε}]→ 0, ∀ε > 0,

n∑
i=1

var(Yn,1)→ Σ,

then,
∑n
i=1(Yn,i − E[Yn,i]) N (0,Σ).

The following result is a central limit theorem for martingale arrays. A reference textbook is (Hall
and Heyde, 2014, Corollary 3.1). It will be useful to prove central limit theorems for adaptive importance
sampling schemes.

Theorem A.0.4 (central limit theorem for martingales). Let (Wn,i)1≤i≤n, n≥1 be a triangular array of
random variables such that

E[Wn,i | Fi−1] = 0, for all 1 ≤ i ≤ n,
n∑
i=1

E[W 2
n,i | Fi−1]→ v∗ ≥ 0, in probability,

n∑
i=1

E[W 2
n,iI{|Wn,i|>ε} | Fi−1]→ 0, in probability,

then,
∑n
i=1Wn,i  N (0, v∗).

The following result is a concentration inequality for martingale arrays. It is a modification of (Freedman
et al., 1975, Theorem 4.1), allowing the martingale increments to be unbounded. This result takes into
account the rate of decrease of the quadratic variation (v appears in the bound), it will play a crucial role
to control the behavior of kernel estimator (in proving Theorem ??) for which the quadratic variation will
depend on the bandwidth hn.

Theorem A.0.5. Let (Yi)1≤i≤n be random variables such that

E[Yi | Fi−1] = 0, for all 1 ≤ i ≤ n,

then, for all t ≥ 0 and v,m > 0,

P

(∣∣∣ n∑
i=1

Yi

∣∣∣ ≥ t, max
i=1,...,n

|Yi| ≤ m,
n∑
i=1

E[Y 2
i | Fi−1] ≤ v

)
≤ 2 exp

(
− t2

2(v + tm/3)

)
.
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