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Notations

• 〈·, ·〉 is the usual inner product in Rd. ‖ · ‖ is the Euclidean norm. The elements forming the canonical
basis of Rd are denoted by e0, . . . , ed−1. Additionally, the `q-norm of x ∈ Rd is denoted by ‖x‖qq =∑d
k=1 x

q
k.

• If A ∈ Rn×d is a matrix, AT ∈ Rd×n is the transpose matrix, ker(A) = {u ∈ Rd : Au = 0}.

• For any set of vectors (u1, . . . , ud) in Rn, span(u1, . . . , ud) = {∑d
k=1 αkuk : (α1, . . . , αd) ∈ Rd}. When

A is a matrix span(A) stands for the linear subspace generated by its columns.

• When A is a square invertible matrix, the inverse is denoted by A−1. The Moore–Penrose inverse is
denoted by A+. The trace of A is given by tr(A).

• The identity matrix in Rd×d is Id. The vector 1n ∈ Rn contains n ones.

• For any sequence z1, z2, . . ., the empirical mean over the n first elements is denoted by zn =
∑n
i=1 zi/n

• When two random variables X and Y have the same distribution we write X ∼ Y .

• When Xn is a sequence of random variables that converges in distribution (resp. in probability) to X,

we write Xn  X (resp. Xn
p→ X).
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Chapter 1

Definition of ordinary least-squares
and first properties

1.1 Definition

The general goal of regression is to predict with an output variable y ∈ R, also called the explanatory
variable, based on the observation of some input variables x = (x1, . . . , xp)

T ∈ Rp, with p ≥ 1, also called
the covariates. The statistical approach consists in learning or estimating a regression function (also called
link function) that maps any element x of the input space Rp to the output space R. Generally, the estimation
of the regression function is based on the observation of a sample made of examples. These examples are also
called the observations and each example is a pair made of an input variable together with the corresponding
output. Let n ≥ 1 denote the number of observations. Let (xi, yi)i=1,...,n be the observations such that for
each i, xi ∈ Rp and yi ∈ R. Many regression model can be estimated on the basis of these observations.
In this course, we focus on linear regression in which the regression function is defined as a simple linear
function, i.e., the variable y is modeled by θ0 + θ1x1 + . . .+ θpxp where (θ0, . . . , θp) are the parameters of the
linear regression function. In what follows we introduce the ordinary least squares (OLS) approach which
basically consists in minimizing the sum of squares of the distance between the observed values yi and the
predicted values at xi under the linear model.

We focus on a regression problem with n ≥ 1 observations and p ≥ 1 covariates. For notational conve-
nience, for i = 1, . . . , n, we consider yi ∈ R and zi = (xi,0, . . . , xi,p)

T = (xi,0, x
T
i ) ∈ Rp+1 with xi,0 = 1.

This is only to include the intercept in the same way as the other coefficients. The OLS estimator is any
coefficient vector θ̂n = (θ̂n,0, . . . , θ̂n,p)

T ∈ Rp+1 such that

θ̂n ∈ argminθ∈Rp+1

n∑
i=1

(yi − zTi θ)2. (1.1)

It is useful to introduce the notations

X =

x
T
1
...
xTn

 ∈ Rn×p, Z =

z
T
1
...
zTn

 =

x1,0 . . . x1,p
...

...
xn,0 . . . xn,p

 ∈ Rn×(p+1), Y =

y1...
yn

 .

The matrix X which contains the covariates is called the design matrix. The matrix Z which contains the
covariates is called the extended design matrix. With the previous notation, (1.1) becomes

θ̂n ∈ argminθ∈Rp+1 ‖Y − Zθ‖2,
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Figure 1.1: The dataset is the cars dataset from the R software. We use sklearn to compute OLS. The graph
on the left represents the OLS line without intercept and the graph on the right is the OLS line computed
with intercept.

where ‖ · ‖ stands for the Euclidean norm. As soon as θ̂n is obtained, one can use it to define the estimated
regression function

ĝ(x) = θ̂n,0 +

p∑
k=1

θ̂n,kxk.

This function is often called the predictor due to its use to predict the output value based on the observation
of the input x.

1.2 Existence and uniqueness

With the above formulation, the OLS has a nice geometric interpretation : Ŷ = Zθ̂n is the closest point
to Y in the linear subspace span(Z) ⊂ Rn (where span(A) stands for the linear subspace generated by the
columns of A). Using the Hilbert projection theorem (Rn is a Hilbert space, span(Z) is a (closed) linear
subspace of Rn), Ŷ is unique and is characterized by the fact that the vector Y − Ŷ is orthogonal to span(Z).
This property is equivalent to the so-called normal equation:

ZT (Y − Ŷ ) = 0.

Since Ŷ = Zθ̂n, we obtain that the vector θ̂n must verify

ZTZ θ̂n = ZTY. (1.2)

Note that in contrast with Ŷ (which is always unique), the vector θ̂n is not uniquely defined without further

assumptions on the data. For instance, take u ∈ ker(Z) then θ̂n + u verifies (1.2) as well as θ̂n. The
uniqueness of the OLS is actually determined by the kernel of Z which is related to the invertibility of the
so called Gram matrix introduce below (see Exercise 1).

Definition 1. The matrix Ĝn = ZTZ/n is called the Gram matrix. Denote by Ĥn,Z ∈ Rn×n the orthogonal
projector1on span(Z).

1Recall that P is the orthogonal projector on E, a subspace of Rn, if and only if P 2 = P , PT = P and ker(P ) = E⊥.
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When the Gram matrix is invertible, the OLS is uniquely defined. When it is not the case, (1.1) has an
infinite number of solutions.

Proposition 1. The OLS estimator always exists and the associated prediction is given by Ŷ = Ĥn,ZY . It
is either

(i) uniquely defined. This happens if and only if the Gram matrix is invertible, which is equivalent to
ker(Z) = ker(ZTZ) = {0}. In this case, the OLS has the following expression:

θ̂n = (ZTZ)−1ZTY.

(ii) or not unique, with an infinite number of solutions. This happens if and only if ker(Z) 6= {0}. In this

case, the set of solution writes θ̂n + ker(Z) where θ̂n is a particular solution.

Proof. The existence has already been shown using the Hilbert projection theorem. The linear system (1.2)
has therefore a unique solution or an infinite number of solutions depending on whether the Gram matrix is
invertible or not. Hence it remains to show that ker(Z) = ker(ZTZ) which follows easily from the identity
‖Zu‖2 = uTZTZu.

When the OLS is not unique, the solution traditionally considered is

θ̂n = (ZTZ)+ZTY,

where (ZTZ)+ denotes the Moore–Penrose inverse of ZTZ, which always exists. For a demi-definite positive
symmetric matrix with eigenvectors ui and corresponding eigenvalues λi ≥ 0, the Moore–Penrose inverse is
given by

∑
i λ
−1
i uiu

T
i 1{λi>0}.

Corollary 1. The set of solution of OLS (1.1) is given by {(ZTZ)+ZTY + u : u ∈ ker(Z)}.
Proof. Let u ∈ ker(Z). Verify that (ZTZ)+ZTY + u is a solution (see exercise 7). Then assuming that v is
a solution, note that v − (ZTZ)+ZTY belongs to ker(Z).

1.3 To centre the data or not to centre the data

We now state the equivalence between this 2 procedures : doing OLS, with the intercept, on (Y,X) (as de-
scribed before) and doing OLS, without the intercept, on centered variables. The later estimation procedure
consists in the following. Define

Y = n−1
n∑
i=1

Yi, and X = n−1
n∑
i=1

xi,

Yc = Y − 1nY and Xc = X − 1nX
T

. Hence the quantities Yc and Xc are just centered version of Y and X,
respectively. Define

θ̂n,c = argminθ∈Rp ‖Yc −Xcθ‖.
The associated predictor is given by

ĝc(x) = Y + θ̂n,c(x−X).

Proposition 2. It holds that

min
θ̃∈Rp

‖Yc − X̃cθ̃‖ = min
θ∈Rp+1

‖Y −Xθ‖.

and, assuming that Z has full rank, we have the following relationship between the traditional OLS and the
OLS based on centred data,

(θ̂n,1, . . . , θ̂n,p) = θ̂Tn,c.

Moreover, the 2 methods give the same predictor, i.e., for all x ∈ Rp, ĝ(x) = ĝc(x).

7



Proof. See exercise 9.

We conclude with the following proposition which expresses the uniqueness condition given in Proposition
1 in terms of X.

Proposition 3. The following conditions are equivalent:

(i) ker(Z) = {0}

(ii) ker(Xc) = {0}

(iii) The empirical covariance matrix of X, defined as XT
c Xc/n, is invertible

Proof. See Exercise 5.

1.4 The determination coefficient

To avoid trivial cases, we suppose in the following that
∑n
i=1(yi − yn)2 > 0, i.e., that the sequence yi is not

constant. The determination coefficient, denoted by R2, is defined as the quotient between the explained
sum of squares and the total sum of squares. It is given by

R2 =

∑n
i=1(ŷi − yn)2∑n
i=1(yi − yn)2

=
‖Ŷ − yn1n‖2
‖Y − yn1n‖2

.

Because of the orthogonality between Ŷ − Y and Ŷ and between Ŷ − Y and yn1n, we have that

‖Y − yn1n‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − yn1n‖2

It follows that

R2 = 1− ‖Ŷ − Y ‖2
‖Y − yn1n‖2

. (1.3)

The last expression involves a new quantity, called the residual sum of squares, which is small as soon as the
OLS procedure went well, i.e., as soon as the predicted values are close to the observed values. Hence the
closer to 1 the R2 the better. The following statement justifies the use of the R2 as a score supporting the
quality of the OLS estimation :

• R2 = 1 if and only if Y = Ŷ .

• R2 = 0 if and only if Ŷ = Ĥ1nY implying that θ̂n = (yn, 0, . . . , 0) is one OLS estimator.

Exercises

Exercise 1. Show that ker(ZTZ) = ker(Z) and that span(ZT ) = span(ZTZ) (for the latter, one might first
note that ker(Z) = span(ZT )⊥). Deduce that the normal equations always have at least one solution.

Exercise 2. Give θ̂n ∈ R and Ŷ ∈ Rn in the case where Z = 1n and Y ∈ Rn.

Exercise 3. Show that any invertible transformation on the covariate, i.e. Z is replaced by ZA with A
invertible, does not change the predicted values Ŷ nor the predictor.

Exercise 4. Show that
∑n
i=1 ε̂i = 0, where ε̂ = Y − Ŷ = (I − Ĥn,Z)Y .

Exercise 5. Aim is to express the uniqueness condition of the OLS in terms of the empirical covariance
matrix Σ̂n = n−1

∑n
i=1(xi −X)(xi −X)T .
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(a) Show that ker(Z) = ker(ZTZ).

(b) Prove that ZTZ =
∑n
i=1 ziz

T
i .

(c) Verify that ker(Z) = 0 if and only if the empirical covariance matrix Σ̂n is invertible (hint : one might
work on the condition that Σ̂n is non-invertible, i.e., there exists u ∈ Rp\{0} such that Xcu = 0).

Exercise 6. Aim is to obtain the formula Ĥn,Z = Z(ZTZ)+ZT .

(a) Verify that for any non-negative symmetric matrix A ∈ Rp×p, show that A+A = A+.

(b) Show that Z(ZTZ)+ZT is idempotent and symmetric (making it an orthogonal projector).

(c) Using that Z(ZTZ)+ZT writes as UUT for some matrix U that we shall specify, obtain that ker(Ĥn,Z) =
ker(ZT ).

(d) Conclude showing that span(Ĥn,Z) = span(Z).

Exercise 7. Show that θ̂n = (ZTZ)+ZTY is a solution of the OLS problem.

Exercise 8. Show (1.3).

Exercise 9. Aim is to prove Proposition 2.

(a) Start by obtaining that the inequality ≥ holds true.

(b) Then show that for any collection (wi)i=1,...,n of real numbers, and for all w ∈ R, it holds that ‖W −
w1n‖ ≥ ‖W −W1n‖, where W = (z1, . . . , zn) and W = n−1

∑n
i=1 zi.

(c) Find ân such that, for any θ0 ∈ R and θ̃ ∈ Rp, ‖Y − θ01n −Xθ̃‖ ≥ ‖Y − ân(θ̃)1n −Xθ̃‖.

(d) Conclude that minθ∈Rp ‖Yc −Xcθ‖ = minθ∈Rp, θ0∈R ‖Y − Z(θ0,θ
T )T ‖

(e) Use the Hilbert projection theorem to conclude that whenever ker(Z) = {0}, (θ̂n,1, . . . , θ̂n,p) = θ̂Tn,c.

9
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Chapter 2

Statistical model

In the previous section, we have defined the OLS estimator based on the observed data without any assump-
tion on the generating process associated to the data. When assuming that the observations are independent
realizations of some random variables, we can rely on probability theory to further study the behaviour of
the OLS. In the following we describe different probabilistic models : fixed design model, random design
model and the Gaussian noise model.

2.1 The fixed-design model

The fixed design model takes the form:

Yi = zTi θ
? + εi, for all i = 1, . . . , n,

where (zi) is a sequence of deterministic points in Rp+1 and (εi) is a sequence of random variables in R such
that

E[ε] = 0, var(ε) = σ2In, with ε =

ε1...
εn

 .

For instance, (εi) can be an identically distributed and independent sequence of centred random variables
with variance σ2. The level of noise σ of course reflects the difficulty of the problem.

The fixed-design model is appropriate when the sequence (zi) is chosen by the analyst, e.g., in a physics
laboratory experiment, one can fix some variables such as the temperature, or in a clinical survey one can
give to patients a determined quantity of some serum. In contrast, the random design (see Section 2.3)
model is appropriate when the covariates are unpredictable as for instance the wind speed observed in the
nature or the age of some individuals in a survey.

Based on this model, we can derive some statistical properties that we present in the following. These
properties are concerned with different types of error related to the estimation of θ? by θ̂n and will be
obtained under the assumption that the dimension of span(Z) equals p+ 1, implying that ker(Z) = {0} and

that θ̂n is unique. We therefore implicitly assume that n ≥ p+ 1. We can now state a useful decomposition:
provided that ker(Z) = {0}, it holds that

θ̂n − θ? = (ZTZ)−1ZT ε. (2.1)

2.1.1 Bias, variance and risk

The bias, the variance and the risk are important quantities because they are measures of the estimation
quality. For instance, an estimator is accurate when the bias is 0 and the variance is small. The following
notion of bias is related to the whole statistical model (for all θ?, not for a particular one).
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Definition 2. An estimator θ(Z, Y ) is said to be unbiased if for all (Z, ε,θ?) used to generate Y according
to the model, it holds that E[θ(Z, Y )] = θ?.

The risk measures the average error associated to an estimation procedure. Different notions of risk can
be defined: the quadratic error is defined as the expected squared error of the regression coefficients θ, the
predictive risk takes care of the prediction error, i.e., the error when predicting y. Formal definitions are
given below.

Definition 3. The quadratic error associated to θ̂n estimating θ? is

Equad(θ̂n,θ
?) = E[‖θ̂n − θ?‖2].

The predictive risk is

R̂(θ̂n,θ
?) = E[‖Y ? − Ŷ ‖2]/n,

where Y ? is the prediction we would make if we knew the true regression vector, i.e., Y ? = Zθ?.

Proposition 4. When ker(Z) = {0}, the following holds:

(i) the OLS estimator is unbiased i.e., it holds that E[θ̂n] = θ?.

(ii) Its covariance matrix is given by var(θ̂n) = (ZTZ)−1σ2.

(iii) R̂(θ̂n,θ
?) = (p+ 1)σ2/n.

(iv) Equad(θ̂n,θ
?) = tr((ZTZ)−1)σ2.

Hence whenever the smallest eigenvalue of Ĝn is larger than b (independently of n), the quadratic error
of the OLS decreases with the rate 1/n, which is the classical estimation rate in statistics, e.g., Z average
estimating the expectation.

2.1.2 Best linear unbiased estimator (BLUE)

This section is dedicated to the so called Gauss-Markov theorem which asserts that the OLS is BLUE.
We introduce the following partial order (reflexivity, anti-symmetry and transitivity) on the set of sym-

metric matrices. Let V1 ∈ Rd×d and V2 ∈ Rd×d be two symmetric matrices. We write V1 ≤ V2 whenever
uTV1u ≤ uTV2u for every u ∈ Rd. This partial order is particularly useful to compare the covariance matrices
of estimators. Indeed if β̂1 and β̂2 are estimators with respective covariance V1 and V2. Then, V1 ≤ V2 if
and only if any linear combination of β̂1 has a smaller variance than the same linear combination of β̂2.

Definition 4. An estimator is said to be linear if, for any dataset (Y, Z), it writes as AY , where A ∈
R(p+1)×n depends only on Z.

Proposition 5 (Gauss-Markov). Under the fixed design model, among all the unbiased linear estimators

AY , θ̂n is the one with minimal variance, i.e.,

cov(θ̂n) ≤ cov(AY ),

with equality if and only if A = (ZTZ)−1ZT .

Proof. First note that AY is unbiased if and only if (A − (ZTZ)−1ZT )Zθ? = 0 for all θ?, equivalently,

BZ = 0 with B = (A− (ZTZ)−1ZT ). Consequently, using that EεεT = σ2In, cov(BY, θ̂n) = 0. Then, just
write

cov(AY ) = cov(BY + θ̂n)

= cov(BY ) + cov(θ̂n)

= σ2BBT + cov(θ̂n) ≥ cov(θ̂n).

The previous inequality is an equality if and only if B = 0.
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2.1.3 Noise estimation

Providing only an estimate θ̂n of θ? is often not enough as it does not give any clue on the accuracy of the
estimation. When possible, one should also furnish an estimation of the error σ2. If one knew the residuals
(εi), one would take the Z variance of ε1, . . . , εn, but this is not possible. Alternatively, one can take

σ̃2
n = n−1

n∑
i=1

(Yi − Ŷi)2.

Because of the first normal equations expressed in (1.2), we have
∑n
i=1(Yi − Ŷi) = 0. Consequently, σ̃2

n is

simply the empirical variance estimate of the residual vector Yi − Ŷi. Noting that σ̃2
n = n−1‖(In − Ĥn,Z)ε‖2

one can compute the expectation:

E[σ̃2
n] = σ2(n− p− 1)/n.

The unbiased version (which should be used in practice) is then

σ̂2
n = σ̃2

n

(
n

n− p− 1

)
,

where from now on we assume that n > p+ 1. In the case when n = p+ 1 and Z has rank p+ 1, we obtain
that Yi = Ŷi for all i = 1, . . . , n.

2.2 The Gaussian model

Here we introduce the Gaussian model as a submodel of the fixed design model where the distribution of
the noise sequence (εi) is supposed to be Gaussian with mean 0 and variance σ2. The Gaussian model can
then be formulated as follows:

Yi
i.i.d.∼ N (zTi θ

?, σ2), for all i = 1, . . . , n,

where (zi) is non-random sequence of vector in Rp+1. We keep assuming that ker(Z) = {0} in the following.

2.2.1 The Cochran lemma

The Student’s t-distribution with p degrees of freedom is defined as the distribution of the random variable
W/
√
V/p, where W (resp. V ) has standard normal distribution (resp. chi-square distribution with p degrees

of freedom).

Proposition 6. Under the Gaussian model, if ker(Z) = {0} and n > p+ 1, it holds that

• θ̂n and σ̂2
n are independent,

• n1/2(θ̂n − θ?) ∼ N (0, nσ2(ZTZ)−1) ,

• (n− p− 1)(σ̂2
n/σ

2) ∼ χ2
n−p−1,

• if ŝ2n,k is the k-th term in the diagonal of Ĝ−1n , then

(n1/2/ŝn,kσ̂n)(θ̂n,k − θ?k) ∼ Tn−p−1,

where Tn−p−1 is the Student’s t-distribution with n− p− 1 degrees of freedom.
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Proof. For the first point, remark that ZT ε and (I − Ĥn,Z)ε are two independent Gaussian vectors:

cov(ZT ε, (I − Ĥn,Z)ε) = E[ZT εεT (I − Ĥn,Z)] = 0.

Then writing

(n− p− 1)σ̂2 = ‖Y − Ŷ ‖2 = ‖(I − Ĥn,Z)Y ‖2 = ‖(I − Ĥn,Z)ε‖2

θ̂n − θ? = (ZTZ)−1ZT ε,

we see that θ̂n and σ̂2 are measurable transformations of two independent Gaussian vector. They then
are independent. We can use for instance the following characterisation of independence, say for random
variables ξ1 and ξ2 : for any f1 and f2 positive and measurable, E[f1(ξ1)f2(ξ2)] = E[f1(ξ1)]E[f2(ξ2)].

For the second point, as ε is Gaussian, one just has to compute the variance.
For the third point, let V ∈ Rn×n be an orthogonal matrix such that V = (V1, V2) where V1 is a basis of

span(Z), and note that V T1 (I − Ĥn,Z) = 0 and V T2 (I − Ĥn,Z) = V T2 . As the norm is invariant by orthogonal
transformation, one has

(n− p− 1)σ̂2 = ‖(I − Ĥn,Z)ε‖2 = ‖V T (I − Ĥn,Z)ε‖2 = ‖V T2 ε‖2.

Consequently,

(n− p− 1)(σ̂2/σ2) =

n−p−1∑
i=1

ε̃2i ,

with ε̃ = V T2 ε/σ. It remains to show that ε̃ is a Gaussian vector with covariance In−p−1.
For the fourth point, use the second point to obtain that

(n1/2/ŝn,kσ)(θ̂n,k − θ?k) ∼ N (0, 1).

Then (n1/2/ŝn,kσ̂n)(θ̂n,k − θ?k) writes as the quotient of two independent random variables: a Gaussian and
the square root of a chi-square. This is a Student’s t-distribution with n− p− 1 degrees of freedom.

A direct application of the previous proposition gives us the following equality, which is informative on
the estimation error, for any k = 0, . . . , p,

P(|θ̂n,k − θ?k| ≥ t) = 2STn−p−1
(tn1/2/ŝn,kσ̂n),

where STn−p−1
is the survival function of the distribution Tn−p−1.

2.3 The random design model

In the random design model, we suppose that (Yi, Zi)i≥1 is a sequence of independent and identically
distributed random vectors defined on the probability space (Ω,A,P) and each element (Yi, Zi) is valued in
R×Rp+1. The aim is to estimate the best linear approximation of Y1 made up with Z1 in terms of L2-risk,
i.e., to find θ that minimizes E[(Y1 − ZT1 θ∗)2]. Such a minimizer can be characterized with the help of the
normal equation. Recall that Z1 ∈ Rp+1 and Z1,0 = 1 almost surely.

Proposition 7. Suppose that for all k = 0, . . . , p, E[X2
1,k] <∞ and E[Y 2

1 ] <∞, then

inf
θ

E[(Y1 −XT
1 θ)2] = E[(Y1 −XT

1 θ
∗)2],

if and only if

E[X1X
T
1 ]θ∗ = E[X1Y1].
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Proof. Note that the minimization problem of interest is equivalent to

inf
Z1∈F

E[(Y1 − Z1)2],

where F is the linear subspace of the Hilbert space L2(Ω,A,P) generated by Z1,0, . . . , Z1,p. As F is a closed
linear subspace (because it has a finite dimension), the minimizer is unique and characterized by the normal
equations.

The previous proposition does not imply that θ∗ is unique. In fact we are facing a similar situation as
in Proposition 1 : either θ∗ is unique, which is equivalent to E[Z1Z

T
1 ] is invertible, or θ∗ is not uniquely

defined. Note that θ∗ is not unique whenever one variable is a combination of the others. In this case one
might consider any of the solution, e.g., θ∗ = E[Z1Z

T
1 ]+E[Z1Y1]. Some asymptotic properties are available.

They will be useful to run some statistical tests. We consider the following definition, valid for any n ≥ 1,

θ̂n = (ZTZ)+ZTY.

Proposition 8. Suppose that E[Z1Z
T
1 ] and E[Y 2

1 ] exist and that E[Z1Z
T
1 ] is invertible. Then

n1/2(θ̂n − θ∗) N (0, σ2G−1),

where σ2 = var(Y1 − ZT1 θ∗) and G = E[Z1Z
T
1 ]. Moreover

σ̂2
n → σ2, in probability.

In particular, (n1/2/ŝn,kσ̂n)(θ̂n,k − θ?k) N (0, 1).

Proof. Note that

n1/2(θ̂n − θ∗) = n1/2(ZTZ)+ZT ε+ n1/2((ZTZ)+(ZTZ)− Ip+1)θ∗.

It suffices to show that the term in the right converges to 0 in probability and that the term in the left
converges in distribution to the stated limit. The first point is a consequence of the continuity of the
determinant. The second point is a consequence of Slutsky’s theorem using the fact that the Moore-Penrose
inverse is a continuous operation. For more details, see Exercise ??.

The convergence of σ̂2
n is obtained by the decomposition

σ̂2
n = (n− p+ 1)−1‖(I − Ĥn,Z)ε‖22

= (n− p+ 1)−1
(
‖ε‖2 − εTZ(ZTZ)+ZT ε

)
.

Invoking the law of large number, we only need to show that the term on the right goes to 0 in probability.
We have

εTZ(ZTZ)+ZT ε =

(
n−1/2

n∑
i=1

Ziεi

)T
Ĝ+
n

(
n−1/2

n∑
i=1

Ziεi

)

Because Ĝ+
n → G−1 and n−1/2

∑n
i=1 Ziεi  N (0, G), we get that

εTZ(ZTZ)+ZT ε ‖N (0, σ2Ip+1)‖2 = σ2χ2
p+1.

When divided by (n− p+ 1) the previous term goes to 0.

Remark 1. A more general regression problem can be formulated without specifying a linear link : the
regression function f∗ is any measurable function that minimizes the risk

R(f) = E[(Y1 − f(Z1))2].

When E[Y 2
1 ] < ∞, the minimizer is unique and coincides, in L2(Ω,A,P), with the conditional expectation

of Y given Z1 : f∗(Z1) = E[Y1|Z1], almost surely.
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Chapter 3

Confidence intervals and hypothesis
testing

3.1 Confidence intervals

From a practical perspective, building confidence intervals is often an inevitable step as it permits to evaluate
the quality of the estimation. The construction of confidence intervals follows the estimation step. Intuitively,
a confidence interval is simply a region (based on the observed data) in which the parameter of interest is
most likely to lie. The accuracy/quality of the estimation is then naturally measured by the size of the
underlying confidence interval. As we shall see, the construction of a confidence interval is based on the
estimation of the variance.

We consider a regression model with n observed data points (Y,X) and we focus on the task of building
confidence intervals for the k-th coordinate θ?k of the regression vector (where k =∈ {0, . . . , p}).

Definition 5. A confidence interval of level 1− α is an interval În(Y,X) ⊂ R satisfying, for all n ≥ 1,

P(θ?k ∈ În(Y,X)) ≥ 1− α.

3.1.1 Gaussian model

Confidence intervals for the regression coefficients

Confidence intervals can be obtained easily when the assumption on the model allows to know the distribution
of the quantity θ̂n,k−θ?k. This is the case for instance in the popular Gaussian model in virtue of Proposition
6. Recall that, when it exists,

ŝ2n,k = eTk Ĝ
−1
n ek.

Proposition 9. In the Gaussian model, if ker(X) = {0} and n > p+ 1,

θ̂n,k +

[
−
(
ŝn,kσ̂n
n1/2

)
Qn−p−1(1− α/2) ,

(
ŝn,kσ̂n
n1/2

)
Qn−p−1(1− α/2)

]
,

where Qn−p−1 is the quantile function of the distribution Tn−p−1, is a confidence interval of level 1− α.

Confidence intervals for the predicted values

We are now interested in building confidence intervals for the predicted value under the true model at a
single given point x = (1, x1, . . . , xp) ∈ Rp. The predicted value at x under the true model is defined as
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y∗ = xTθ∗. In the Gaussian model, using preservation properties of the Student’s distribution, we find the
following confidence interval CI(x) of level 1− α. With probability equal to 1− α,

y∗ ∈ CI(x),

where

CI(x) = xT θ̂n ±Qn−p−1(1− α/2)σ̂
√
xT (XTX)−1x,

and σ̂2
n =

∑n
i=1

(
Yi − xTi θ̂n

)2
/(n − p − 1) (it has been introduced in Chapter 2). A related question is to

build a confidence interval on the value of y (not y∗) under the true model. This can be done in a similar
manner as before but one needs to pay a particular attention to the additive noise in the model. Indeed, we
have that y = y∗ + ε where ε ∼ N (0, σ2). It follows that

y ∈ PI(x),

with

PI(x) = xT θ̂n ±Qn−p−1(1− α/2)σ̂
√

1 + xT (XTX)−1x.

For more details on the derivation of those confidence intervals, see Exercise 10.

3.1.2 Nongaussian case

When the noise distribution is not Gaussian, the previous confidence interval has no reason to be valid. In
this case, there are basically two techniques permitting the construction of confidence intervals:

• Concentration inequalities. This usually produces pessimistic (too large) confidence interval.

• Asymptotics. This only produces asymptotically valid confidence interval (often too small).

We focus on the second approach.

Proposition 10. In the random design model, suppose that E[X2
1,k] <∞ and E[Y 2

1 ] <∞, then

θ̂n,k +

[
−
(
ŝn,kσ̂n
n1/2

)
Φ−(1− α/2) ,

(
ŝn,kσ̂n
n1/2

)
Φ−(1− α/2)

]
,

where Φ− is the quantile function of the distribution N (0, 1), is, asymptotically, a confidence interval of level
1− α, i.e.,

lim inf
n→∞

P(θ?k ∈ În(α)) ≥ 1− α.

Proof. That Xn  N (0, 1) means that P (Xn ∈ [−Φ−(1 − α/2),Φ−(1 − α/2)]) → Φ(Φ−(1 − α/2)) −
Φ(Φ−(α/2)) = 1− α where Φ is the cumulative distribution function of N (0, 1).

3.2 Hypothesis testing

We start by recalling some definitions and some vocabulary related to statistical testing. Then we consider
no effect tests on the covariates of a regression. These tests play an important role in practice as they might
quantify the importance of each covariate in the regression. As an application, we consider the forward
variable selection method in Section 3.3.
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3.2.1 Definitions

Statistical testing aims at answering whether or not an hypothesis H0 is likely. It is usually performed by
constructing a test statistic T̂n and deciding to reject, or not, whenever T̂n is in R, or not. The region R is
called the reject region. As soon as T̂n and R are specified, the process is quite simple:

Reject whenever T̂n ∈ R
Do not reject whenever T̂n /∈ R.

The terminology “not to reject” rather than ”to accept” comes from the fact that H0 is often too much thin
and unlikely to be “accepted”, e.g., a simple hypothesis θ?1 = 3.14159. There are basically 2 kinds of error
that we wish to control:

Type-1: to reject whereas H0 is true

Type-2: not to reject whereas H0 is not true.

The proportion of Type-1 errors is called the level of the test. One minus the proportion of Type-2 errors is
called the power of the test. The consistency imposes that, for any level 1 − α, asymptotically, the level is
smaller than α while the power is one. To achieve consistency, it is natural to let the reject region depend
on α.

Definition 6. A statistical test (T̂n,Rα) is said to be (asymptotically) consistent whenever for all level
1− α ∈ (0, 1)

lim sup
n→∞

PH0
(T̂n ∈ Rα) ≤ α

lim
n→∞

PH1
(T̂n ∈ Rα) = 1.

Remark 2. In practice, a standard choice is α = 0.05. Of course when the sample size is too small one
cannot be too demanding and larger values of α might be more reasonable.

3.2.2 Test of no effect

In a linear regression model, a covariate has no effect if and only if its associated regression coefficient is null.
A test of no effect of a covariate, say the k-th, then consists in testing the nullity of its regression coefficient
θ?k:

H0 : θ?k = 0.

Proposition 11. Under the random design model, if E[X1X
T
1 ] and E[Y 2

1 ] exist and E[X1X
T
1 ] is invertible,

the statistic and reject region, respectively given by

T̂n,k =

(
n1/2

ŝn,kσ̂n

)
|θ̂n,k|,

Rα = (Φ−(1− α/2),+∞),

produce a consistent test.

Proof. For the level, it is very similar to confidence interval. For the power, suppose that θ?k 6= 0. Let

Zn = (n1/2/ŝn,kσ̂n)(θ̂n,k − θ?k) and q = Φ−(1− α/2). Then T̂n,k ∈ Rα if and only if

Zn + (n1/2/ŝn,kσ̂n)θ?k < −q or Zn + (n1/2/ŝn,kσ̂n)θ?k > q.

If θ?k is positive (resp. negative) one can show that the event on the right (resp. left) has probability going to
1. We consider only the case θ?k > 0. It has been shown in the proof of Proposition 8 that ŝn,kσ̂n converges
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in probability to a finite value. We can work on the event that ŝn,kσ̂n < M . Let K > 0. For n large enough
q − (n1/2/ŝn,kσ̂n)θ?k < −K. Hence

P (Zn + (n1/2/ŝn,kσ̂n)θ?k > q) ≥ P (Zn > −K).

Hence

lim inf
n→∞

P (Zn + (n1/2/ŝn,kσ̂n)θ?k > q) ≥ 1− Φ(−K).

But K is arbitrary and the result follows.

Remark 3. In practice, the statistic T̂n,k is scale invariant: if D is a positive diagonal matrix, then the

statistic T̂n,k constructed from the sample X is the same as the statistic T̂n,k constructed from the sample
XD.

Remark 4. In the Gaussian case, the test statistic and the reject region are given by

T̂n,k =

(
n1/2

ŝn,kσ̂n

)
|θ̂n,k|,

Rα = (Qn−p−1(1− α/2),∞).

Such a test has a level exactly equal to 1 − α. To derive that the power goes to 1, one can assume that for
all n ≥ 1, ŝn,kσ̂n is bounded.

Remark 5 (test and confidence intervals). Making no effect tests consists in rejecting whenever 0 (or more
generally any tested values) is not lying inside the confidence interval. For instance, in the random design
model, to reject is equivalent to

n1/2

ŝn,kσ̂n
|θ̂n,k| ∈ (Φ−(1− α/2),+∞),

which is equivalent to

0 /∈ θ̂n,k +

[
−
(
ŝn,kσ̂n
n1/2

)
Φ−(1− α/2) ,

(
ŝn,kσ̂n
n1/2

)
Φ−(1− α/2)

]
.

3.3 Forward variable selection

The method of forward selection is a stepwise procedure that aims at selecting the most “important” vari-
ables. The method starts with no covariate and add a new one at each step. This kind of methods is
sometimes referred to as greedy methods. The criterion used to select the best covariate follows from the test
statistic for the test of no effect: n1/2|θ̂n,k|/(ŝn,kσ̂n). Intuitively, the larger the statistic, the more important
the effect of the k-th variable.

More formally, let X = (1n, X̃1, . . . , X̃p). Each (non-constant) covariate X̃k is competing against the

others via 1-dimensional regression submodels Y ' θ0 + Xkθk. For any Y ∈ Rn and X̃k ∈ Rn, define the
OLS

θ̂n(Y, X̃k) = argmin(θ0,θ1)∈R2 ‖Y − θ01n − θ1X̃k‖2.

Within each submodel, the Gram matrix and the noise level estimate are given by

Ĝn(X̃k) = n−1(1n, X̃k)T (1n, X̃k),

σ̂2
n(Y, X̃k) = (n− 2)−1‖Y − (1n, X̃k)θ̂n(Y, X̃k)‖2.
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age sex bmi bp Serum measurements output
patient x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

1 59 2 32.1 101 157 93 38 4 4.9 87 151
2 48 1 21.6 87 183 103 70 3 3.9 69 75
· · · · · · · · ·
· · · · · · · · ·
441 36 1 30.0 95 201 125 42 5 5.1 85 220
442 36 1 19.6 71 250 133 97 3 4.6 92 57

Table 3.1: The dataset is composed of n = 442 patients, p = 10 variables “baseline” body mass index,
bmi), average blood pressure (bp), etc... The output is a score corresponding to the disease evolution. Each
covariate has been standardized Efron et al. (2004).

Another quantity of interest is ŝn(X̃k)2 = eT1 Ĝn(X̃k)−1e1. The criterion used to compare the importance of
each variable is the test statistic of the test of no effect, computed within each submodel:

T̂n(Y, X̃k) = n1/2
θ̂n(Y, X̃k)

ŝn(X̃k)σ̂n(Y, X̃k)
.

For each covariate, such a quantity is compared and the largest value is selected. This criterion has an
interpretation in terms of p-values. When the test is described by (T̂n(Y, X̃k),Rα), the p-value is the
smallest value of α for which we still reject. For instance, in the random design model,

inf{α ∈ [0, 1] : T̂n(Y, X̃k) > Φ−(1− α/2)} = 2(1− Φ(T̂n,k)).

Hence taking the largest T̂n(Y, X̃k) is equivalent to take the smallest p-value for the underlying test of no
effect. A stopping rule can be based on the p-value: stop as soon as none of the p-value is smaller than
0.05. As soon as one variable, say X̃k, is selected, one needs to account for the predictive information it
has brought in the modeling of Y . This is to prevent from selecting 2 identical covariates. This is done by
replacing the output Y by the residual Y − (1n, X̃k)θ̂n(Y, X̃k).

Algorithm 1 (forward variable selection).
Inputs: (Y,X) a threshold pstop. Start with r = Y , S = ∅ ⊂ A = {0, . . . , p}.

(i) For each k ∈ A\S, compute T̂n(r, X̃k).

(ii) Stop if no p-values are smaller than pstop.

Else compute k∗ ∈ argmax T̂n(r, X̃k).

And update S = S ∪ {k∗} and r = r − (1n, X̃k∗)θ̂n(Y, X̃k∗).

Figure 3.3 illustrates the procedure described by Algorithm 1 applied to the “diabetes” dataset of sklearn
presented in Table 3.1.

Remark 6. Different stopping rules might be considered. For instance, in Zhang (2009), the authors rec-
ommend to consider the residuals sum of squares and to stop as soon as ‖r‖2 < ε.

Exercises

Exercise 10 (explicit formulas when p = 1 for prediction intervals). Let us consider the following fixed-design
one-dimensional (p = 1) linear regression model:

Yi = β0 + β1xi + εi , εi ∼ N (0, σ) i.i.d. , i = 1, ..., n .
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Figure 3.1: The statistics of each selected variable is 0 in the next step. The intercept is the first selected
variable, then X3, etc...

Being a particular but simply interpretable case it facilitates intuitive understanding and enables easy two-
dimensional visualization. Let xn = n−1

∑n
i=1 xi and Y

n
= n−1

∑n
i=1 Yi. We further assume that xi is not

constant, i.e., that
∑n
i=1(xi − xn)2 6= 0.

1. Show that the OLS estimators β̂0 and β̂1 are

β̂0 = Y
n − β̂1xn and β̂1 =

∑n
i=1(xi − xn)(Yi − Y

n
)∑n

i=1(xi − xn)2

2. Show that

eT0 (XTX)−1e0 =
( 1

n
+

xn2∑n
i=1(xi − xn)2

)
and eT1 (XTX)−1e1 =

1∑n
i=1(xi − xn)2

,

3. Give the distribution of V[β̂0]−1/2(β̂0 − β0) and V[β̂1]−1/2(β̂1 − β1)

V[β̂0] = σ̂2
( 1

n
+

xn2∑n
i=1(xi − xn)2

)
and V[β̂1] =

σ̂2∑n
i=1(xi − xn2)2

,

where σ̂2 = 1
n−2

∑n
i=1

(
Yi − (β̂0 + β̂1xi)

)2
.

4. Give the reject region for the test H0 : βj = 0.

5. For a new pair (Y, x) observed from the Gaussian model above, the value β̂0 + β̂1x is called the point
prediction. Show that

(β̂0 + β̂1x)− (β0 + β1x)

σ̂
√

1
n + (x−xn)2∑n

i=1(xi−xn)2

∼ t(n− 2) and
Y − (β̂0 + β̂1x)

σ̂
√

1 + 1
n + (x−xn)2∑n

i=1(xi−xn)2

∼ t(n− 2) .

6. Build confidence intervals for (β0 + β1x) and Y . Note that these intervals correspond, respectively, to
CI and PI given in section 3.1.1. The last one is often called prediction interval.
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Appendix A

Elementary results from linear algebra

The vector space Rd is endowed with the usual inner product

∀(u, v) ∈ Rd × Rd, 〈u, v〉 = uT v =

d∑
k=1

ukvk,

where uT stands for the transpose of u. If 〈u, v〉 = 0 we say that u and v are orthogonal and we write u ⊥ v.
If E is a set of vector in Rd, we define its orthogonal complement as

E⊥ = {u ∈ Rd : xTu = 0, ∀x ∈ E}.

Proposition 12. If E is a linear subspace of Rd, then (E⊥)⊥ = E.

For any matrix A ∈ Rp×d, define

span(A) = {Ax : x ∈ Rd},
ker(A) = {x ∈ Rd : Ax = 0}.

The set span(A) is called the image of the matrix A. It is the linear space generated by the columns of A.
The set ker(A) is called the kernel of A. Both sets are linked by the following property.

Proposition 13. For any A ∈ Rp×d, ker(A) = span(AT )⊥.

Proposition 14. For any A ∈ Rp×d, ker(A) = {0} if and only if span(AT ) = Rd. Consequently, if p < d
then ker(A) 6= {0}.

Let A ∈ Rp×d, b ∈ Rd. Let S be the set of solutions of the linear system Ax = b.

Proposition 15. We have only three possible configurations:

1. S contains only one element,

2. S = ∅,

3. the number of elements in S is infinite.

Note that S is empty if and only if b /∈ span(A).

Proposition 16. Suppose that b ∈ span(A) and let x0 ∈ S, then

S = x0 + ker(A).
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We say that a matrix A ∈ Rd×d is invertible if there exists B ∈ Rd×d such that AB = BA = I.

Proposition 17. A ∈ Rd×d. The following are equivalent

1. A is invertible

2. ker(A) = {0}

We now recall a classical result called the spectral decomposition of symmetric matrices or the eigen
decomposition of symmetric matrices.

Proposition 18. Let A ∈ Rd×d be a symmetric matrix. Then there exist λ1 ≥ . . . ≥ λd, called eigenvalues,
and an orthonormal matrix U ∈ Rd×d (i.e., UTU = Id) of eigenvectors, such that A = UDUT , where
D = diag(λ1, . . . , λd).

A symmetric matrix is called positive definite (resp. positive semi-definite) if uTAu > 0 (resp. uTAu ≥ 0)
for all u ∈ Rd.

Proposition 19. Let A ∈ Rd×d. The following are equivalent

1. A is positive definite (resp. positive semi-definite)

2. All the eigenvalues of A are positive (resp. nonnegative)

Definition 7. A linear transformation P ∈ Rd×d is called orthogonal projector if P 2 = P and PT = P .

The next proposition says that an orthogonal projector is characterized by its span and, therefore, by its
kernel from Proposition 12 and 13.

Proposition 20. The eigenvalues of an orthogonal projector are either 1 or 0. Hence any orthogonal
projector can be written as UUT where U ∈ Rp×r forms a basis of span(P ).

Proposition 21. The trace of an orthogonal projector is equal to the dimension of its span.
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Appendix B

Singular value decomposition and
principal component analysis

Before we present the method of principal component analysis (PCA), it is appropriate to recall some matrix
decomposition results and more particularly the singular value decomposition (SVD).

B.1 Matrix decomposition

The usual eigen decomposition of symmetric matrices can be extended to arbitrary matrices (even not
squared matrix). The price to pay is that the left and right eigenvectors are different. This is called the
SVD.

Proposition 22. Let X ∈ Rn×p. Then there exist two orthogonal matrices : U ∈ Rp×p and V ∈ Rn×n of
singular vectors; and s1 ≥ . . . ≥ smin(n,p) ≥ 0, called singular values, such that

X = V SUT ,

where S ∈ Rn×p contains 0 everywhere except on the diagonal formed by (s1, . . . , smin(n,p)) .

Proof. Without loss of generality, we suppose that p ≤ n. Otherwise we apply the result to the XT .
Applying Proposition 18 to XTX, there exists U ∈ Rp×p such that UT (XTX)U is diagonal with r positive
coefficients. Hence UT1 (XTX)U1 = D ∈ Rr×r and XU2 = 0. Take V T1 = D−1/2UT1 X

T (an orthogonal set of
r vectors : V T1 V1 = Ir) to find that V T1 XU1 = D1/2. Consequently, V T1 X(U1, U2) = (D1/2, 0). Remarking
that v orthogonal to V1 means that vTXU1 = 0 implying that vTX(U1, U2) = 0 leading to vTX = 0.
Now taking V2 such that V = (V1, V2) ∈ Rn×p is orthogonal, we obtain the claimed decomposition with
S2 = diag(d1, . . . , dp).

We have the following reduced SVD formula, if r ≥ 1 stands for the dimension of span(X),

X = ṼrS̃rŨ
T
r ,

where Ũr = (U1, . . . , Ur), Ṽr = (V1, . . . , Vr), and S̃r ∈ Rr×r contains only the positive singular-values.
An attractive property of the SVD is that it defines subspaces on which one can project the data X

without loosing too much.

Proposition 23. Let X ∈ Rn×p. For any projector P ∈ Rp×p with rank smaller than k, it holds that

‖X −XPk‖F ≤ ‖X −XP‖F ,

where Pk =
∑
i≤k UiU

T
i .

25



Proof. Suppose that 1 ≤ k < r. By Pythagorean identity, ‖X −XP‖2F = ‖X‖2F − ‖XP‖2F . Hence one just
has to show that ‖XPk‖2F ≥ ‖XP‖2F . Considering the reduced SVD X = UrSrV

T
r , we have

‖XP‖2F = tr
(
(PUr)S

2(PUr)
T
)

= tr

∑
i≤r

s2iWiWi


=
∑
i≤r

s2i ‖Wi‖22,

with Wi = PUi and the constraints that ‖Wi‖22 ≤ 1 and
∑
i≤r ‖Wi‖22 ≤ k. Note that this corresponds to the

optimization problem

max
m1,...,mr′

∑
i≤r′

s2imi u.c. mi ∈ (0, ki),
∑
i≤r′

mi ≤ k,

in which we suppose that s1 < . . . < sr′ with r′ ≤ r and ki ≥ 1 stands for the multiplicity. We derive the
maximum. Note first that necessarily

∑
i≤r′ mi = k. Then if i is the first index such that 0 < mi < ki, the

function cannot achieve its maximum. Then we get that the maximizer is achieved when mi is either 0 or
1. Clearly the maximum is

∑
i≤k s

2
i which is achieved when P =

∑
i≤k UiU

T
i .

B.2 Principal component analysis

Definition 8. Let X ∈ Rn×p and define Xc = X−1nX
nT

. The PCA of X of degree k is given by the k first
elements of the SVD of Xc, i.e., the singular values (s1, . . . , sk), the principal components U1, . . . Uk and the
principal axes V1, . . . , Vk.

Introduce the estimated covariance matrix

Σ̂n = n−1XT
c Xc.

Proposition 24. The principal components U = U1, . . . Uk forms a set of orthonormal vectors along which
the empirical variance is maximal, i.e.,∑

i≤k

UTi Σ̂nUi ≥
∑
i≤k

ŨTi Σ̂nŨi,

for any (Ũ1, . . . , Ũk) orthonormal vectors. The principal components U can be obtained by an eigendecom-
position of Σ̂n.

Proof. Take Ũ and U as define in the statement. Define P̃ = Ũ ŨT and P = UUT , the associated projectors
of rank k. Write ∑

i≤k

UTi Σ̂nUi = tr(Σ̂nP ) = n−1 tr(XT
c XcP ) = n−1‖XcP‖2F .

Using Proposition 23 and the Pythagorean identity, we get that ‖XcP‖2 ≥ ‖XcP̃‖2F .

Remark 7. As the PCA of X depends on the scale of each covariate, one may prefer in practice to rescale
the matrix X before running the PCA algorithm. This can be done by taking XD−1/2 rather than X, with
D equal to the diagonal matrix whose elements are eTk Σ̂nek, k = 1, . . . , n. Then each covariate of XD has
the same empirical variance.
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