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Chapter 1

Efron’s bootstrap

1.1 Mathematical background

We recall useful results about the convergence of sequences of random variables. For a
complete presentation of those concepts, we refer to Van der Vaart (2000).

Definition 1.1. Let X be a random variable defined on (Ω,F ,P) valued in (Rd,B(Rd)).
The cumulative distribution function of X, FX : Rd → [0, 1], is defined by

FX(x) = P(X ≤ x),

where {X ≤ x} = {X1 ≤ x1, . . . , Xd ≤ xd}.

The norms | · |p, p ≥ 1, are defined as follows, for any u ∈ Rd,

|u|pp =

d∑
k=1

upk.

Definition 1.2. Let X, (Xn)n≥1 be a sequence of random variables defined on the prob-
ability space (Ω,F ,P) valued in (Rd,B(Rd)).

• (Xn)n≥1 converges to X, almost surely, if with probability 1, |Xn − X|1 → 0 as
n→∞.

• (Xn)n≥1 converges to X, in probability, if for all ε > 0, P(|Xn −X|1 > ε)→ 0.

• (Xn)n≥1 converges to X, in Lp, if E[|Xn −X|pp]→ 0.

• (Xn)n≥1 converges to X, in distribution, if FXn(x) → FX(x) for any continuity
point of FX . We also say that Xn weakly converges to X and we write Xn  X.

Let Cb(Rd) (resp. Lb(Rd)) be the space of bounded continuous (resp. bounded Lips-
chitz) real valued functions defined on Rd.

Proposition 1.1. Let X, (Xn)n≥1 be a sequence of random variables defined on the prob-
ability space (Ω,F ,P) valued in (Rd,B(Rd)). The following are equivalent

• (Xn)n≥1 converges to X in distribution

• for all f ∈ Cb(Rd), Ef(Xn)→ Ef(X)

• for all f ∈ Lb(Rd), Ef(Xn)→ Ef(X)

5
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Figure 1.1: Illustration of the central limit theorem. It shows the convergence of the
sequence of densities (of empirical means) toward the Gaussian density.

Proposition 1.2 (continuous mapping theorem). Let X, (Xn, Yn)n≥1 be a sequence of
random variables defined on the probability space (Ω,F ,P) valued in (Rd,B(Rd)). Let
f : Rd → Rq be a Borelian function and denote by Cf ⊂ Rd the set of continuity points
of f . Suppose that that P(X ∈ Cf ) = 1. The following holds:

• if Xn → X almost surely, then f(Xn)→ f(X) almost surely.

• if Xn → X in probability, then f(Xn)→ f(X) in probability.

• if Xn  X, then f(Xn) f(X).

Lemma 1.3 (Slutsky). Let X, (Xn, Yn)n≥1 be a sequence of random variables defined on
the probability space (Ω,F ,P) valued in (Rd,B(Rd)). Suppose that Xn  X and that
Yn → c in probability. Then (Xn, Yn) (X, c).

Theorem 1.4 (strong law of large numbers). Let (Xn)n≥1 be a independent and identi-
cally distributed sequence of random variables defined on the probability space (Ω,F ,P) val-
ued in (Rd,B(Rd)) with common probability measure P on B(Rd). Suppose that E|X1|1 <
∞. Then we have

1

n

n∑
i=1

Xi → E(X1), almost surely.

Theorem 1.5 (central limit theorem). Let (Xn)n≥1 be a independent and identically
distributed sequence of random variables defined on the probability space (Ω,F ,P) valued
in (Rd,B(Rd)) with common probability measure P on B(Rd). Suppose that E[|X1|22] <∞
and define Σ = var(X1). Then we have

1√
n

n∑
i=1

(Xi − E(X1)) N (0,Σ).
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The next theorem generalizes the original central limit theorem in two directions.
First, one is authorized to consider non-identically distributed sequences. Second, each
sequence might change with n, the sample size.

Theorem 1.6 (Lindeberg central limit theorem). For each n ≥ 1, let Xn,1, Xn,2, . . . Xn,n

be a sequence of independent random vectors such that E[|Xn,i|22] <∞ for all i ≥ 1 and

n−1
n∑
i=1

E[|Xn,i|21|Xn,i|>n1/2ε] −→ 0, for all ε > 0 ,

n−1
n∑
i=1

var(Xn,i) −→ Σ .

Then,

n−1/2
n∑
i=1

(Xn,i − E[Xn,i])
d−→ N (0,Σ) .

1.2 The imitation principle

The bootstrap was initially introduced in the statistical estimation framework where the
parameter of interest, say θ0, depends on an unknown probability distribution. The
main goal of the bootstrap is to measure the accuracy of an estimate, say θ̂n, of θ0 by
reproducing/approximating the distribution of (θ̂n − θ0).

1.2.1 The framework

The original bootstrap applies to estimators based on independent and identically dis-
tributed sequences of random variables. Let (Xi)i∈N be an independent and identically
distributed sequence of Rd-valued random variables defined on the probability space
(Ω,F ,P). The distribution of X1 on B(Rd), the Borel algebra, is denoted by P . Suppose
that the parameter of interest θ0 expresses as

θ0 = θ(P ),

where θ is defined on the space of probability measures and valued in Rp. It could be
for instance the theoretical mean of an unknown distribution or the regression vector in
a linear regression model. Define the empirical measure

Pn = n−1
n∑
i=1

δXi ,

where for any x ∈ Rd, δx is a probability measure defined on B(Rd), called the Dirac
measure, and defined by δx(A) = 1 if x ∈ A and δx(A) = 0 else for any Borelian set
A. The empirical measure Pn = Pn(w, ·) is a random (probability) measure, i.e., for any
w ∈ Ω, Pn(w, ·) is a (probability) measure and for any B ∈ B(Rd), w 7→ Pn(w,B) is a
real valued random variable (from (Ω,F) to (R,B(R)). In particular, one might verify
that Pn(w, ·) is the uniform probability measure on {X1(w), . . . , Xn(w)}. In the following
development, we shall use the shortcut Pn for Pn(w, ·) as soon as possible. The empirical
measure is an approximation of the true measure P as illustrated by the following basic
property, which can be easily deduced from the strong law of large number. For any
Borelian set B, with probability one,

|Pn(B)− P (B)| → 0, as n→∞.
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From the previous remark, a natural estimator of θ0 is given by

θ̂n = θ(Pn).

This kind of estimators are usually called “plug-in” estimators as the estimated probability
measure, the empirical measure, has been “plugged” in the expression in place of the
theoretical distribution. In the following examples, we show that this “plug-in” approach
permits to recover many classic estimators including the empirical mean, the empirical
variance, and the ordinary least-squares estimate.

Example 1.1. The expectation of g with respect to P is given by θ(P ) =
∫
g(x) dP (x).

The mean corresponds to g(x) = x.

Example 1.2. The variance corresponds to

θ(P ) =

∫
x2 dP (x)−

(∫
xdP (x)

)2

.

Example 1.3. Let X = (Z1, Z2) ∈ R2. The covariance between Z1 and Z2 is given by

θ(P ) =

∫
z1z2 dP (z1, z2)−

(∫
z1 dP1(z1)

)(∫
z2 dP2(z2)

)
,

where P1 and P2 stands for the marginals of Z1 and Z2.

Example 1.4. The correlation coefficient between Z1 and Z2 is given by

θ(P ) =

∫
z1z2 dP (z1, z2)−

(∫
z1 dP1(z1)

) (∫
z2 dP2(z2)

)√(∫
z2

1 dP1(z1)−
(∫
z1 dP1(z1)

)2)(∫
z2

2 dP2(z2)−
(∫
z2 dP2(z2)

)2) .
Example 1.5. Suppose that X = (Z1, Z2) with Z1 ∈ R, Z2 ∈ Rp, p ≥ 1, and that
E‖X‖2 <∞. The regression coefficient β ∈ Rp defined as

argminβ∈Rp

∫
(z1 − βT z2)2 dP (z1, z2),

equivalently, θ(P ) is the solution of(∫
z2z

T
2 dP2(z2)

)
β =

∫
z1z2dP (z1, z2).

Example 1.6. The distribution function F evaluated at y is given by

θ(P ) =

∫
1{x≤y}dP (x).

Example 1.7. The median is given by

θ(P ) = F−(1/2).

where F− is the generalized inverse of F .
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Real world Bootstrap world

X1, . . . Xn ∼ P (unknown) X∗n,1, . . . X
∗
n,n ∼ Pn (known)

↓ ↓
Compute θ(Pn) Compute θ(P ∗n)

↓ ↓
(θ(Pn)− θ(P )) “'” (θ(P ∗n)− θ(Pn))

Table 1.1: The bootstrap purpose: to mimic what happen in the real world by a new
data generating process

1.2.2 The imitation principle

The bootstrap is based on a simple imitation principle. It mimics the behavior of the
original estimate by generating a new sample, called the bootstrap sample, according to the
empirical measure Pn. With this new sample, the same operations as the one to compute
θ̂n are carried out to obtain a bootstrap version of θ̂n. As described before, we consider
plug-in estimators θ̂n = θ(Pn) of θ0 = θ(P ), where Pn is the empirical measure based
on X1, . . . , Xn with common distribution P . To reproduce this situation, the bootstrap
method relies on the generation of a new sample X∗n,1, . . . , X

∗
n,n according to Pn and then

applies the transformation θ to these samples. The bootstrap estimate is then defined by

θ̂∗n = θ(P ∗n),

where P ∗n is the empirical measure based on the bootstrap sample, i.e.,

P ∗n = n−1
n∑
i=1

δX∗
n,i
.

As illustrated in Table 1.1, due to the similarity between P and Pn, we expect that
(θ̂∗n − θ̂n) “behaves in a similar” way as (θ̂n − θ0).

Given X1, . . . , Xn, Pn is a discrete probability distribution with n atoms. Hence,
there are nn possible bootstrap sample which implies that (θ̂∗n − θ̂n) is a discrete random
variable with nn state space. In practice, nn is often too large and computing moments
of this distribution is too heavy computationally. In place we shall use Monte Carlo
approximation based on generating independent versions of (θ̂∗n − θ̂n), conditionally on
X1, . . . , Xn. Each version is simply computed by generating a new bootstrap samples
X∗n,1, . . . , X

∗
n,n. Accordingly, the bootstrap method is made of two steps:

(i) (definition step) The bootstrap (θ̂∗n−θ̂n) must mimic the behaviour of the quantity

of interest (θ̂n − θ0).

(ii) (simulation step) For some B, compute (θ̂∗n,1− θ̂n), . . . , (θ̂∗n,B− θ̂n) to approximate

the law of (θ̂n − θ0).

Until now, we left unspecified the meaning of the words “behaves similarly” and “mimics”.
We shall see in section 1.3 that in general, the bootstrap estimate, properly rescaled, has
a similar distribution as the rescaled estimate of interest.

1.2.3 The bootstrap algorithm

The following algorithm is the original bootstrap algorithm as introduced by Efron (1979).
To make clear that it corresponds to the plug-in principle described previously, one should
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Figure 1.2: The first three graphs provide examples of different bootstrap samples. The
last graph shows the true mean value and the different mean values obtained using boot-
strap samples.

be aware that when X∗ is generated from a uniform draw among {X1, . . . Xn}, it has law
Pn.

Algorithm.

Input : The observations X1, . . . Xn, the simulation number for the bootstrap B
Output: Bootstrap estimators (θ̂∗n,1, . . . , θ̂

∗
n,B)

for b = 1, . . . , B do
Draw uniformly with replacement among {X1, . . . , Xn} to obtain the bootstrap
sample

X∗n,1, . . . , X
∗
n,n

Compute the bootstrap estimator
θ̂∗n,b = θ(P ∗n)

end

The bootstrap estimators θ̂∗n,b, b = 1, . . . B are identically distributed and independent

random variables. Taking B large ensures that the law of θ̂∗n is well approximated. In
the sequel, we suppose that B is large enough so that the simulation error is negligible
compared to other approximation.
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1.3 Bootstrap approximation

1.3.1 The randomness of bootstrap sequences

Let X∗n,1, . . . , X
∗
n,n be identically distributed and independent random variables with com-

mon distribution Pn, conditionally to X1, . . . , Xn (X∗n,1, . . . X
∗
n,n is called the bootstrap

sample). By definition, for any collection of positive functions fi,

E[

n∏
i=1

fi(X
∗
n,i)|X1, . . . , Xn] =

n∏
i=1

E[fi(X
∗
n,i)|X1, . . . , Xn],

and for any i and positive function f

E[f(X∗n,i)|X1, . . . , Xn] =

∫
f(x) dPn(x),

There is two sources of randomness that must be considered when analyzing bootstrap
estimates:

• The randomness of the initial samples (X1, . . . , Xn)

• The randomness induced by the generation of the bootstrap sample

The sequence of estimators (θ̂n)n≥1 is a random sequence defined on (Ω,F ,P). The se-

quence of bootstrap estimators (θ̂∗n)n≥1 depends also on the original (Xi)i≥1 but another
source of randomness has been introduced through the sampling. Let {(u∗n,i)i=1,...,n, n ≥
1} be an independent triangular array such that each n ≥ 1, (u∗n,i)i=1,...,n is an inde-

pendent collection of random variable with common distribution
∑n
i=1 δi/n. Denote by

(Ω∗,F∗,P∗) the underlying probability space. Hence the sequence of bootstrap estimators

(θ̂∗n) is defined on the product space (Ω× Ω∗,F ⊗ F∗,P× P∗). The underlying measure
is the product measure because the bootstrap resampling is done independently of the
original sequence (Xi)i≥1.

1.3.2 Convergence of bootstrap estimates

Definitions

We now introduce different notions of convergence for bootstrap estimators. These are
basically the same as the one defined for standard estimator except that the convergence
is considered with respect to the measure P∗ at fixed ω ∈ Ω. A key feature to understand
the following definitions is that after integrating a bootstrap estimate with respect to P∗,
we obtain a random variable defined on (Ω,F ,P). Let (Y ∗n ) be a sequence defined on
(Ω × Ω∗,F ⊗ F∗,P × P∗). Suppose in addition that for all ω ∈ Ω, Y ∗n (ω, ·) is a random
variable defined on (Ω∗,F∗,P∗).

Definition 1.3. We say that (Y ∗n ) converges in distribution to F , conditionally on the
observations, almost surely, and write Y ∗n  F , a.s., if with probability one : for every y
where F is continuous, P∗(Y ∗n ≤ y)→ F (y) as n→∞.

Definition 1.4. We say that Y ∗n
P∗

→ 0 a.s., if with probability 1, for every ε > 0, P∗(|Y ∗n | >
ε)

a.s.→ 0.

Note that Y ∗n
P∗

→ 0 a.s., if and only if Y ∗n  0 a.s. The subsequent propositions might
be useful.
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Proposition 1.7. Y ∗n
P∗

→ 0 a.s., if and only if for all k ∈ N∗,

lim sup
n

P∗(|Y ∗n | > 1/k) = 0, a.s.

.

Proposition 1.8. If Y ∗n → 0 almost-surely, then Y ∗n
P∗

→ 0 almost-surely.

Proof. This is a consequence of the fact that Y ∗n → 0 a.s. implies that for all ε > 0,
I{Y ∗n > ε} → 0 a.s.

Preservation properties

We are interested in deriving the continuous mapping theorem and the Slutsky’s Lemma
for the bootstrap. In the following, we focus on the “almost sure” notion of weak con-
sistency. Nevertheless, the same results hold also with the “in probability statement” by
making use of the characterization of the convergence in probability with subsequence :
a sequence converges in probability if and only if from any sub-sequence on can extract
a further subsequence that converges almost surely. The two following preservation lem-
mas are derived by applying the (non-bootstrap) continuous mapping theorem and the
Slutsky’s lemma.

In what follows, X∗, (X∗n)n≥1 is a collection of random variables defined on (Ω ×
Ω∗,F ⊗ F∗,P× P∗).

Proposition 1.9 (continuous mapping theorem for the bootstrap). Let f : Rd → Rq be
Borelian function and denote by Cf the set of its continuity points. Suppose that X∗ ∈ Cf
almost surely.

(i) If X∗n  X∗, almost surely, then f(X∗n) f(X∗), almost surely.

(ii) If X∗n
P∗

→ X∗, almost surely, then f(X∗n)
P∗

→ f(X∗), almost surely.

Proof. By assumption there exists A ∈ F such that P(A) = 1 and for all ω ∈ A,
X∗n(ω, ·)  X∗(ω, ·) and P∗(X∗(ω, ω∗) ∈ Cf ) = 1. The continuous mapping theorem
permits to conclude that for all ω ∈ A, f(X∗n(ω, ·) f(X∗(ω, ·)) which is the conclusion
of (i). The other statement can be proved similarly.

Proposition 1.10 (Slutsky for the bootstrap).

• If X∗n  X, a.s., and Y ∗n
P∗

→ 0 ∈ R, a.s., then X∗n + Y ∗n  X, a.s..

• If X∗n  X, a.s., and Y ∗n
P∗

→ c ∈ R, a.s., then (X∗n, Y
∗
n ) (X, c), a.s..

Proof. While the proof is a direct consequence of Slutsky’s Lemma (stated but not proved
in Lemma 1.3) we provide a proof here. We start with the first statement. Let µ be the
cdf of X and D be the discontinuity point of µ. Because D is countable (associate each
x ∈ D to qx a rational between F (x−) and F (x+)), R\D is dense. Note that, for any x,
ε > 0,

P∗(X∗n + Y ∗n ≤ x) ≤ P∗(X∗n + Y ∗n ≤ x, |Y ∗n | ≤ ε) + P∗(|Y ∗n | > ε)

≤ P∗(X∗n ≤ x+ ε, |Y ∗n | ≤ ε) + P∗(|Y ∗n | > ε)

≤ P∗(X∗n ≤ x+ ε) + P∗(|Y ∗n | > ε).

and

P∗(X∗n + Y ∗n > x) ≤ P∗(X∗n + Y ∗n > x, |Y ∗n | ≤ ε) + P∗(|Y ∗n | > ε)

≤ P∗(X∗n > x− ε, |Y ∗n | ≤ ε) + P∗(|Y ∗n | > ε)

≤ P∗(X∗n > x− ε) + P∗(|Y ∗n | > ε).
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It follows that

P∗(X∗n ≤ x− ε)− P∗(|Y ∗n | > ε) ≤ P∗(X∗n + Y ∗n ≤ x) ≤ P∗(X∗n ≤ x+ ε) + P∗(|Y ∗n | > ε).

With probability 1, it holds that, for any x /∈ D, x− ε /∈ D and x+ ε /∈ D,

µ(x− ε) ≤ lim inf
n→∞

P∗(X∗n + Y ∗n ≤ x) ≤ lim sup
n→∞

P∗(X∗n + Y ∗n ≤ x) ≤ µ(x+ ε).

Since ε is arbitrarily small (by density of R\D), we have for any x /∈ D,

lim
n→∞

P∗(X∗n + Y ∗n ≤ x) = µ(x).

To prove the second statement, write (Xn, Yn) = (0, Yn − c) + (Xn, c) and invoke the
first statement to see that the proof reduces to (Xn, c)  (X, c), almost surely. For all
f continuous note that x 7→ f(x, c) is continuous as well. By Proposition 1.1, we have,
with probability 1, that for all f ∈ Cb, E∗f(Xn, c)→ E∗f(X, c).

1.3.3 Consistency of the bootstrap

While it makes no doubt that to assess the accuracy of θ̂n a central quantity is the
statistic (θ̂n−θ0), we have not yet specified what type of approximation of the statistic is
feasible. A pertinent notion is the one of weak convergence (it is helpful to build confidence
interval). Consequently, we shall be concerned with regular estimator as defined below.

Definition 1.5. The map θ is said to be regular with respect to P if n1/2(θ(Pn)− θ(P ))
converges weakly to a certain distribution denoted L(θ, P ).

The distribution L(θ, P ) is very important in the subsequent development as it is
especially this asymptotic distribution that the bootstrap will be able to approximate.
In this way, previous notion will be useful to discuss the validity or the failure of the
bootstrap.

Definition 1.6. Given a distribution P and a regular map θ, the bootstrap is said to be
consistent if n1/2(θ(P ∗n)− θ(Pn)) converges weakly, a.s., to L(θ, P ).

The next proposition shows that the bootstrap is consistent for the empirical mean
n−1

∑n
i=1Xi.

Theorem 1.11 (Bootstrap central limit theorem). If θ(P ) =
∫
xP (dx) then for all

distribution P such that
∫
x2P (dx) <∞, the bootstrap is consistent.

Proof. Let X1, X2, . . . be an independent and identically distributed sequence of random
variables defined on (Ω,F ,P). Verify that

E∗X∗n,i =

∫
xdPn(x) = θ̂n,

so that we can write

n1/2(θ(P ∗n)− θ(Pn)) = n−1/2
n∑
i=1

(X∗n,i − E∗X∗n,i)

Consequently, we are in position to apply the Lindeberg central limit theorem, which is
stated in Section 1.1 as Theorem 1.6. More specifically, we will apply this theorem in
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an event of probability 1 on which the suitable convergences hold true. The required
converges are now given. If we have, with probability 1,

∀ε > 0, n−1
n∑
i=1

E∗‖X∗n,i‖21{‖X∗
n,i‖>εn1/2} −→ 0, (1.1)

n−1
n∑
i=1

E∗
(
X∗n,i − E∗X∗n,i

)2 −→ Σ, (1.2)

then, from the Lindeberg central limit theorem, we have with probability 1, that the
sequence

n−1/2
n∑
i=1

(X∗i − θ̂n),

weakly converges to a Gaussian random variable with mean 0. In other words, we have
that, with probability 1, for any x ∈ R,

P∗
(
n−1/2

n∑
i=1

(X∗i,n − θ̂n) ≤ x

)
−→ Φ(x).

We now show that (1.1) and (1.2) holds true. Using the union bound, this is equivalent
to show that, for all q ∈ N∗, with probability 1,

n−1
n∑
i=1

E∗‖X∗n,i‖21{‖X∗
n,i‖>(1/q)n1/2} −→ 0,

n−1
n∑
i=1

E∗
(
X∗n,i − E∗X∗n,i

)2 −→ Σ.

By definition,

E∗
(
X∗n,i − E∗X∗n,i

)2
= n−1

n∑
i=1

(Xi − θ̂n)2 = n−1
n∑
i=1

X2
i − θ̂2

n.

By the strong law of large number, the previous quantity converges almost surely to Σ.
Hence we get the second of the required convergence. Let η > 0 and choose M > 0 large
enough such that E[‖Xi‖21{‖Xi‖>M}] ≤ η. This is possible by virtue of the Lebesgue
dominated convergence theorem. We have with probability 1 that

n−1
n∑
i=1

‖Xi‖21{‖Xi‖>M} → E[‖X1‖21{‖X1‖>M}] ≤ η.

Besides, there exists N ≥ 1 such that for all n ≥ N ,

E∗‖X∗n,i‖21{‖X∗
n,i‖>(1/q)n1/2} = n−1

n∑
i=1

‖Xi‖21{‖Xi‖>(1/q)n1/2} ≤ n−1
n∑
i=1

‖Xi‖21{‖Xi‖>M}.

It follows that with probability 1,

lim sup
n→+∞

E∗‖X∗n,i‖21{‖X∗
n,i‖>(1/q)n1/2} ≤ η,

but η is arbitrary.
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1.3.4 Bootstrap confidence intervals

We shall see in the next few lines that the knowledge of the weak limit is enough to assess
the accuracy (in some sense) of θ̂n estimating θ0. What is suitable to build confidence
intervals and to conduct statistical tests is to control the estimation accuracy under a
certain probability level, i.e., to find ξn : (0, 1)→ R such that for any α ∈ (0, 1) and any
n ≥ 1,

P
(
n−1/2ξn(α/2) ≤ θ̂n − θ0 ≤ n−1/2ξn(1− α/2)

)
≥ 1− α.

Values ξn(1 − α/2) and ξn(α/2) that guarantee the previous inequality to hold for all
n ≥ 1 are often very large and too pessimistic. One can rather weakened the previous
condition and ask that

lim inf
n→∞

P
(
n−1/2ξn(α/2) ≤ θ̂n − θ0 ≤ n−1/2ξn(1− α/2)

)
≥ 1− α, ∀α ∈ (0, 1). (1.3)

Definition 1.7. A (possibly random) sequence of function ξn : (0, 1) → R is called a
consistent quantile sequence if (1.3) holds.

Exercise 1.2 shows that weak convergence is enough to furnish consistent quantile
sequences provided that the asymptotic variance is consistently estimated.

As described in Section 1.2.2, the bootstrap technique allows to simulate versions of
n1/2(θ̂∗n− θ̂n) and those simulations enable to approximate accurately the law of n1/2(θ̂∗n−
θ̂n). The question is now to know whether the law of n1/2(θ̂∗n− θ̂n) can be used to produce
consistent quantile sequences. We have seen in Exercise 1.2 that weak convergence was
enough. Consequently, for the bootstrap, it is natural to rely on the notion of conditional
weak convergence defined previously. In fact, another notion of weak convergence of
bootstrap estimate, which is weaker than the initial one, is useful.

Definition 1.8. We say that (Y ∗n ) converges in distribution to F , conditionally on the
observations, in probability, and write Y ∗n  F , in probability, if for every y where F is
continuous, P∗(Y ∗n ≤ y)→ F (y) in probability as n→∞.

The next proposition informs us that this notion of conditional weak convergence, in
probability, is enough to provide consistent bootstrap quantile sequences.

Proposition 1.12. Suppose that n1/2(θ̂n − θ0)  N (0, σ2) and that n1/2(θ̂∗n − θ̂n)  
N (0, σ2), in probability, then the quantiles of n1/2(θ̂∗n − θ̂n) are consistent quantile se-
quences.

Proof. Define

F̂n(x) = P(n1/2(θ̂∗n − θ̂n) ≤ x | X1, . . . Xn).

The hat over Fn is to remember that this quantity depends on the sample. Denote by
ξ̂n(α) the quantile of level α ∈ (0, 1) of the function F̂n, i.e.,

ξ̂n(α) = F̂−n (α) = inf{x ∈ R : F̂n(x) ≥ α}.

Let Φ denote the cumulative distribution function of N (0, σ2). By assumption, for every
x ∈ R and every ε > 0, we have, as n→∞,

P(|F̂n(x)− Φ(x)| > ε)→ 0.
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Let α ∈ (0, 1). Write

Φ
(
F̂−n (α)

)
=

∫ F̂−
n (α)

−∞
dΦ(x)

=

∫
1{x<F̂−

n (α)}dΦ(x)

=

∫
1{F̂n(x)<α}dΦ(x).

Consequently,

|Φ
(
F̂−n (α)

)
− Φ

(
Φ−(α)

)
| ≤

∫
|1{F̂n(x)<α} − 1{Φ(x)<α}|dΦ(x)

=

∫
1{F̂n(x)<α≤Φ(x)} dΦ(x) + 1{Φ(x)<α≤F̂n(x)} dΦ(x). (1.4)

Consider the first term on the left-hand side. Let ε > 0, we have∫
1{F̂n(x)<α≤Φ(x)} dΦ(x) ≤

∫
1{F̂n(x)<α≤Φ(x), |F̂n(x)−Φ(x)|≤ε} dΦ(x) +

∫
1{|F̂n(x)−Φ(x)|>ε} dΦ(x)

≤
∫
1{Φ(x)−ε<α≤Φ(x)} dΦ(x) +

∫
1{|F̂n(x)−Φ(x)|>ε} dΦ(x)

=

∫
1{α≤Φ(x)<α+ε} dΦ(x) +

∫
1{|F̂n(x)−Φ(x)|>ε} dΦ(x)

≤ ε+

∫
1{|F̂n(x)−Φ(x)|>ε} dΦ(x).

Taking the expectation in the previous inequality gives, by Fubini’s theorem,

E
[∫

1{F̂n(x)<α≤Φ(x)} dΦ(x)

]
≤ ε+

∫
P (|F̂n(x)− Φ(x)| > ε) dΦ(x).

By assumption, we have for every x ∈ R that P(|F̂n(x)− Φ(x)| > ε)→ 0. Hence, by the
Lebesgue dominated convergence theorem, we get that

lim sup
n→∞

E
[∫

1{F̂n(x)<α≤Φ(x)} dΦ(x)

]
≤ ε.

Because ε is arbitrary, the previous limit is 0. The right-hand side term in (1.4) is treated
in a similar fashion and we find that

E
[
|Φ
(
F̂−n (α)

)
− Φ

(
Φ−(α)

)
|
]
−→ 0.

Since the L1 convergence implies the convergence in probability and using the continuous
mapping theorem, we have that for every α ∈ (0, 1), ξ̂n(α) = F̂−n (α) → Φ−(α), in
probability. As a consequence, invoking Slutsky’s Lemma, we have, for every α ∈ (0, 1),

n1/2(θ̂n − θ0)− ξ̂n(α)
d−→ N (0, σ2)− Φ−(α),

implying that

P
(
θ̂n − θ0 ≤ n−1/2ξ̂n(1− α/2)

)
→ 1− α/2

P
(
θ̂n − θ0 ≤ n−1/2ξ̂n(α/2)

)
→ α/2.

As a consequence, ξ̂n is a consistent quantile sequence.
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Of course the “in probability” notion of conditional weak convergence, is weaker than
the almost sure version. In fact the two previous definitions are related to the Kolmogorov-
Smirnov distance when the limit P (Y ≤ y) is a continuous function which will be the
case in most examples. This is a consequence of this Lemma (which is stated for the “in
probability”version only but is valid as well for the almost sure varsion).

Lemma 1.13. Let Fn be a sequence of (random) cdf defined on R and suppose that for
each x ∈ R, P(|Fn(x)− F (x)| > ε)→ 0 where F is a continuous (fixed) cdf. Then

sup
x∈R
|Fn(x)− F (x)| → 0, in probability.

Proof. Let ε > 0 and ∆n(x) = Fn(x) − F (x). Choose R > 0 such that F (−R) ≤ ε/4.
Note that for any x < −R,

|∆n(x)| ≤ Fn(−R) + F (−R) ≤ |∆n(−R)|+ ε/2.

Consequently, P(supx<−R |∆n(x)| > ε) ≤ P(|∆n(−R)| > ε/2) → 0. We have shown that
supx<−R |∆n(x)| → 0 in probability. Similarly, we obtain that supx>R |∆n(x)| → 0 in
probability and it only remains to show that supx∈[−R,R] |∆n(x)| → 0 in probability. Let
ε > 0 and take −R = b1 < b2 < . . . < bK = R such that F (bk+1) − F (bk) ≤ ε/2.
This is possible in virtue of the Heine-Cantor theorem which asserts that F is uniformly
continuous over [−R,R]. It follows that, for any x ∈ [−R,R],

|∆n(x)| ≤ max
k=1,...,K

|∆n(bk)|+ ε/2.

Consequently, P(supx∈[−R,R] |∆n(x)| > ε) ≤ P(maxk=1,...,K |∆n(bk)| > ε/2)→ 0.

1.4 Bootstrapping the covariance estimate

This section investigates the validity of the bootstrap for covariance estimates. Let X and
Y be two real valued random variables and denote by ΣXY the covariance between X and
Y . We are interested in the bootstrap of the classical covariance estimator constructed
from a collection (X1, Y1), . . . , (Xn, Yn), of independent and identically distributed ran-
dom variables each having the same distribution as (X,Y ). This estimator is given by

Σ̂XY = n−1
n∑
i=1

(Xi − µ̂X)(Yi − µ̂Y ),

where

µ̂X = n−1
n∑
i=1

Xi, µ̂Y = n−1
n∑
i=1

Yi.

The associated bootstrap estimator is given by

Σ̂∗XY = n−1
n∑
i=1

(X∗n,i − µ̂∗X)(Y ∗n,i − µ̂∗Y ),

where

µ̂∗X = n−1
n∑
i=1

X∗n,i, µ̂∗Y = n−1
n∑
i=1

Y ∗n,i.

The next proposition claims that
√
n(Σ̂∗XY − Σ̂XY ) provides a valid bootstrap of the

distribution of
√
n(Σ̂∗XY − Σ̂XY ). The proof is based on the bootstrap central limit

theorem and some preservation properties.
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Theorem 1.14. Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically dis-
tributed random variables with distribution P such that E[|XY |2] < ∞, E|X|2 < ∞
and E|Y |2 <∞. If Σ = θ(P ) = E[(X − µX)(Y − µY )] where µX = E[X] and µY = E[Y ]
then the bootstrap n1/2(Σ̂∗ − Σ̂) is almost surely consistent.

Proof. In order to apply the Lindeberg central limit theorem without difficulties the trick
is to replace the estimated mean by their expectations and control for the reminder term.
First, because

∑n
i=1(Xi − µ̂X) =

∑n
i=1(X∗n,i − µ̂∗X) = 0, it holds that

Σ̂XY = n−1
n∑
i=1

(Xi − µ̂X)(Yi − µY ),

Σ̂∗XY = n−1
n∑
i=1

(X∗n,i − µ̂∗X)(Y ∗n,i − µY ).

It follows that

Σ̂XY = n−1
n∑
i=1

(Xi − µX)(Yi − µY ) + (µX − µ̂X)(µ̂Y − µY ),

Σ̂∗XY = n−1
n∑
i=1

(X∗n,i − µX)(Y ∗n,i − µY ) + (µX − µ̂∗X)(µ̂∗Y − µY ).

As a consequence

n1/2(Σ̂∗XY − Σ̂XY ) = n−1/2
n∑
i=1

(
(X∗n,i − µX)(Y ∗n,i − µY )− (Xi − µX)(Yi − µX)

)
+R∗n,

with

R∗n = n1/2(µX − µ̂∗X)(µ̂∗Y − µY )− n1/2(µX − µ̂X)(µ̂Y − µY ).

Because

(µX − µ̂∗X)(µ̂∗Y − µY )

= (µX − µ̂X)(µ̂∗Y − µY ) + (µ̂X − µ̂∗X)(µ̂∗Y − µY )

= (µX − µ̂X)(µ̂∗Y − µ̂Y ) + (µX − µ̂X)(µ̂Y − µY ) + (µ̂X − µ̂∗X)(µ̂∗Y − µY ),

we find that

R∗n = n1/2(µX − µ̂X)(µ̂∗Y − µ̂Y ) + n1/2(µ̂X − µ̂∗X)(µ̂∗Y − µY )

The second term is the product between n1/2(µ̂∗X − µ̂X), that converges in distribution to
a Gaussian, almost surely (from Theorem 1.11), and µ̂∗Y − µY = (µ̂∗Y − µ̂Y ) + (µ̂Y − µY ),
that goes to 0, in P∗-probability, almost surely. Indeed, let ε > 0 and M > 0, for n large
enough,

P∗(|µ̂Y − µ̂∗Y | > ε) ≤ P∗(|n1/2(µ̂Y − µ̂∗Y )| > M),

hence, using Theorem 1.11, we have with probability 1,

lim sup
n→∞

P∗(|µ̂Y − µ̂∗Y | > ε) ≤ 2(1− Φ(M)).

As M is arbitrary, we have with probability 1 that P∗(|µ̂− µ̂∗| > ε)→ 0. Using Slutsky’s
Lemma we obtain that the first term converges in distribution to 0, i.e., in probability
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to 0. The second term in R∗n is the product between one term n1/2(µ̂∗Y − µ̂Y ) that
converges, almost surely, to a Gaussian distribution (from Theorem 1.11) and one other
term µ̂X−µX that goes to 0, P-almost surely (implying that it goes to 0 in P∗-probability,
P-almost surely).

Invoking again Slutsky’s lemma for the bootstrap, it remains to show that the sequence

Z∗n = n−1/2
n∑
i=1

(
(X∗n,i − µX)(Y ∗n,i − µY )− (Xi − µX)(Yi − µX)

)
converges in distribution, almost surely, to the same limiting distribution as the one of
the non bootstrap covariance estimation limit, i.e. N (0, var((X1 − E[X1])(Y1 − E[Y1]))).
This is a consequence of Theorem 1.11 applied with (X1 −E[X1])(Y1 −E[Y1]) in place of
X1.

1.5 Edgeworth expansion

1.5.1 Studentization improves the accuracy

Let (Xi)i≥1 be an independent and identically distributed sequence of random variables
defined on (Ω,F ,P) with common distribution P . Let (X∗n,i)i=1,...,n, n ≥ 1, be the

associated bootstrap triangular array. Let θ(P ) =
∫
xP (dx) and define

θ0 = θ(P ), θ̂n = θ(Pn), θ̂∗n = θ(P ∗n).

Consider the problem of approximating the distribution of
√
n(θ̂n−θ0) whose cumulative

distribution function is

Fn(x) = P(
√
n(θ̂n − θ0) ≤ x).

The asymptotic approximation of Fn is given by

F (a)
n (x) = Φ(x/σ̂),

where σ̂2 is an empirical estimate of the variance. The central limit theorem combined
with Slutsky’s lemma has shown in exercise that such an approximation leads to asymp-
totically valid confidence intervals. Concerning the Bootstrap, we have actually 2 different
possibilities. The first one is related to the bootstrap central limit theorem. The approx-
imation of Fn is given by

F (b)
n (x) = P(

√
n(θ̂∗n − θ̂n) ≤ x).

This approach would also lead to valid confidence intervals. The other approach for the
bootstrap consists in approximating the distribution of the Studentized-statistics F̃n(x) =

P(
√
n(θ̂n − θ0)/σ̂ ≤ x) rather than Fn. The bootstrap version is defined as

F̃ (b)
n (x) = P(

√
n(θ̂∗n − θ̂n)/σ̂∗n ≤ x).

Working with G̃n is better than working with Gn. The appropriate tool to show this is
the one of Edgeworth expansion. Under suitable assumption on X1, that is X1 admits a
density and E|X1|3 <∞, the Edgeworth expansion of the distribution of

√
n(θ̂n − θ0)/σ

and
√
n(θ̂n − θ0)/σ̂n at second order are

P(
√
n(θ̂n − θ0)/σ ≤ x) = {Φ(x) + n−1/2p(x)φ(x)}+O(n−1),

P(
√
n(θ̂n − θ0)/σ̂ ≤ x) = {Φ(x) + n−1/2q(x)φ(x)}+O(n−1),
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Replacing the distribution P with empirical one, we obtain the bootstrap version of the
previous expansion

P∗(
√
n(θ̂∗n − θ̂n)/σ̂ ≤ x) = {Φ(x) + n−1/2p̂(x)φ(x)}+OP(n−1),

P∗(
√
n(θ̂∗n − θ̂n)/σ̂∗ ≤ x) = {Φ(x) + n−1/2q̂(x)φ(x)}+OP(n−1),

As a consequence,

|Fn(x)− F (a)
n (x)| = |P(

√
n(θ̂n − θ0)/σ ≤ x/σ)− Φ(x/σ̂)|

= (Φ(x/σ)− Φ(x/σ̂)) + n−1/2p(x/σ)φ(x/σ) +O(n−1).

Moreover,

|Fn(x)− F (b)
n (x)| = |P(

√
n(θ̂n − θ0)/σ ≤ x/σ)− P∗(

√
n(θ̂∗n − θ̂n)/σ̂ ≤ x/σ̂)|

= (Φ(x/σ)− Φ(x/σ̂)) +OP(n−1/2)

Finally for the Studentized option for the bootstrap gives

|F̃n(x)− F̃ (b)
n (x)| = |P(

√
n(θ̂n − θ0)/σ̂ ≤ x)− P∗(

√
n(θ̂∗n − θ̂n)/σ̂∗ ≤ x)|

= (Φ(x)− Φ(x)) + n−1/2(q(x)− q̂(x)) +OP(n−1).

Because q(x) = q(x, P ) and q̂(x) = q(x, P̂ ), some smoothness in Q 7→ q(x,Q) would lead
to q(x)− q̂(x) = OP(n−1/2) which would result in

|F̃n(x)− F̃ (b)
n (x)| = OP(n−1).

The Studentized-bootstrap is then more accurate than the asymptotic approximation.

The distribution that is used to approximate Fn(x) = F̃n(x/σ̂) is then F̃
(b)
n (x/σ̂). The

confidence intervals associated to this method are then[
θ̂n − (σ̂/

√
n)F (b)−

n (1− α/2), θ̂n − (σ̂/
√
n)F (b)−

n (α/2)
]
.

This method is refereed to as the Studentized bootstrap. It is known to improve the
accuracy of traditional and basic bootstrap confidence intervals.

1.5.2 Pivotal statistics

The previous phenomenon can be extended to pivotal statistics (Hall, 2013) whose defi-
nition is as follows.

Definition 1.9. Let (Xi)i≥1 be independent random variables with common distribution
P and let Pn = n−1

∑n
i=1 δXi . A map T defined on the set of probability distributions is

said to be pivotal over A whenever T (Pn)  L, as n → ∞, for all P ∈ A (L does not
depend on P ).

A basic example is the empirical mean where

T (Pn) =
1

σ̂n
√
n

n∑
i=1

(Xi − E[X1]),

with σ̂2
n the empirical estimate of the variance of X1. It is pivotal over the set A of

integrable random variables. Any regular map with Gaussian limit admits a pivotal
version as using Slutsky, we only need to normalize

√
n(θ̂n−θ0) by its empirical variance.

This leads a vast framework in which the bootstrap can be implemented using studentized
representation of the statistics.
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Exercises

Exercise 1.1. Show that if for any α ∈ (0, 1), P(
√
n(θ̂ − θ0) ≤ ξn(α)) → α, then ξn

is a consistent quantile sequence. Let Φ denote the cumulative distribution function of
the standard normal distribution. Show that if n1/2(θ̂n − θ0) converges in distribution to

N (0, σ2) with σ > 0 and σ̂n
P→ σ, then σ̂nΦ− is a consistent quantile sequence.

Exercise 1.2. Let (Xi)i≥1 be an independent and identically distributed sequence with
common distribution exp(λ) with λ > 0. Define

λ̂ =

(
n−1

n∑
i=1

Xi

)−1

and λ̂∗ =

(
n−1

n∑
i=1

X∗n,i

)−1

.

1. Show that |X∗ −X| = oP(1) almost-surely.

2. Show that X∗ − 1/λ = oP(1) almost-surely.

3. Show that λ̂∗ − λ = oP(1) almost-surely.

4. Show that
√
n(λ̂∗ − λ̂) N (0, λ2) almost-surely.

Exercise 1.3 (Lindeberg condition and LLN). For each n ∈ N∗, let Yn,1, Yn,1, . . . Yn,n be
a sequence of real-valued independent random variables such that, for every ε > 0,

n−1
n∑
i=1

E[|Yn,i|21{|Yn,i|>
√
nε}]→ 0, when n→∞.

We suppose that EY 2
n,i = 1 for every i ∈ N∗ and n ∈ N∗. The aim of this exercise is to

show that

v̂n = n−1
n∑
i=1

Y 2
n,i → 1, in probability, when n→∞.

1. Define Z2
n,i = Y 2

n,i1{|Yn,i|≤
√
nε}. Show that the event An = {∃i = 1, . . . , n, Y 2

n,i 6=
Z2
n,i} has probability going to 0 as n → ∞ (hint : one might write this event as a

union).

2. Define ŵn = n−1
∑n
i=1 Z

2
n,i and show that lim supn P(|v̂n−1| > η) ≤ lim supn P(|ŵn−

1| > η).

3. Show that ŵn − 1 = n−1
∑n
i=1(Z2

n,i − E[Z2
n,i]) + o(1).

4. Show that E
(
n−1

∑n
i=1(Z2

n,i − E[Z2
n,i])

)2 ≤ ε2.

5. Conclude (hint: one might start by showing that for any η > 0, P(|ω1 + ω2| > η) ≤
P(|ω1| > η/2) + P(|ω2| > η/2))

Exercise 1.4 (Lindeberg condition and LLN). For each n ∈ N∗, let Yn,1, Yn,1, . . . Yn,n be
a sequence of real-valued independent random variables such that, for every ε > 0,

n−1
n∑
i=1

E[|Yn,i|21{|Yn,i|>
√
nε}]→ 0, when n→∞.

We suppose that EY 2
n,i = ν2

n → ν2 > 0 for every i ∈ N∗ and n ∈ N∗. Show that

(nν2)−1
n∑
i=1

Y 2
n,i → 1, in probability, when n→∞.
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Exercise 1.5. Let (Xi)i≥1 be an independent and identically distributed sequence of real
valued random variables such that 0 < E[X2

1 ] < ∞. For each n ≥ 1, (X∗n,i)i=1,...,n

is independent and identically distributed according to Pn, conditionally on X1, X2, . . ..
Define

µ̂n = n−1
n∑
i=1

Xi,

σ̂2
n = n−1

n∑
i=1

(Xi − µ̂n)2.

Define µ̂∗n and σ̂∗n accordingly.

1. Show that almost surely, µ̂∗n
P∗

→ E[X1] (hint: use Markov inequality).

2. Show that almost surely, σ̂∗2n
P∗

→ σ2 = var(X1) (hint: use Exercise 1.4).

3. Deduce that
√
n(µ̂∗n − µ̂n)/σ̂∗n  N (0, 1), almost surely.



Chapter 2

The Wasserstein distance and
the bootstrap

The Wasserstein distance is an appropriate tool to derive bootstrap consistency in general
metric space (Bickel et al., 1981) and also to handle different resampling schemes as the
original bootstrap (e.g., smoothed bootstrap and parametric bootstrap).

2.1 Mathematical background

We start by recalling some basic general definitions dealing with metric spaces and the
notion of weak convergence.

Definition 2.1. A metric space (S, ρ) is called separable if there exists a countable dense
subset, i.e., there is (xn)n≥1 ⊂ S such that for any x ∈ S and ε > 0, one can find i ≥ 1
for which ρ(x, xi) < ε.

Definition 2.2. A metric space (S, ρ) is called complete when any Cauchy sequence in
S converges in S.

Definition 2.3. A metric space (S, ρ) is called Polish when it is complete and separable.

Definition 2.4. A metric space (S, ρ) is called totally bounded when for any η > 0 there
exists a finite number of open balls with radius η that covers S.

Proposition 2.1. A metric space complete and totally bounded is compact.

Let S be the σ-algebra generated by the open sets in S. Denote by P(S) the set of
probability measures defined on S. We will make use of the following notation, for any
µ ∈ P(S) and any function f : S → R such that

∫
fdµ exists, we write

µ(f) =

∫
fdµ.

Let Cb(S) be the space of continuous real-valued functions defined on S.

Proposition 2.2. Two probability measures α and β on S coincides if and only if α(f) =
β(f) for all f ∈ Cb(S).

Proof. The proof relies on the regularity of probability measure (see Theorem 1.2 in
Billingsley (2013)).

23
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Definition 2.5. A sequence (µn)n≥1 ⊂ P(S) is said to converge weakly to µ if

µn(f)→ µ(f), ∀f ∈ Cb(S).

This is denoted by µn  µ.

Definition 2.6. A set M of probability measures defined on S is called tight if for any
ε > 0, there exists a compact set K ⊂ S such that

∀µ ∈ P, µ(K) ≥ 1− ε.

Now we can state two useful properties dealing with tightness in Polish spaces.

Proposition 2.3. If S is a Polish space, any probability measure on S is tight.

Proof. The proof follows the one provided in the lecture notes of Jon A. Wellner. Let
m ≥ 1 and ε > 0. The open set ∪x∈SB(x, 1/(2m)) covers S. Because S is separable,
there is (xn)n≥1 such that for every x ∈ S one can find xi ∈ B(x, 1/(2m)). Consequently
∪n≥1B(xn, 1/m) covers S. Define AN (m) = ∪1≤n≤NB(xn, 1/m). By the monotone
convergence theorem µ(AN (m))→ 1 as N →∞. Choose Nm,ε such that the µ(ANm,ε(m))
is greater than 1− ε/2m. Then

µ(∩m≥1ANm,ε(m)
c
) ≤ µ(∩m≥1ANm,ε(m)

c
) ≤

∑
m≥1

µ(ANm,ε(m)c) ≤ ε.

It remains to show that ∩m≥1ANm,ε(m) is a compact set. It is a closed set in a complete
space hence it is complete. It remains to show that it is totally bounded. We have that
∩m≥1ANm,ε(m) ⊂ ANm,ε(m), for each m ≥ 1 and therefore

∩m≥1ANm,ε(m) ⊂ ANm,ε(m)

The set ANm,ε(m) is the union of a finite number of closed balls with radius 1/m. It is
included in the corresponding union of open balls with radius 2/m.

A sequence (νn)n≥1 is called a subsequence of (µn)n≥1 if there exists ϕ : N→ N such
that νn = µϕ(n) with ϕ(n) < ϕ(n+ 1) for any n.

Definition 2.7. A setM of probability measures defined on S is called relatively compact
if for any sequence (µn)n≥1 there exists a further subsequence that converges weakly in
P(S) (not necessarily in M).

Proposition 2.4 (Prohorov). Let S be a Polish space and M be a set of probability
measures on S. Then M is relatively compact if and only if it is tight.

Proposition 2.5. Let S be a Polish space and (µn)n≥1 be a tight set of probability mea-
sures on S. Suppose that every weakly convergent subsequence of (µ)n≥1 converges weakly
to µ. Then µn  µ.

Proof. By contradiction. There exists ε > 0, ϕn and f ∈ Cb(S) such that |µϕn(f) −
µϕn(f)| > ε. Because it is relatively compact and using the assumption, there is a further
subsequence that converges to µ.
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2.2 The Wasserstein distance

To define the Wasserstein distance, we need to define sets of probability measures with
given marginals. Let α ∈ P(S) and β ∈ P(S). Define A(α, β) as the set of measures
defined on the product space S ⊗S (the product σ-field) having marginals α and β. That
is,

A(α, β) = {µ ∈ P(S ⊗ S) : µ(A× S) = α(A), µ(S ×A) = β(A) ∀A ∈ S}.

If p1 and p2 denote the projection map, i.e., for any i = 1, 2, pi : S × S → S with
pi(x1, x2) = xi. We have

A(α, β) = {µ ∈ P(S ⊗ S) : µ ◦ p−1
1 = α, µ ◦ p−1

2 = β}.

Indeed, for all A ∈ S, we have p−1
1 (A) = {x ∈ S × S : p1(x) ∈ A} = {x ∈ S : p1(x) ∈

A, p2(x) ∈ S}.

Proposition 2.6. Let S is a Polish space and (α, β) be two probability measures on S.
The set A(α, β) is tight.

Proof. Because A1 ×A2 ⊂ (A1 × S) ∪ (S ×A2), we have

µ((S × S)\(K1 ×K2)) ≤ µ((S\K1)× S) + µ(S × (S\K2)) = α(S\K1) + β(S\K2).

Let α and β be two probability measures on S. The p-Wasserstein distance between
α and β, denoted Wp(α, β), is defined as

Wp(α, β) = inf
µ∈A(α,β)

(∫
ρ(x, y)pdµ(x, y)

)1/p

,

where the space A(α, β) (which has been defined in the previous section) is the space of
probability measures on S ⊗ S with respective marginal α and β. The existence of the
Wp(α, β) is established in the next proposition.

Proposition 2.7. Let S be a Polish space and α and β be two probability measures defined
on S. There exists µ, a probability measure on S ⊗ S such that

Wp(α, β) =

(∫
ρ(x, y)pdµ(x, y)

)1/p

.

The set of such µ is denoted by opt(α, β). Any such µ is called an optimal plan for (α, β).

The proof is based on the following Lemma.

Lemma 2.8. The map µ 7→
∫
ρ(x, y)pdµ(x, y) defined on the space of probability measure

on S ⊗ S is lower semicontinuous with respect to the topology of weak convergence.

Proof of Lemma 2.8 Define K : R≥0 → R as the piece-wise continuous affine function
such that K(x) = 1 if 0 ≤ x ≤ 1 and K(x) = 0 if x ≥ 2. Because the sequence
fm(x, y) = ρ(x, y)pK(ρ(x, y)/m) is increasing, the monotone convergence theorem gives
that ∫

ρ(x, y)pdµ(x, y) = lim sup
m→∞

∫
ρ(x, y)pK(ρ(x, y)/m)dµ(x, y).
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Let µn  µ. It follows that, for any m,∫
ρ(x, y)pdµn(x, y) ≥

∫
ρ(x, y)pK(ρ(x, y)/m)dµn(x, y).

Because (x, y) 7→ ρ(x, y)pK(ρ(x, y)/m) is continuous and bounded, the weak convergence
implies that

lim inf
n→∞

∫
ρ(x, y)pdµn(x, y) ≥

∫
ρ(x, y)pK(ρ(x, y)/m)dµ(x, y).

As the previous is true for any m, we take the supremum and this gives the lower semi-
continuity.

Proof of proposition 2.7 As for any µ ∈ A(α, β), we have that 0 ≤
∫
ρ(x, y)pdµ(x, y),

the image of A(α, β) trough the map µ 7→
∫
ρ(x, y)pdµ(x, y) is contained in [0,∞). Hence,

the infimum exists and is denoted by m. Consequently, m+1/n is not a lower bound and
then there exists µn ∈ A(α, β) such that

m ≤
∫
ρ(x, y)pdµn(x, y) ≤ m+ 1/n.

By proposition 2.6 and Prohorov theorem, A(α, β) is relatively compact. Hence there
is a subsequence µϕn that converges weakly to a certain measure µ. From the previous
inequality and Lemma 2.8, we have

m ≥ lim inf
n→∞

∫
ρ(x, y)pdµϕn(x, y) ≥

∫
ρ(x, y)pdµ(x, y),

which implies that m =
∫
ρ(x, y)pdµ(x, y). The proof will be complete if the measure

µ belongs to A(α, β). Let f ∈ Cb(S) and define g(x, y) = f(x) for any (x, y) ∈ S × S.
Clearly, g ∈ Cb(S × S) and therefore

µϕn(g)→ µ(g).

But for any n ≥ 1, µϕn(g) = α(f) and µ(g) = µ ◦ p−1
1 (g). In virtue of Proposition 2.2,

α = µ ◦ p−1
1 .

Define the space Lp(S) as the space of probability measure admitting finite p-moments,
that is,

Lp(S) =

{
µ ∈ P(S) :

∫
ρ(x, x0)pdµ(x) <∞, for some x0 ∈ S

}
.

Note that the previous definition does not depend on x0. The property that Wp is a
distance is established in the following proposition.

Proposition 2.9. Let S be a Polish space. The map Wp is a distance on Lp(S).

Proof. Let α and β be two probability measures in Lp(S). Let µ ∈ A(α, β). Because of
the triangle inequality∫

ρ(x, y)pdµ(x, y) ≤ 2p
(∫

ρ(x, x0)pdα(x) +

∫
ρ(x0, x)pdβ(x)

)
.

This implies that Wp is finite on Lp(S) hence valued in [0,∞). We now show that
Wp(α, α) = 0. Consider the joint distribution µ of two random variables X and Y such
that X has distribution α and Y = X almost surely. Hence µ ∈ A(α, α) and we have

Wp(α, α) ≤
∫
ρ(x, y)pdµ(x, y) = Eµ[ρ(X,Y )p] = 0.
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Now we show that Wp(α, β) = 0 implies α = β. Let f ∈ Cb(S). If Wp(α, β) = 0, we
have ρ(x, y) = 0, (dµ)-almost everywhere, hence f(x) = f(y), (dµ)-almost everywhere,
implying that

α(f)− β(f) =

∫
(f(x)− f(y))dµ(x, y) = 0.

We finish with the most difficult part, the triangle inequality. Let (α, β, γ) be three ele-
ments in Lp(S). Let µ ∈ opt(α, β) and ν ∈ opt(β, γ). Construct δ a measure on S⊗S⊗S
such that δ ◦ p−1

12 = µ and δ ◦ p−1
23 = ν. This is a consequence of the desintegration theo-

rem: there exists µy and νy such that dµ(x, y) = dβ(y)dµy(x) and dν(y, z) = dβ(y)dνy(z).
Then define dδ = dβ(y)d(µy × νy)(x, z). We have

W p
p (α, γ) ≤

∫
ρ(x, z)pdδ(x, y, z)

≤
∫

(ρ(x, y) + ρ(y, z))pdδ(x, y, z).

Using Minkowsky inequality yields

Wp(α, γ) ≤
(∫

ρ(x, y)pdδ(x, y, z)

)1/p

+

(∫
ρ(y, z)pdδ(x, y, z)

)1/p

=

(∫
ρ(x, y)pdµ(x, y)

)1/p

+

(∫
ρ(y, z)pdν(y, z)

)1/p

= Wp(α, β) +Wp(β, γ).

2.3 Relation to weak convergence

In this section we start with some useful properties related to W1. This will allow to pro-
vide a first discussion about the links between convergence in W1 and other convergences
before we state the main result of the section that describes fully the relationship between
the W1 and weak convergence.

2.3.1 The case of W1

An interesting case is when a sequence of measure converges to the dirac measure, i.e.,
W1(αn, δx) → 0. In this particular case, the convergence in Wasserstein distance is
equivalent to convergence in L1.

Proposition 2.10. Let S be a Polish space and α probability measure on S and x ∈ S.
We have that W1(α, δx) =

∫
d(y, x)dα(y).

Proof. Let α ∈ P(S). The set of admissible measures for α and δx contains only one
measure which is the product measure α × δx. To show this, let µ ∈ A(α, δx). We have
(by definition) α(A) ≥ µ(A×{x}). Apply this with S\A to get 1−α(A) ≥ µ(S ×{x})−
µ(A× {x}) = 1− µ(A× {x}). Hence α(A) ≤ µ(A× {x}). All this together implies that
µ(A× {x}) = α(A). It remains to note that µ(A×B) = µ(A×B ∩ {x}).

Proposition 2.11. Suppose that S is a Polish space. We have

W1(α, β) = sup
‖f‖lip≤1

{∫
fdα−

∫
fdβ

}
,

where ‖f‖lip = supx 6=y |f(x)− f(y)|/ρ(x, y) (‖f‖lip ≤ 1 is the space of Lipschitz function
with Lipschitz constant less than 1 with respect to the metric ρ).
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Proof. See Chapter 6 in Villani (2008) or Ambrosio and Gigli (2013).

The following proposition claims that the Lévy–Prokhorov metric metrizes weak con-
vergence (Dudley, 2018a). The Lévy–Prokhorov metric is defined as

dLP (α, β) = sup
‖f‖≤1

{∫
gdα−

∫
gdβ

}
.

with ‖f‖ = supx∈S |f(x)|+ ‖f‖lip.

Proposition 2.12. αn  α if and only if dLP (αn, α) 0.

The previous two propositions imply that convergence inW1 implies weak convergence.
The equivalence is true if S is bounded. The next proposition extends this remark by
making a clear link between weak convergence and convergence in Wassertsein distance
W2. In fact we will see that convergence in W2 implies weak convergence but the converse
is false. We need slightly more than weak convergence, namely the convergence of second-
order moments, to obtain the convergence of the Wasserstein distance.

2.3.2 Characterizing convergence in Wp using weak convergence

In the rest of the section, we consider the case of vector normed spaces and deal with the
case p = 2. The metric ρ(x, y) previously used now becomes ‖x− y‖.

Proposition 2.13. Let S be a Polish space and α, (αn)n≥1 ⊂ L2(S). We have that
W2(αn, α)→ 0 if and only if

αn  α,

αn{‖ · ‖2} → α{‖ · ‖2}.

Proof. The “only if” part follows from

|αn(f)− α(f)| ≤
∫
|f(x)− f(y)|dµn(x, y).

where µn ∈ opt(αn, α). The previous is true for any f ∈ Lp(S). We apply it taking f a
bounded Lipschitz function and use Jensen inequality to get weak convergence. To obtain
the second property, use the Minkowski inequality to get

|
√
αn(‖ · ‖2)−

√
α(‖ · ‖2)| =

∣∣∣∣∣
√∫

‖x‖2 dµn(x, y)−

√∫
‖y‖2 dµn(x, y)

∣∣∣∣∣ ≤
√∫

‖x− y‖2 dµn(x, y).

The “if” part is as follows (here S is a normed vector space). Let M > 0 be such that∫
‖x‖>M

‖x‖2dα ≤ ε.

Recall that I(x > 2M) ≤ (1−K(x/M)) ≤ I(x > M) and write∫
‖x‖>2M

‖x‖2dαn ≤
∫
‖x‖2(1−K(‖x‖/M))dαn

=

∫
‖x‖2dαn −

∫
‖x‖2K(‖x‖/M)dαn

→
∫
‖x‖2dα−

∫
‖x‖2K(‖x‖/M)dα

≤
∫
‖x‖>M

‖x‖2dα
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Define αM as the probability measure of XK(‖X‖/M) when X ∼ α. By the triangle
inequality, one has

W2(αn, α) ≤W2(α2M , α) +W2(αn,2M , αn) +W2(αn,2M , α2M ).

Let ε > 0. Because ‖X −XK(‖x‖/M)‖2 ≤ ‖X‖2I(‖X‖ > M), one may choose M large
enough such that

W2(α2M , α) ≤ ε
W2(αn,2M , αn) ≤ ε.

Now we can use that αn,2M and α2M are both supported on a bounded set. Conclude by
using the continuous mapping theorem to obtain that αn,2M  α2M and then Skorohod
representation theorem (combined with the Lebesgue dominated convergence theorem)
to get that W1(αn,K , αK)→ 0. All this together, we obtain that

lim sup
n

W2(αn, α) ≤ 2ε.

2.4 Sums of random variables in Hilbert spaces

In this section S is a Hilbert space. That is S is endowed with a real valued scalar product
whose associated norm is ‖x‖ = 〈x, x〉.

Proposition 2.14. Let S be a separable Hilbert space. Let (Xi)i≥1 and (Yi)i≥1 be two
sequence of independent centered random variables valued in S such that E‖Xi‖2 < ∞
and E‖Yi‖2 <∞ for any i = 1, . . . , n. Then

W 2
2

(
n−1/2

n∑
i=1

Xi, n
−1/2

n∑
i=1

Yi

)
≤ n−1

n∑
i=1

W 2
2 (Xi, Yi) .

Proof. Let (X̃i, Ỹi)i≥1 be an independent sequence of random variables such that the prob-

ability measure of each (X̃i, Ỹi) belongs to opt(Xi, Yi). Then because the Wassertein dis-
tanceW 2

2 (n−1/2
∑n
i=1Xi, n

−1/2
∑n
i=1 Yi) is the infimum over opt(n−1/2

∑n
i=1Xi, n

−1/2
∑n
i=1 Yi),

we have

W 2
2

(
n−1/2

n∑
i=1

Xi, n
−1/2

n∑
i=1

Yi

)
≤ E

[
‖n−1/2

n∑
i=1

(X̃i − Ỹi)‖2
]
.

E

[
‖n−1/2

n∑
i=1

(X̃i − Ỹi)‖2
]

= n−1
n∑
i=1

E
[
‖X̃i − Ỹi‖2

]
.

The result follows.

Proposition 2.15. Let S be a separable Hilbert space. Let (Xi)i≥1 and (Yi)i≥1 be two
sequence of random variables valued in S such that E‖Xi‖ <∞ and E‖Yi‖ <∞ for any
i = 1, . . . , n. Then

W1

(
n−1

n∑
i=1

Xi, n
−1

n∑
i=1

Yi

)
≤ n−1

n∑
i=1

W 2
1 (Xi, Yi) .

Proof. Similar to the previous proof using the triangle inequality.
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Proposition 2.16. Let S be a separable Hilbert space and X and Y be random variables
in L2(S). We have

W 2
2 (X − EX,Y − EY ) = W 2

2 (X,Y )− ‖EX − EY ‖2.

Proof. Write

E[‖X̃ − EX − (Ỹ − EY )‖2] = E[‖X̃ − Ỹ ‖2]− ‖EX − EY ‖2.

Taking (X̃, Ỹ ) ∈ opt(X,Y ) we obtain the sense ≤. Taking (X̃−EX, Ỹ −EY ) ∈ opt(X−
EX,Y − EY ) we obtain the other sense.

Proposition 2.17. Let S be a separable Hilbert space and X and Y be random variables
in L2(S). We have

W 2
2 (X,αX) = (1− α)2E‖X‖2.

Proof. Let Y = αX. We have E[‖X − Y ‖2] = (1− α)2E‖X‖2. This shows the inequality
≤. For the other sense, from Cauchy-Schwartz inequality, we get E[〈X,Y 〉] ≤ αE‖X‖2,
implying that E[‖X − Y ‖2] ≥ (1− α)2E‖X‖2.

2.5 Resampling schemes

2.5.1 Different resampling schemes

Efron’s bootstrap, as introduced in Chapter 1, is based on generating new samples accord-
ing to the empirical measure Pn defined as the uniform distribution over {X1, . . . , Xn}.
We have motivated the use of Pn by the fact that it is potentially a good approximation
of the underlying measure P . It seems then natural to think of different sampling schemes
such as parametric sampling and smoothed sampling. The probability space is defined as
follows.

Let (Ω× Ω∗,F ⊗ F∗,P× P∗) be a probability space. Let (Xi)i≥1 be an independent
and identically distributed sequence of random variables defined on (Ω,F ,P). Let Qωn be
a random measure. In the example below this measure will depend on X1, . . . , Xn. Let
(X∗n,i)i=1,...,n, n ≥ 1, be an array of random variables defined on (Ω×Ω∗,F ⊗F∗,P×P∗)
such that

∀ω ∈ Ω, ∀n ≥ 1, ∀f1, . . . , fn positive functions

E∗[f1(X∗n,1)× . . . fn(X∗n,n)] = Qωn(f1)× . . . Qωn(fn).

In words, each collection (X∗n,1, . . . , X
∗
n,n) are independent and identically distributed

random variables with law Qωn , conditionally on ω.

2.5.2 Efron’s bootstrap

Here we revisit Efron’s bootstrap using the Wasserstein distance. Let (Xi)i≥1 be an
independent and identically distributed sequence of random variables valued in the Hilbert
space S = Rd. Suppose that E‖X1‖2 <∞ and define

θ0 = EX1,

θ̂n = n−1
n∑
i=1

Xi.



2.5. RESAMPLING SCHEMES 31

Let (X∗i,n)i=1,...,n be defined as before with Qωn = Pn = n−1
∑n
i=1 δXi . Suppose that

E‖X1‖ <∞ and define

θ̂∗n = n−1
n∑
i=1

X∗i,n.

Proposition 2.18. We have

W 2
2

(
n1/2(θ̂n − θ0), n1/2(θ̂∗n − θ̂n)

)
≤W 2

2 (P, Pn) .

Proof. Applying Proposition 2.14 and 2.16 gives that

W 2
2

(
n1/2(θ̂n − θ0), n1/2(θ̂∗n − θ̂n)

)
≤W 2

2

(
X1 − θ0, X

∗
1,n − θ̂n

)
= W 2

2

(
X1, X

∗
1,n

)
− ‖θ0 − θ̂n‖2.

The following theorem provides the consistency of the empirical bootstrap.

Theorem 2.19. We have, with probability 1, n1/2(θ̂∗n− θ̂n) weakly converges to a centered
Gaussian random variable with finite variance E[(X − EX)(X − EX)T ].

Proof. Use the triangle inequality to obtain that

W2(n1/2(θ̂∗n − θ̂n),N (0, σ2)) ≤W2(n1/2(θ̂∗n − θ̂n), n1/2(θ̂n − θ0)) +W2(n1/2(θ̂n − θ0),N (0, σ2))

≤W2 (P, Pn) +W2(n1/2(θ̂n − θ0),N (0, σ2))

We only have to show that each previous term goes to 0 almost surely. By the law of
large number, we have that almost surely, for any f ∈ Cb(S),

Pn(f)→ P (f).

This result is established in Varadarajan (1958), see also (Dudley, 2018b, Theorem 11.4.1).
Moreover we have

Pn‖x‖2 = n−1
n∑
i=1

‖Xi‖2,

which converges almost surely by the strong law of large number. In virtue of Proposition
2.13, we have that W2 (P, Pn) → 0 almost surely. Let µn denote the distribution of

n1/2(θ̂n − θ0), the central limit theorem implies that

µn(f)→ P (f).

Finally, µn(‖x‖2) = E[‖n1/2(θ̂n − θ0)‖2] = E[‖X1 − θ0‖2] = σ2.

2.5.3 The smoothed bootstrap

Suppose that K : Rd → R≥0 is such that
∫
K = 1. Define the kernel density estimator,

for any x ∈ Rd,

fn(x) = n−1
n∑
i=1

Khn(x−Xi),
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with Kh(u) = K(u/h)/hd. Using the results in Devroye et al. (1983) we have that, for all
f , ∫

|fn − f |dλ→ 0, almost surely.

if and only if

nhdn →∞ hn → 0.

From the previous result will follow the next proposition. Define θ̂∗n similarly as in the
Efron’s bootstrap replacing Pn by fndλ. That is, at each n ≥ 1, the bootstrap sample is
generated according to the mixture distribution between the distributions Khn(· − Xi),
i = 1, . . . , n.

Proposition 2.20. Let (Xi)i≥1 be an independent and identically distributed sequence
of random variables valued in Rd. Suppose that E‖X1‖2 <∞ and that K : Rd → R≥0 is
such that

∫
K = 1,

∫
uK(u)du = 0 and

∫
‖u‖2K(u)du <∞. Then

W 2
2

(
n1/2(θ̂n − θ0), n1/2(θ̂∗n − θ̂n)

)
→ 0, almost surely

Proof. Start by proving that

W 2
2

(
n1/2(θ̂n − θ0), n1/2(θ̂∗n − θ̂n)

)
≤W 2

2 (fn, P ).

This can be done following the proof of Proposition 2.18. Then we can rely on Proposition
2.13 and show that weak convergence holds as well as the convergence of the squared norm.
Let g ∈ Cb(S), we have

|
∫
g(fn − f)| ≤ C

∫
|fn − f |

A simple calculation for the squared norm gives∫
‖x‖2fn(x) = n−1

n∑
i=1

∫
‖x‖2Khn(x−Xi) dx

= n−1
n∑
i=1

∫
‖Xi + hnu‖2K(u) du

= h2
n

∫
‖u‖2K(u)du+ n−1

n∑
i=1

‖Xi‖2

This converges to E‖X1‖2.

Exercises

Exercise 2.1 (the parametric bootstrap). Let (Xi)i≥1 be an independent and identically
distributed sequence of random variables. Suppose that X1 ∼ N (θ, 1) where θ ∈ R is
unknown.

1. Give the maximum likelihood estimate θ̂n of θ. Give the distribution of θ̂n.

2. Define a bootstrap estimate θ̂∗n using a sampling according to Qωn = N (θ̂n, 1).

3. Give the distribution of θ̂∗n conditionally on the original observations.

4. Explain how the the quantiles of
√
n(θ̂∗n−θ̂n) can be used to build confidence intervals

and show the (asymptotic) validity of those confidence intervals.
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Cross validation

Cross validation is an approach to assess the performance of a statistical procedure. It is
broadly used to compare the accuracy of different methods and in the end to choose the
best method among a collection of methods.

3.1 Hyper-parameter tuning

This section provides scenarios where many procedures need to be compared. Most of the
statistical procedures or machine learning algorithms require to choose a tuning parameter
among a range of possible values or sometimes to choose a model among many different
possible models. The accuracy of the chosen candidate depends heavily on the decision
process that is employed to make this choice. Let us now give some examples.

Example 3.1 (forward). In the context of regression with a large number of covariates,
forward regression is an algorithm that incorporates at each iteration one additional co-
variate to build the regression function. When to stop is a parameter that needs to be
tuned.

Example 3.2 (penalized regression). Consider the following program

argming∈G

n∑
i=1

(Yi − g(Xi))
2 + λpen(g).

When G = {g(x) = βTx : β ∈ Rd} and pen(g) = ‖β‖1 (resp. pen(g) = ‖β‖22), we
recover the Lasso (resp. the Ridge). When G = {g(x) =

∑n
i=1K(x,Xi)βi : β ∈ Rn}

and pen(g) =
∑

1≤i,j≤nK(Xi, Xj)βiβj, we recover support vector regression (including
splines as an example). All these methods depend on the choice of λ which encodes for
the importance of the penalization function with respect to the loss function.

Example 3.3 (nearest neighbour). Let x ∈ Rd. Denote by (Xi)i=1,...,k its k-nearest
neighbour and by (Yi)i=1,...,k the associated output variable valued in {0, 1}. The k-nearest
neighbour estimate is a majority vote among the (Yi)i=1,...,k. It equals one if and only if
there is a larger number of 1 than 0 in (Yi)i=1,...,k. Similar to the bandwidth choice, the
performance of such an estimate heavily depends on the choice of k.

Example 3.4 (model choice). Many models are often available to perform maximum
likelihood estimation. For instance, each model can be determined by the set of covariates
used in the regression function. Each model, say M, is fitted by

argmaxf∈M

n∑
i=1

log(f(Xi)).
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Example 3.5 (kernel density estimation). The quantity

n−1
n∑
i=1

Kh(x−Xi)

is the kernel smoothing estimator of the density of X1 (also known under the name
Parzen–Rosenblatt estimate). The performance of such an estimate heavily depends on
the choice of h > 0, called the bandwidth.

3.2 Statistical framework

Risk minimization. Let P be a probability measure and suppose that we seek to
estimate a quantity f living in some space F that minimizes the expected loss

R(f) = E[`(Z, f)] =

∫
`(z, f) dP (z),

where Z ∼ P , ` : Rd ×F → R is a measurable function called the loss function and R(f)
is called the risk associated to f . For instance, in regression the loss function is usually
the square loss z = (y, x) 7→ (y− f(x))2, in classification the 0-1 loss z = (y, x) 7→ Iy 6=f(x)

is often the one of interest, and in density estimation, it is the Kullback-Liebler loss
z 7→ − log(f(z)) that is of interest.

Empirical Risk minimization. Let (Zi)i=1,...,n be an independent and identically
distributed sequence of random variables defined on a probability space (Ω,F ,P) with
common distribution P . The empirical estimate of f is defined as follows

f̂ = argminf∈F R̂(f),

R̂(f) = n−1
n∑
i=1

`(Zi, f).

As the model f̂ has been “trained” using the sample {X1, . . . , Xn}, it is usually called

the “training” sample. The f̂ defined above is the minimizer of the empirical risk.

Model evaluation. The performance of f̂ is measured through

R(f̂) =

∫
`(z, f̂) dP (z),

the problem being that this quantity is unknown, and, unfortunately, hard to estimate
as we shall see in the next few lines. Model assessment or model evaluation means
quantifying the performance of a method. Regarding the framework defined above, it
correspond to estimating R(f̂). Model selection is a generic term for selecting the best
method among a collection of methods. The methods in competition can be different
regression or classification rules, maximum likelihood estimates obtained from different
models, linear regression performed over different set of variables (see the given examples).
Model selection is conducted based on different model evaluation. This makes the question
of estimating the risk of a predictor R(f̂) central to statistics and machine learning.
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3.3 The training sample is biased in estimating the
risk

The somehow natural plug-in estimate R̂(f̂) is actually a poor estimate of R(f̂). The

problem comes from the learning step in which f̂ has been computed minimizing R̂(f)
over F . Because for any f ,

R̂(f̂) ≤ R̂(f)

it follows that
E[R̂(f̂)] ≤ R(f̂)

meaning that it is most likely that R̂(f̂) ≤ R(f̂) which makes R̂(f̂) a poor estimate of the

R(f̂). Another way to underline the flaws of such an approach is to consider a sequence
of nested models Fk−1 ⊂ Fk, k = 1, . . . ,K. Suppose we are interested in finding the best
model among the collection Fk. Comparing the values of R̂(f̂k) where f̂k minimizes R̂
over Fk would always lead to the selection of the largest model FK .

3.3.1 The Mallow’s

This heuristic is easily confirmed when considering ordinary least squares. The regression
estimate satisfies the normal equation

〈X,Xβ̂ − Y 〉 = 0

implying that 〈X,X(β̂ − β)〉 = 〈X, ε〉. It follows that

nR̂(β̂) = ‖Y −Xβ̂‖22 = ‖ε‖22 + 2〈ε,X(β − β̂〉+ ‖X(β − β̂)‖22
= ‖ε‖22 − ‖X(β̂ − β)‖22.

It is well known that
√
n(β̂ − β) N (0,Σ−1σ2). Hence,

‖X(β̂ − β)‖22  ‖N (0, Idσ
2)‖2 = σ2χ2

d.

As a consequence, the asymptotic distribution of R̂(β̂) is represented as σ2(1 − χ2
d/n).

Otherwise we have

R(β̂) = σ2 + (β̂ − β)TΣ(β̂ − β)

 σ2(1 + χ2
d/n).

It results that R̂(β̂) is asymptotically biased in estimating R(β̂). The bias is represented
by

R̂(β̂)−R(β̂) = {‖ε‖22/n− σ2} − (β̂ − β)TΣn(β̂ − β)− (β̂ − β)TΣ(β̂ − β)

= {‖ε‖22/n− σ2} − (β̂ − β)T (Σn − Σ)(β̂ − β)− 2(β̂ − β)TΣ(β̂ − β).

The first term is centered. The second term is negligible. The last term converges to
−2σ2χ2

d/n whose expectation is −2dσ2/n. One of the version of the Mallows’s statistic

C = R̂(β̂) + 2σ̂2

(
d

n

)
,

where σ̂2 is an estimate of the residual variance. The Mallow’s statistics is computed
for each regression model Mk, k = 1, . . . ,K where typically each model is associated
to a covariate subset. Then the selected model is the one having the smallest Mallow’s
statistic.
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3.3.2 Akaike’s information criterion

There are many approaches to reduce the bias induced when estimating the risk. The
most popular one is based on the Akaike’s information criterion (AIC) which is defined
in the context of maximum likelihood estimation. Let

θ̂n = argminθ

n∑
i=1

log(fθ(Zi)).

Under regularity condition it holds that (Van der Vaart, 2000, Theorem 5.39)

√
n(θ̂n − θ) =

I−1

√
n

n∑
i=1

∂ log(fθ(Zi)) + oP (1),

where I = E[∂ log(fθ)∂ log(fθ)
T ] = −E[∂2 log(fθ)] is called the Fisher information ma-

trix. The previous identity follows from ∂2 log(fθ) = ∂2fθ/fθ−(∂fθ/fθ)
⊗2 and

∫
∂2fθ = 0.

We have the following heuristic:

n∑
i=1

log(fθ̂n(Zi))− E[log(fθ̂n(Z1)]

=

n∑
i=1

log(fθ(Zi))− E[log(fθ(Z1)] +

n∑
i=1

{log(fθ̂n(Zi))− E[log(fθ̂n(Z1)]− (log(fθ(Zi))− E[log(fθ(Z1)]}

=

n∑
i=1

log(fθ(Zi))− E[log(fθ(Z1)] +

(
n∑
i=1

∂ log(fθ̃n(Zi))− E[∂ log(fθ̃n(Z1)]

)T
(θ̂n − θ)

'
n∑
i=1

log(fθ(Zi))− E[log(fθ(Z1)] +

(
n∑
i=1

∂ log(fθ(Zi))

)T
(θ̂n − θ)

'
n∑
i=1

log(fθ(Zi))− E[log(fθ(Z1)] + n−1

(
I−1/2

n∑
i=1

∂ log(fθ(Zi))

)T (
I−1/2

n∑
i=1

∂ log(fθ(Zi))

)
.

The previous development shows that the risk is the sum of 2 terms. One which is centered
and another which converges in distribution to a χ2

p distribution where p stands for the
dimension of θ. This leads to the definition of the AIC (Claeskens and Hjort, 2008)

AIC = 2

n∑
i=1

log(fθ̂n(Zi))− 2length(θ).

3.4 Risk estimation with cross validation

3.4.1 The principle

The main goal here is to cancel the bias associated to the estimation of R(f̂) by R̂(f̂).
The main idea is to split the sample {1, . . . , n} in two independent subsamples S and Sc

where Sc is the complement of S. The first sample, Sc is used to construct f̂ that shall
be denoted f̂Sc ; the second sample, S of size nS , is used to compute R̂(·) which shall be
denoted R̂S(·). That is

f̂Sc ∈ argminf∈F
∑
i∈Sc

`(Zi, f)

R̂S(f) = n−1
S

∑
i∈S

`(Zi, f).
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We have

E[R̂S(f̂Sc)|Sc] = n−1
S

∑
i∈S

∫
`(z, f̂Sc)P (dz) = R(f̂Sc).

Definition 3.1. The hold-out estimation of the risk associated to sample S is R̂S(f̂Sc).
We have the following property.

Proposition 3.1. Suppose that for any f ∈ F , E[`(Z1, f)2] <∞. Then

E[R̂S(f̂Sc) | Sc] = R(f̂Sc)

var(R̂S(f̂Sc)|Sc) = n−1
S var(`(Z1, f̂Sc)|Sc).

Looking at the first equation above, we would like to have |Sc| large enough so that

R(f̂Sc) is close to R(f̂n) (where f̂n is the trained predictor on the whole sample). The
the second and third equation, we would like to have nS as large as possible. As n =
|Sc| + |S|, there is a common bias-variance trade off that we need to accomplish. The
next proposition is obtained as a corollary of the previous one.

Proposition 3.2. Suppose that for any f ∈ F , E[`(Z1, f)2] <∞. Then

E[R̂S(f̂Sc)] = E[R(f̂Sc)]

var(R̂S(f̂Sc)) = n−1
S E[var(`(Z1, fSC )|Sc)] + var(R(f̂Sc))

Training, validation, and test. Evaluating the risk is actually conducted at different
stages of most procedures. The common practice is to use three samples1: first, one com-
putes many predictors (as many available models or tuning parameters) using a training
set, second one compares them based on a validation set. At the end of this stage, a
predictor has been selected. Third (if enough sample is available), one proceed to model
assessment by computing the risk of the selected predictor. This is done using a third
sample called the test set.

In what follows we focus on the problem of estimating the risk R(f̂) for a given model
F . This task is the one of the second and third stages described before.

3.4.2 Hold-out consistency

In the following proposition, we establish under general assumptions that the hold-out
is consistent in estimating the risk. We consider an asymptotic framework where the
limiting predictor is denoted f∗. A class G is called P -Glivenko-Cantelli when

sup
g∈G
|Pn(g)− P (g)| → 0, almost-surely.

Proposition 3.3. Suppose that there exists f? such that R(f?) ≤ R(g)

L = {z 7→ `(z, f) : f ∈ F} is P -Glivenko-Cantelli.

Then, if |S|, |Sc| → ∞, we have R̂S(f̂Sc)→ R(f?) almost surely.

Proof. Write

0 ≤ R(f̂Sc)−R(f?) = (R(f̂Sc)− R̂Sc(f̂Sc)) + (R̂Sc(f̂Sc)− R̂Sc(f?)) + (R̂Sc(f
?)−R(f?))

≤ 2 sup
`∈L
|(P|Sc| − P )(`)|.

1https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets

https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets
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Then decompose R̂S(f̂Sc)−R(f?) = R̂S(f̂Sc)−R(f̂Sc) +R(f̂Sc)−R(f?) to obtain

|R̂S(f̂Sc)−R(f?)| ≤ 2 sup
`∈L
|(P|Sc| − P )(`)|+ sup

`∈L
|(P|S| − P )(`)|.

Both goes to 0 as |S|, |Sc| → ∞.

One popular way to obtain the Glivenko-Cantelli property is by using a notion of
complexity called the bracketing numbers. Let G : S → R be a space of functions endowed
with the L1(P )-norm. Note that G is a subset of L1(P ). Given two function g− and g+ in
L1(P ), the set of functions [g−, g+] = {g : X → R : g− ≤ g ≤ g+} is called an ε-bracket
whenever P |g−−g+| ≤ ε. The bracketing number N[ ](ε,G, L1(P )) is the minimal number
of ε-brackets needed to cover G.

Proposition 3.4. Let G ⊂ L1(P ) be such that N[ ](ε,G, L1(P )) <∞ for all ε > 0. Then,
G is Glivenko-Cantelli.

Proof. Let ε > 0. Let [gk−, gk+], k = 1, . . . , N , be a collection of ε-brackets that covers
F . Define An(ε) = maxk=1,...,N{|(Pn−P )(gk+)| ∨ |(Pn−P )(gk−)|}. It is easy to see that

(Pn − P )(g) ≤ max
k=1,...,N

|(Pn − P )(gk+)|+ ε ≤ An(ε) + ε,

and that

−(Pn − P )(g) ≤ max
k=1,...,N

|(Pn − P )(gk−)|+ ε ≤ An(ε) + ε.

Use that |x| = max(x,−x) to obtain that

sup
g∈G
|(Pn − P )(g)| ≤ An(ε) + ε

With probability 1, An(ε) goes to 0. Because An(ε) depends on ε, the event on which
the convergence happens depends on ε as well. Some additional work is required. There
exists Bε such that P (Bε) = 1 and for all ω ∈ Bε we have An(ε)→ 0. Let B = ∩∞k=1B1/k

and note that P (B) = 1. We have for any ω ∈ B and any k ∈ N,

lim sup
n

sup
g∈G
|(Pn − P )(g)| ≤ 1/k.

Many classes of functions have finite bracketing numbers. One of the most famous
example is the indicators of cells over the real line, {z 7→ I{z ≤ t} : t ∈ R}. Lipschitz
functions or monotonic functions also have finite bracketing numbers (Van Der Vaart and
Wellner, 1996, Chapter 7).

3.4.3 Cross validation

Cross validation follows from combining, or rather aggregating, several hold-out estimate
of the risk. The way we choose to build the hold-out estimates gives rise to many proce-
dure. The first one which is probably the most popular is called K-fold cross validation
is described bellow.
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K-fold cross validation. Randomize the sample by applying a random permutation
(Xσ(i))i=1,...,n. This procedure aims at avoiding any dependence structure that would
come from data processing (e.g., ordering). Then split this sample into K folds where
each fold contains (nearly) the same number of observations. We have K samples, for
k = 1, . . . ,K,

Sk = (X(k−1)p+1, . . . , Xkp),

with p = n/K. The cross validation risk is given by

R̂Kcv = (1/K)

K∑
k=1

R̂Sk(f̂Sck).

Leave-one-out. This corresponds to cross validation when K = n. The random per-
mutation is not needed here. The estimated risk is given by

R̂loo = (1/n)

n∑
i=1

R̂Xi(f̂S(−i)).

Leave-p-out. This is a generalization of the leave-one-out. Let Sp be the set of samples
made of p observations. There are p among n such sample, the average of which is

R̂lpo =

(
n
p

)−1 ∑
S∈Sp

R̂S(f̂Sc).

Monte Carlo cross validation. We use a Monte-Carlo additional step consisting in
generating a certain number M of samples of size p, uniformly over the set Sp. Denote
by S∗1 , . . . S

∗
M , the generated sample. Define

R̂MC = M−1
M∑
m=1

R̂S∗
m

(f̂S∗c
m

).

Bootstrap cross validation. Generate M bootstrap samples by uniform draws among
{Z1, . . . , Zn}. For each sample m = 1, . . . ,M , define Sm = {X∗n,1, . . . , X∗n,n}. Note that
contrary to the previous cross validation procedures, this is a sample of size n. Define Scm
as the complement of Sm in {Z1, . . . , Zn}. Define

R̂boot = M−1
M∑
m=1

R̂S∗
m

(f̂S∗c
m

).

For each bootstrap sample, P ∗(Xi /∈ Sm) = P ∗(Xn,1 6= Xi)
n = (1− 1/n)n ' e−1 = 0.37.

Proposition 3.5. Let S and S̃ be subset of {1, . . . , n} such that |S| = |S̃|. The estimates

R̂S(f̂(Sc)) and R̂S̃(f̂(S̃c)) have the same distribution.

Proof. Use an appropriate permutation of {1, . . . , n}.

The following proposition draw a link between cross-validation and aggregation pro-
cedure.

Proposition 3.6. Suppose that p = n/K.

var(R̂lpo) ≤ var(R̂Kcv) ≤ var(R̂ho).
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Proof. We follow Arlot (2018). From Jensen inequality, one has

var(R̂Kcv) = E

((1/K)

K∑
k=1

{R̂Sk(f̂Sck)− E[R̂Sk(f̂Sck)]}

)2


≤ E

[(
(1/K)

K∑
k=1

{R̂Sk(f̂Sck)− E[R̂Sk(f̂Sck)]}2
)]

= (1/K)

K∑
k=1

E{R̂Sk(f̂Sck)− E[R̂Sk(f̂Sck)]}2.

The use Proposition 3.5 to obtain the right-hand side inequality. For the other inequality,
one should remark that, for any S of size n/K,

R̂lpo = (n!)−1
∑
σ∈Σ

R̂S(f̂Sc)

Averaging over the Sk of the K folds, we obtain that

R̂lpo = (n!)−1
∑
σ∈Σ

R̂Kcv,

and we can apply Jensen inequality.
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Sankhyā: The Indian Journal of Statistics (1933-1960) 19 (1/2), 23–26.

Villani, C. (2008). Optimal transport: old and new, Volume 338. Springer Science &
Business Media.

41


	Efron's bootstrap
	Mathematical background
	The imitation principle
	The framework
	The imitation principle
	The bootstrap algorithm

	Bootstrap approximation
	The randomness of bootstrap sequences
	Convergence of bootstrap estimates
	Consistency of the bootstrap
	Bootstrap confidence intervals

	Bootstrapping the covariance estimate
	Edgeworth expansion
	Studentization improves the accuracy
	Pivotal statistics


	The Wasserstein distance and the bootstrap
	Mathematical background
	The Wasserstein distance
	Relation to weak convergence
	The case of W1
	Characterizing convergence in Wp using weak convergence

	Sums of random variables in Hilbert spaces
	Resampling schemes
	Different resampling schemes
	Efron's bootstrap
	The smoothed bootstrap


	Cross validation
	Hyper-parameter tuning
	Statistical framework
	The training sample is biased in estimating the risk
	The Mallow's
	Akaike's information criterion

	Risk estimation with cross validation
	The principle
	Hold-out consistency
	Cross validation



