Source

pygame / docs / _sources / ref / math.txt

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
.. include:: common.txt

:mod:`pygame.math`
==================

.. module:: pygame.math
   :synopsis: pygame module for vector classes

| :sl:`pygame module for vector classes`

!!!EXPERIMENTAL!!! Note: This Modul is still in development and the ``API``
might change. Please report bug and suggestions to pygame-users@seul.org

The pygame math module currently provides Vector classes in two and three
dimensions, Vector2 and Vector3 respectively.

They support the following numerical operations: vec+vec, vec-vec, vec*number,
number*vec, vec/number, vec//number, vec+=vec, vec-=vec, vec*=number,
vec/=number, vec//=number. All these operations will be performed elementwise.
In addition vec*vec will perform a scalar-product (a.k.a. dot-product). If you
want to multiply every element from vector v with every element from vector w
you can use the elementwise method: ``v.elementwise()`` ``\*`` w

New in Pygame 1.10

.. function:: enable_swizzling

   | :sl:`globally enables swizzling for vectors.`
   | :sg:`enable_swizzling() -> None`

   Enables swizzling for all vectors until ``disable_swizzling()`` is called.
   By default swizzling is disabled.

   .. ## pygame.math.enable_swizzling ##

.. function:: disable_swizzling

   | :sl:`globally disables swizzling for vectors.`
   | :sg:`disable_swizzling() -> None`

   Disables swizzling for all vectors until ``enable_swizzling()`` is called.
   By default swizzling is disabled.

   .. ## pygame.math.disable_swizzling ##

.. class:: Vector2

   | :sl:`a 2-Dimensional Vector`
   | :sg:`Vector2() -> Vector2`
   | :sg:`Vector2(Vector2) -> Vector2`
   | :sg:`Vector2(x, y) -> Vector2`
   | :sg:`Vector2((x, y)) -> Vector2`

   Some general information about the Vector2 class.

   .. method:: dot

      | :sl:`calculates the dot- or scalar-product with the other vector`
      | :sg:`dot(Vector2) -> float`

      .. ## Vector2.dot ##

   .. method:: cross

      | :sl:`calculates the cross- or vector-product`
      | :sg:`cross(Vector2) -> float`

      calculates the third component of the cross-product.

      .. ## Vector2.cross ##

   .. method:: length

      | :sl:`returns the euclidic length of the vector.`
      | :sg:`length() -> float`

      calculates the euclidic length of the vector which follows from the
      Pythagorean theorem: ``vec.length()`` ==
      ``math.sqrt(vec.x**2 + vec.y**2)``

      .. ## Vector2.length ##

   .. method:: length_squared

      | :sl:`returns the squared euclidic length of the vector.`
      | :sg:`length_squared() -> float`

      calculates the euclidic length of the vector which follows from the
      Pythagorean theorem: ``vec.length_squared()`` == vec.x**2 + vec.y**2 This
      is faster than ``vec.length()`` because it avoids the square root.

      .. ## Vector2.length_squared ##

   .. method:: normalize

      | :sl:`returns a vector with the same direction but length 1.`
      | :sg:`normalize() -> Vector2`

      Returns a new vector that has length == 1 and the same direction as self.

      .. ## Vector2.normalize ##

   .. method:: normalize_ip

      | :sl:`normalizes the vector in place so that its length is 1.`
      | :sg:`normalize_ip() -> None`

      Normalizes the vector so that it has length == 1. The direction of the
      vector is not changed.

      .. ## Vector2.normalize_ip ##

   .. method:: is_normalized

      | :sl:`tests if the vector is normalized i.e. has length == 1.`
      | :sg:`is_normalized() -> Bool`

      Returns True if the vector has length == 1. Otherwise it returns False.

      .. ## Vector2.is_normalized ##

   .. method:: scale_to_length

      | :sl:`scales the vector to a given length.`
      | :sg:`scale_to_length(float) -> None`

      Scales the vector so that it has the given length. The direction of the
      vector is not changed. You can also scale to length 0. If the vector is
      the zero vector (i.e. has length 0 thus no direction) an
      ZeroDivisionError is raised.

      .. ## Vector2.scale_to_length ##

   .. method:: reflect

      | :sl:`returns a vector reflected of a given normal.`
      | :sg:`reflect(Vector2) -> Vector2`

      Returns a new vector that points in the direction as if self would bounce
      of a surface characterized by the given surface normal. The length of the
      new vector is the same as self's.

      .. ## Vector2.reflect ##

   .. method:: reflect_ip

      | :sl:`reflect the vector of a given normal in place.`
      | :sg:`reflect_ip(Vector2) -> None`

      Changes the direction of self as if it would have been reflected of a
      surface with the given surface normal.

      .. ## Vector2.reflect_ip ##

   .. method:: distance_to

      | :sl:`calculates the euclidic distance to a given vector.`
      | :sg:`distance_to(Vector2) -> float`

      .. ## Vector2.distance_to ##

   .. method:: distance_squared_to

      | :sl:`calculates the squared euclidic distance to a given vector.`
      | :sg:`distance_squared_to(Vector2) -> float`

      .. ## Vector2.distance_squared_to ##

   .. method:: lerp

      | :sl:`returns a linear interpolation to the given vector.`
      | :sg:`lerp(Vector2, float) -> Vector2`

      Returns a Vector which is a linear interpolation between self and the
      given Vector. The second parameter determines how far between self an
      other the result is going to be. It must be a value between 0 and 1 where
      0 means self an 1 means other will be returned.

      .. ## Vector2.lerp ##

   .. method:: slerp

      | :sl:`returns a spherical interpolation to the given vector.`
      | :sg:`slerp(Vector2, float) -> Vector2`

      Calculates the spherical interpolation from self to the given Vector. The
      second argument - often called t - must be in the range [-1, 1]. It
      parametrizes where - in between the two vectors - the result should be.
      If a negative value is given the interpolation will not take the
      complement of the shortest path.

      .. ## Vector2.slerp ##

   .. method:: elementwise

      | :sl:`The next operation will be performed elementwize.`
      | :sg:`elementwise() -> VectorElementwizeProxy`

      Applies the following operation to each element of the vector.

      .. ## Vector2.elementwise ##

   .. method:: rotate

      | :sl:`rotates a vector by a given angle in degrees.`
      | :sg:`rotate(float) -> Vector2`

      Returns a vector which has the same length as self but is rotated
      counterclockwise by the given angle in degrees.

      .. ## Vector2.rotate ##

   .. method:: rotate_ip

      | :sl:`rotates the vector by a given angle in degrees in place.`
      | :sg:`rotate_ip(float) -> None`

      Rotates the vector counterclockwise by the given angle in degrees. The
      length of the vector is not changed.

      .. ## Vector2.rotate_ip ##

   .. method:: angle_to

      | :sl:`calculates the angle to a given vector in degrees.`
      | :sg:`angle_to(Vector2) -> float`

      Returns the angle between self and the given vector.

      .. ## Vector2.angle_to ##

   .. method:: as_polar

      | :sl:`returns a tuple with radial distance and azimuthal angle.`
      | :sg:`as_polar() -> (r, phi)`

      Returns a tuple (r, phi) where r is the radial distance, and phi is the
      azimuthal angle.

      .. ## Vector2.as_polar ##

   .. method:: from_polar

      | :sl:`Sets x and y from a polar coordinates tuple.`
      | :sg:`from_polar((r, phi)) -> None`

      Sets x and y from a tuple (r, phi) where r is the radial distance, and
      phi is the azimuthal angle.

      .. ## Vector2.from_polar ##

   .. ## pygame.math.Vector2 ##

.. class:: Vector3

   | :sl:`a 3-Dimensional Vector`
   | :sg:`Vector3() -> Vector3`
   | :sg:`Vector3(Vector3) -> Vector3`
   | :sg:`Vector3(x, y, z) -> Vector3`
   | :sg:`Vector3((x, y, z)) -> Vector3`

   Some general information about the Vector3 class.

   .. method:: dot

      | :sl:`calculates the dot- or scalar-product with the other vector`
      | :sg:`dot(Vector3) -> float`

      .. ## Vector3.dot ##

   .. method:: cross

      | :sl:`calculates the cross- or vector-product`
      | :sg:`cross(Vector3) -> float`

      calculates the cross-product.

      .. ## Vector3.cross ##

   .. method:: length

      | :sl:`returns the euclidic length of the vector.`
      | :sg:`length() -> float`

      calculates the euclidic length of the vector which follows from the
      Pythagorean theorem: ``vec.length()`` ==
      ``math.sqrt(vec.x**2 + vec.y**2 + vec.z**2)``

      .. ## Vector3.length ##

   .. method:: length_squared

      | :sl:`returns the squared euclidic length of the vector.`
      | :sg:`length_squared() -> float`

      calculates the euclidic length of the vector which follows from the
      Pythagorean theorem: ``vec.length_squared()`` == vec.x**2 + vec.y**2 +
      vec.z**2 This is faster than ``vec.length()`` because it avoids the
      square root.

      .. ## Vector3.length_squared ##

   .. method:: normalize

      | :sl:`returns a vector with the same direction but length 1.`
      | :sg:`normalize() -> Vector3`

      Returns a new vector that has length == 1 and the same direction as self.

      .. ## Vector3.normalize ##

   .. method:: normalize_ip

      | :sl:`normalizes the vector in place so that its length is 1.`
      | :sg:`normalize_ip() -> None`

      Normalizes the vector so that it has length == 1. The direction of the
      vector is not changed.

      .. ## Vector3.normalize_ip ##

   .. method:: is_normalized

      | :sl:`tests if the vector is normalized i.e. has length == 1.`
      | :sg:`is_normalized() -> Bool`

      Returns True if the vector has length == 1. Otherwise it returns False.

      .. ## Vector3.is_normalized ##

   .. method:: scale_to_length

      | :sl:`scales the vector to a given length.`
      | :sg:`scale_to_length(float) -> None`

      Scales the vector so that it has the given length. The direction of the
      vector is not changed. You can also scale to length 0. If the vector is
      the zero vector (i.e. has length 0 thus no direction) an
      ZeroDivisionError is raised.

      .. ## Vector3.scale_to_length ##

   .. method:: reflect

      | :sl:`returns a vector reflected of a given normal.`
      | :sg:`reflect(Vector3) -> Vector3`

      Returns a new vector that points in the direction as if self would bounce
      of a surface characterized by the given surface normal. The length of the
      new vector is the same as self's.

      .. ## Vector3.reflect ##

   .. method:: reflect_ip

      | :sl:`reflect the vector of a given normal in place.`
      | :sg:`reflect_ip(Vector3) -> None`

      Changes the direction of self as if it would have been reflected of a
      surface with the given surface normal.

      .. ## Vector3.reflect_ip ##

   .. method:: distance_to

      | :sl:`calculates the euclidic distance to a given vector.`
      | :sg:`distance_to(Vector3) -> float`

      .. ## Vector3.distance_to ##

   .. method:: distance_squared_to

      | :sl:`calculates the squared euclidic distance to a given vector.`
      | :sg:`distance_squared_to(Vector3) -> float`

      .. ## Vector3.distance_squared_to ##

   .. method:: lerp

      | :sl:`returns a linear interpolation to the given vector.`
      | :sg:`lerp(Vector3, float) -> Vector3`

      Returns a Vector which is a linear interpolation between self and the
      given Vector. The second parameter determines how far between self an
      other the result is going to be. It must be a value between 0 and 1 where
      0 means self an 1 means other will be returned.

      .. ## Vector3.lerp ##

   .. method:: slerp

      | :sl:`returns a spherical interpolation to the given vector.`
      | :sg:`slerp(Vector3, float) -> Vector3`

      Calculates the spherical interpolation from self to the given Vector. The
      second argument - often called t - must be in the range [-1, 1]. It
      parametrizes where - in between the two vectors - the result should be.
      If a negative value is given the interpolation will not take the
      complement of the shortest path.

      .. ## Vector3.slerp ##

   .. method:: elementwise

      | :sl:`The next operation will be performed elementwize.`
      | :sg:`elementwise() -> VectorElementwizeProxy`

      Applies the following operation to each element of the vector.

      .. ## Vector3.elementwise ##

   .. method:: rotate

      | :sl:`rotates a vector by a given angle in degrees.`
      | :sg:`rotate(Vector3, float) -> Vector3`

      Returns a vector which has the same length as self but is rotated
      counterclockwise by the given angle in degrees around the given axis.

      .. ## Vector3.rotate ##

   .. method:: rotate_ip

      | :sl:`rotates the vector by a given angle in degrees in place.`
      | :sg:`rotate_ip(Vector3, float) -> None`

      Rotates the vector counterclockwise around the given axis by the given
      angle in degrees. The length of the vector is not changed.

      .. ## Vector3.rotate_ip ##

   .. method:: rotate_x

      | :sl:`rotates a vector around the x-axis by the angle in degrees.`
      | :sg:`rotate_x(float) -> Vector3`

      Returns a vector which has the same length as self but is rotated
      counterclockwise around the x-axis by the given angle in degrees.

      .. ## Vector3.rotate_x ##

   .. method:: rotate_x_ip

      | :sl:`rotates the vector around the x-axis by the angle in degrees in place.`
      | :sg:`rotate_x_ip(float) -> None`

      Rotates the vector counterclockwise around the x-axis by the given angle
      in degrees. The length of the vector is not changed.

      .. ## Vector3.rotate_x_ip ##

   .. method:: rotate_y

      | :sl:`rotates a vector around the y-axis by the angle in degrees.`
      | :sg:`rotate_y(float) -> Vector3`

      Returns a vector which has the same length as self but is rotated
      counterclockwise around the y-axis by the given angle in degrees.

      .. ## Vector3.rotate_y ##

   .. method:: rotate_y_ip

      | :sl:`rotates the vector around the y-axis by the angle in degrees in place.`
      | :sg:`rotate_y_ip(float) -> None`

      Rotates the vector counterclockwise around the y-axis by the given angle
      in degrees. The length of the vector is not changed.

      .. ## Vector3.rotate_y_ip ##

   .. method:: rotate_z

      | :sl:`rotates a vector around the z-axis by the angle in degrees.`
      | :sg:`rotate_z(float) -> Vector3`

      Returns a vector which has the same length as self but is rotated
      counterclockwise around the z-axis by the given angle in degrees.

      .. ## Vector3.rotate_z ##

   .. method:: rotate_z_ip

      | :sl:`rotates the vector around the z-axis by the angle in degrees in place.`
      | :sg:`rotate_z_ip(float) -> None`

      Rotates the vector counterclockwise around the z-axis by the given angle
      in degrees. The length of the vector is not changed.

      .. ## Vector3.rotate_z_ip ##

   .. method:: angle_to

      | :sl:`calculates the angle to a given vector in degrees.`
      | :sg:`angle_to(Vector3) -> float`

      Returns the angle between self and the given vector.

      .. ## Vector3.angle_to ##

   .. method:: as_spherical

      | :sl:`returns a tuple with radial distance, inclination and azimuthal angle.`
      | :sg:`as_spherical() -> (r, theta, phi)`

      Returns a tuple (r, theta, phi) where r is the radial distance, theta is
      the inclination angle and phi is the azimuthal angle.

      .. ## Vector3.as_spherical ##

   .. method:: from_spherical

      | :sl:`Sets x, y and z from a spherical coordinates 3-tuple.`
      | :sg:`from_spherical((r, theta, phi)) -> None`

      Sets x, y and z from a tuple (r, theta, phi) where r is the radial
      distance, theta is the inclination angle and phi is the azimuthal angle.

      .. ## Vector3.from_spherical ##

   .. ##  ##

   .. ## pygame.math.Vector3 ##

.. ## pygame.math ##