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The underlying integration problem
Let µ be a probability measure on (Rd ,B(Rd )) and ϕ : Rd → R be integrable.
I Goal : Estimate

µ(ϕ) =
∫
ϕ dµ

I Constraint: only based on ϕ(x1), . . . , ϕ(xn), where x1, . . . , xn are called
nodes. Here ϕ might be black-box function1.

I Central question: number of nodes n necessary to obtain a given accuracy

1if ϕ has an explicit form, e.g., ϕ(x) = exp(−‖x‖2), then some approximation techniques are
probably more appropriate
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Riemann’s sums method for
∫

[0,1]d ϕ(x) dx :

N−d
∑

xi∈Grid

ϕ(xi ),

where Grid = {(i1/N, . . . , id/N) : 1 ≤ ik ≤ N, ∀k = 1, . . . , d}

N =  10 N =  20 N =  30

Error bound
We have

sup
ϕ∈Φd

∣∣∣∣∣N−d
∑

x∈Grid

ϕ(x)−
∫

[0,1]d
ϕ(x) dx

∣∣∣∣∣ ≤ N−1.

with Φd =
{
ϕ : [0, 1]d 7→ R : |ϕ(x)− ϕ(y)| ≤ maxk=1,...,d |xk − yk |

}
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Consider linear integration rules

Nd∑
i=1

wiϕ(xi ).

The accuracy of the best algorithm over a class Φd is

e(Nd ,Φd ) = inf
(wi ,xi )i=1...Nd

sup
ϕ∈Φd

∣∣∣∣∣∣
Nd∑
i=1

wiϕ(xi )−
∫

[0,1]d
ϕ(x) dx

∣∣∣∣∣∣
Complexity results (Novak, 2016)

e(Nd ,Φd ) =
( d

2d + 2

)
N−1

The midpoint rule is the optimal algorithm2.

2If Φk,d = {ϕ : [0, 1]d → R , ‖Dαϕ‖∞ ≤ 1, ∀|α| ≤ k}, then e(Nd ,Φk,d ) ' N−k .
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Monte Carlo method for
∫

[0,1]d ϕ(x) dx :

Let (X1, . . . ,Xn) iid∼ U [0, 1]d , compute

n−1
n∑

i=1

ϕ(Xi )

n= 10 n= 20 n= 30

Uniform results (Talagrand, 1996; McDiarmid, 1998; Giné and Guillou,
2001)
with probability larger than 1− δ,

sup
ϕ∈Φ

∣∣∣∣∣n−1
n∑

i=1

ϕ(Xi )−
∫

[0,1]d
ϕ(x) dx

∣∣∣∣∣ ≤ 2E|Rn(Φ)|+

√
2 log(2/δ)

n

If for instance, Φ is of VC-type, E|Rn(Φ)| ' n−1/2.
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Summary

n= 10 n= 20 n= 30

determisitic random Monte Carlo
e(n,Φd ) n−1/d n−1/d n−1/2 n−1/2

e(n,Φk
d ) n−k/d n−k/d n−1/2 n−1/2
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Welcome to the jungle

Monte Carlo
I Draw X1, . . . ,Xn

iid∼ µ
I Compute 1

n
∑n

i=1 g(Xi )

MCMC
I Draw X1, . . . ,Xn µ

I Compute 1
n
∑n

i=1 g(Xi )

Control variates
I Use the knowledge of

∫
hjdµ = 0

for functions h1, . . . , hm

Importance sampling,
stratified sampling...

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

good sampler

integrand

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

bad sampler

integrand

Others
I Quasi-Monte Carlo
I DPP sampling

Books : Evans and Swartz (2000), Robert and Casella (2004), Glasserman
(2003), Owen (2013a)
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Sampling tool 1 (Importance sampling and MCMC)

A similar idea: sampling near target distribution

I (MCMC) X1, . . . ,Xn a Markov chain such that (Xn) µ

n−1
n∑

i=1

g(Xi )

I (AIS) Xi ∼ qi−1 such that qi → f

n−1
n∑

i=1

g(Xi )/qi−1(Xi )

Highlights

I Relevant to Bayesian statistics
I the rate of convergence is not improved (only the asymptotic variance)

(Robert and Casella, 2004; Evans and Swartz, 2000)
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Sampling tool 2 (QMC)

Highlights
I Low-discrepancy sequences
I Using the Hardy-Krause variation

of f
I Randomized version exists
I rate : n−1 log(n)d−1 (not under the

same function class)

Issues
I Deterministic methods for the uniform measure dµ = I[0,1]d

I The bound decreases only when n is exp(d)
I Hardy-Krauss variation is difficult to handle in practice
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Sampling tool 3 (DPP)
A “random” quadrature rule

I Suppose that you have hk such that
∫
ϕkϕjdµ = δk,j and define

Kn(x , y) =
n∑

i=1

ϕi (x)ϕi (y)

I X1, . . . ,Xn follows a DPP with kernel KN and reference measure µ. The
estimate is

n∑
i=1

g(Xi )
KN (Xi ,Xi )

Results (Bardenet and Hardy, 2020)

I unbiased
I rate : n−1/2n−1/2d

Issues
I Hard to sample from DPP (n3 operations last time I checked)
I ϕk might not be known as it depends on µ
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Post-hoc scheme 1: volume calculation

Integration problem

I x1, . . . , xn random points
I Observe (x1, g(x1)), . . . , (xn, g(xn))
I Goal : Evaluate

∫
g(x)dx

x1, . . . , xn in [0, 1]2 with uniform law

Monte-Carlo: n−1∑n
i=1 g(xi )
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Post-hoc scheme 1: volume calculation

Integration problem

I x1, . . . , xn random points
I Observe (x1, g(x1)), . . . , (xn, g(xn))
I Goal : Evaluate

∫
g(x)dx

x1, . . . , xn in [0, 1]2 with uniform law

Monte-Carlo: n−1∑n
i=1 g(xi )

f̂ (x) = n−1∑n
i=1 K(x − xi )

n−1∑n
i=1

g(xi )
f̂ (xi )

(Delyon and Portier, 2016)
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Advantages
I xi ’s distribution is not used
I fast rates n−1/2n−(k−d)/2(k+d)

I robust to dependent xi ’s

Difficulties
I computing time is n2

I choice of the bandwidth
I dimension curse k > d

Evaluate average temperature of oceans (Azäıs et al., 2018)

Initial project was: use Voronoi cells volume to build the estimate (rate in
n−k/d )
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Post-hoc scheme 2: Control variate
Idea Glasserman (2004); Owen (2013b)

I Use the knowledge of h1, . . . , hm such that∫
hkdµ = 0 k = 1, . . . ,m

I Let X1, . . . ,Xn be iid with common distribution µ

n−1
n∑

i=1

{g(Xi )−
m∑

k=1

βkhk (Xi )}

First properties

I Unbiased property
I variance reduction up to minβ∈Rm E[(g(X1)−

∑m
k=1 βkhk (X1))2]

Issues
I Construction of hk

I Computation of β1, . . . , βm
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Control functional (Oates et al., 2017; Portier and Segers, 2019)
(i) building a function ĝ of which the integral µ(ĝ) is known
(ii) using this function to derive an enhanced Monte-Carlo estimate with the
centered random variables [ĝ(Xi )− µ(ĝ)] as

µ̂(CV )
n (g) = 1

n

n∑
i=1

{g(Xi )− (ĝ(Xi )− µ(ĝ)} .

First property
Whenever the function ĝ is constructed from another sample X̃1, . . . X̃n being
either independent from X1, . . .Xn or not random,

E[(µ̂(CV )
n (g)− µ(g))2] = 1

n

∫
E[(g − ĝ)2]dµ
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Example 1

Partitioning estimate

N =  10 N =  20 N =  30

I µ is the uniform measure on [0, 1]d and G is a regular grid with n = Nd

elements
I Define

ĝ = pieceswise constant over elements of the grid

Standard results give
√∫

(g − ĝ)2dµ = O(n−1/d )
I implying an integration method with rate

n−1/2n−1/d

(restrictive constraint n = Nd plus 2n evaluations are needed)
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Example 2

Ordinary least-squares

I Relying on two different samples, (Oates et al., 2017) propose to (a) build
an RKHS control variate ĝ and (b) compute the Monte Carlo average
requires twice the number of request to g

I Using the same sample to X1, . . . ,Xn to approximate ĝ has been
investigated in Leluc et al. (2021) OLS is used to fit g with m basis
functions. Theory says that the rates is in n−1/2m−1/d .

I Unfortunately, a constraint on m is needed (see for instance Remark 12 in
Leluc et al. (2021)) which in general prevents from using m = n control
variates.
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Definition (Nearest neighbor and distance)
Given a set of points X1, . . . ,Xn and any point x ∈ Rd , define N̂n(x) as the
nearest neighbor of x among X1, . . . ,Xn and τ̂n(x) the associated distance, i.e.,

N̂n(x) ∈ arg min
Y∈{X1,...,Xn}

‖x − Y ‖, τ̂n(x) = ‖N̂n(x)− x‖.

Definition (Voronöı cells and volumes)
The Voronöı cells associated to (Xi )i≥1 are given by

Sn,i = {x ∈ Rd : N̂n(x) = Xi}.

Their volume with respect to µ is denoted by Vn,i = µ(Sn,i ).
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Construction of the estimate
Definition (1-NN estimate of g)

∀x ∈ Rd , ĝn(x) = g(N̂n(x))

It is piece-wise constant on the Voronöı partition

ĝn(x) =
n∑

i=1

g(Xi )1Sn,i (x)

Main idea
I g is accessible without noise (no variance term) ⇒ We take the 1-NN
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PB 1
I The use of ĝn as control functional leads to unsatisfactory strategy due to

the over-fitting equation
ĝn(Xi ) = g(Xi )

Solution 1
I Use the leave-one-out ĝ (i)

n (Xi ) defined as the standard 1-NN except that
the i-th observation has been removed

Following the previous idea we introduce

µ̂(NN−loo)
n (g) = 1

n

n∑
i=1

{g(Xi )− (ĝ (i)
n (Xi )− µ(ĝ (i)

n ))}, (1)
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Construction of the estimate

PB 2
I µ(ĝ (i)

n ) implies to compute many integrals

Solution 2
I µ(ĝ (i)

n ) ' µ(ĝn)

The working estimate is then

µ̂(NN)
n (g) = n−1

n∑
i=1

{g(Xi )− (ĝ (i)
n (Xi )− µ(ĝn))}. (2)
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Degree and expected degree (isolation of point)
Denote by S(i)

n,j (V (i)
n,j ) (the volume of) the j-th Voronöı cell obtained from the

sample X (i) = {X1, . . . ,Xn}\Xi .

Definition
The degree of point Xj is defined as

d̂j =
∑
i 6=j

1S(i)
n,j

(Xi ).

The expected degree is
ĉj =

∑
i 6=j

V (i)
n,j .

Proposition (Quadrature rules)
The estimate µ̂(NN−loo)

n (g) can be expressed as a linear estimates of the form

µ̂(NN−loo)
n (g) =

n∑
i=1

w (NN−loo)
i,n g(Xi )

where w (NN−loo)
i,n = (1 + ĉi − d̂i )/n (the weights does not depend on g)
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Convergence rate

Proposition
Assume that g : Rd → R is L-Lipschitz, infx∈X f (x) > b and
supx∈X f (x) < U. Then we have

E
[
(µ̂(NN−loo)

n (g)− µ(g))2] ≤ Cn−1n−2/d
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Method implementation
The method CVNN returns the value of µ̂(NN)

n (g) for which the integral
∫

ĝndµ
is replaced by a Monte Carlo estimate that uses M = n2 generation. That is∫

ĝndµ ' M−1
M∑

i=1

ĝn(X̃i ),

where X̃i are i.i.d draws according to µ.

Integrand

g1(x) = 1 + sin(π(2d−1
d∑

i=1

xi − 1)) g2(x) =
d∏

i=1

log(2)21−xi ,

(both integrate to 1 on [0, 1]d )

Parameters
I dimensions d ∈ {4; 6; 8},
I from n = 250 to n = 5, 000
I performance measured with E[|µ̂(NN)

n (g)− µ(g)|2]1/2
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(f) d = 8
Figure: Boxplots obtained over 100 replications for function g1 in dimension
d ∈ {4; 6; 8}.
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Figure: Boxplots obtained over 100 replications for function g2 in dimension
d ∈ {4; 6; 8}.
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Sample Size n 500 1, 000 2, 000 3, 000 5, 000Integrand Method

g1
(d = 2)

MC 9.4e-4 4.6e-4 1.9e-4 1.5e-4 1.1e-5
QMC (Sobol) 4.1e-5 2.0e-5 3.6e-6 2.6e-6 1.0e-6

NN-euclidean 6.7e-6 1.7e-6 3.7e-7 1.7e-7 5.3e-8
NN-manhattan 7.0e-6 1.7e-6 4.4e-7 1.7e-7 5.7e-8
NN-chebyshev 6.1e-6 1.7e-6 3.8e-7 2.3e-7 6.2e-8

g2
(d = 2)

MC 5.0e-4 2.0e-4 1.1e-4 5.8e-5 3.1e-5
QMC (Sobol) 6.3e-6 5.2e-6 1.7e-6 5.1e-7 2.1e-7

NN-euclidean 9.2e-6 1.9e-6 5.0e-7 1.9e-7 1.0e-7
NN-manhattan 8.5e-6 2.5e-6 5.3e-7 2.2e-7 9.7e-8
NN-chebyshev 1.0e-5 1.9e-6 4.8e-7 1.8e-7 1.0e-7

g3
(d = 2)

MC 1.8e-4 7.5e-5 3.4e-5 2.7e-5 2.1e-5
QMC (Sobol) 5.7e-6 2.5e-6 5.4e-7 4.9e-7 1.7e-7

NN-euclidean 7.9e-7 2.0e-7 3.9e-8 2.3e-8 7.7e-9
NN-manhattan 8.2e-7 1.9e-7 4.0e-8 2.1e-8 6.7e-9
NN-chebyshev 8.3e-7 2.2e-7 3.5e-8 2.4e-8 9.6e-9

Table: Mean Squared Error for integrands g1, g2, g3 in dimension d = 2 obtained over
100 replications.
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