1. Pypy
  2. Untitled project
  3. pypy

Commits

Armin Rigo  committed 4a7d016 Merge

merge heads

  • Participants
  • Parent commits cc32c57, 6a45075
  • Branches default

Comments (0)

Files changed (5)

File lib_pypy/itertools.py

  • Ignore whitespace
-# Note that PyPy contains also a built-in module 'itertools' which will
-# hide this one if compiled in.
-
-"""Functional tools for creating and using iterators.
-
-Infinite iterators:
-count([n]) --> n, n+1, n+2, ...
-cycle(p) --> p0, p1, ... plast, p0, p1, ...
-repeat(elem [,n]) --> elem, elem, elem, ... endlessly or up to n times
-
-Iterators terminating on the shortest input sequence:
-izip(p, q, ...) --> (p[0], q[0]), (p[1], q[1]), ... 
-ifilter(pred, seq) --> elements of seq where pred(elem) is True
-ifilterfalse(pred, seq) --> elements of seq where pred(elem) is False
-islice(seq, [start,] stop [, step]) --> elements from
-       seq[start:stop:step]
-imap(fun, p, q, ...) --> fun(p0, q0), fun(p1, q1), ...
-starmap(fun, seq) --> fun(*seq[0]), fun(*seq[1]), ...
-tee(it, n=2) --> (it1, it2 , ... itn) splits one iterator into n
-chain(p, q, ...) --> p0, p1, ... plast, q0, q1, ... 
-takewhile(pred, seq) --> seq[0], seq[1], until pred fails
-dropwhile(pred, seq) --> seq[n], seq[n+1], starting when pred fails
-groupby(iterable[, keyfunc]) --> sub-iterators grouped by value of keyfunc(v)
-"""
-
-__all__ = ['chain', 'count', 'cycle', 'dropwhile', 'groupby', 'ifilter',
-           'ifilterfalse', 'imap', 'islice', 'izip', 'repeat', 'starmap',
-           'takewhile', 'tee', 'compress', 'product']
-
-try: from __pypy__ import builtinify
-except ImportError: builtinify = lambda f: f
-
-
-class chain(object):
-    """Make an iterator that returns elements from the first iterable
-    until it is exhausted, then proceeds to the next iterable, until
-    all of the iterables are exhausted. Used for treating consecutive
-    sequences as a single sequence.
-
-    Equivalent to :
-
-    def chain(*iterables):
-        for it in iterables:
-            for element in it:
-                yield element
-    """
-    def __init__(self, *iterables):
-        self._iterables_iter = iter(map(iter, iterables))
-        # little trick for the first chain.next() call
-        self._cur_iterable_iter = iter([])
-
-    def __iter__(self):
-        return self
-    
-    def next(self):
-        while True:
-            try:
-                return self._cur_iterable_iter.next()
-            except StopIteration:
-                self._cur_iterable_iter = self._iterables_iter.next()
-            except AttributeError:
-                # CPython raises a TypeError when next() is not defined
-                raise TypeError('%s has no next() method' % \
-                                (self._cur_iterable_iter))
-
-
-class compress(object):
-    def __init__(self, data, selectors):
-        self.data = iter(data)
-        self.selectors = iter(selectors)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        while True:
-            next_item = self.data.next()
-            next_selector = self.selectors.next()
-            if bool(next_selector):
-                return next_item
-
-
-class count(object):
-    """Make an iterator that returns consecutive integers starting
-    with n.  If not specified n defaults to zero. Does not currently
-    support python long integers. Often used as an argument to imap()
-    to generate consecutive data points.  Also, used with izip() to
-    add sequence numbers.
-
-    Equivalent to :
-
-    def count(n=0):
-        if not isinstance(n, int):
-            raise TypeError("%s is not a regular integer" % n)
-        while True:
-            yield n
-            n += 1
-    """
-    def __init__(self, n=0):
-        if not isinstance(n, int):
-            raise TypeError('%s is not a regular integer' % n)
-        self.times = n-1
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        self.times += 1
-        return self.times
-
-    def __repr__(self):
-        return 'count(%d)' % (self.times + 1)
-
-
-            
-class cycle(object):
-    """Make an iterator returning elements from the iterable and
-    saving a copy of each. When the iterable is exhausted, return
-    elements from the saved copy. Repeats indefinitely.
-
-    Equivalent to :
-
-    def cycle(iterable):
-        saved = []
-        for element in iterable:
-            yield element
-            saved.append(element)
-        while saved:
-            for element in saved:
-                yield element    
-    """
-    def __init__(self, iterable):
-        self._cur_iter = iter(iterable)
-        self._saved = []
-        self._must_save = True
-        
-    def __iter__(self):
-        return self
-
-    def next(self):
-        # XXX Could probably be improved
-        try:
-            next_elt = self._cur_iter.next()
-            if self._must_save:
-                self._saved.append(next_elt)
-        except StopIteration:
-            self._cur_iter = iter(self._saved)
-            next_elt = self._cur_iter.next()
-            self._must_save = False
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (self._cur_iter))
-        return next_elt
-            
-        
-class dropwhile(object):
-    """Make an iterator that drops elements from the iterable as long
-    as the predicate is true; afterwards, returns every
-    element. Note, the iterator does not produce any output until the
-    predicate is true, so it may have a lengthy start-up time.
-
-    Equivalent to :
-
-    def dropwhile(predicate, iterable):
-        iterable = iter(iterable)
-        for x in iterable:
-            if not predicate(x):
-                yield x
-                break
-        for x in iterable:
-            yield x
-    """
-    def __init__(self, predicate, iterable):
-        self._predicate = predicate
-        self._iter = iter(iterable)
-        self._dropped = False
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        try:
-            value = self._iter.next()
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (self._iter))
-        if self._dropped:
-            return value
-        while self._predicate(value):
-            value = self._iter.next()
-        self._dropped = True
-        return value
-
-class groupby(object):
-    """Make an iterator that returns consecutive keys and groups from the
-    iterable. The key is a function computing a key value for each
-    element. If not specified or is None, key defaults to an identity
-    function and returns the element unchanged. Generally, the
-    iterable needs to already be sorted on the same key function.
-
-    The returned group is itself an iterator that shares the
-    underlying iterable with groupby(). Because the source is shared,
-    when the groupby object is advanced, the previous group is no
-    longer visible. So, if that data is needed later, it should be
-    stored as a list:
-
-       groups = []
-       uniquekeys = []
-       for k, g in groupby(data, keyfunc):
-           groups.append(list(g))      # Store group iterator as a list
-           uniquekeys.append(k)
-    """    
-    def __init__(self, iterable, key=None):
-        if key is None:
-            key = lambda x: x
-        self.keyfunc = key
-        self.it = iter(iterable)
-        self.tgtkey = self.currkey = self.currvalue = xrange(0)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        while self.currkey == self.tgtkey:
-            try:
-                self.currvalue = self.it.next() # Exit on StopIteration
-            except AttributeError:
-                # CPython raises a TypeError when next() is not defined
-                raise TypeError('%s has no next() method' % \
-                                (self.it))            
-            self.currkey = self.keyfunc(self.currvalue)
-        self.tgtkey = self.currkey
-        return (self.currkey, self._grouper(self.tgtkey))
-
-    def _grouper(self, tgtkey):
-        while self.currkey == tgtkey:
-            yield self.currvalue
-            self.currvalue = self.it.next() # Exit on StopIteration
-            self.currkey = self.keyfunc(self.currvalue)
-
-
-
-class _ifilter_base(object):
-    """base class for ifilter and ifilterflase"""
-    def __init__(self, predicate, iterable):
-        # Make sure iterable *IS* iterable
-        self._iter = iter(iterable)
-        if predicate is None:
-            self._predicate = bool
-        else:
-            self._predicate = predicate
-
-    def __iter__(self):
-        return self
-    
-class ifilter(_ifilter_base):
-    """Make an iterator that filters elements from iterable returning
-    only those for which the predicate is True.  If predicate is
-    None, return the items that are true.
-
-    Equivalent to :
-
-    def ifilter:
-        if predicate is None:
-            predicate = bool
-        for x in iterable:
-            if predicate(x):
-                yield x
-    """
-    def next(self):
-        try:
-            next_elt = self._iter.next()
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (self._iter))
-        while True:
-            if self._predicate(next_elt):
-                return next_elt
-            next_elt = self._iter.next()
-
-class ifilterfalse(_ifilter_base):
-    """Make an iterator that filters elements from iterable returning
-    only those for which the predicate is False.  If predicate is
-    None, return the items that are false.
-
-    Equivalent to :
-    
-    def ifilterfalse(predicate, iterable):
-        if predicate is None:
-            predicate = bool
-        for x in iterable:
-            if not predicate(x):
-                yield x
-    """
-    def next(self):
-        try:
-            next_elt = self._iter.next()
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (self._iter))
-        while True:
-            if not self._predicate(next_elt):
-                return next_elt
-            next_elt = self._iter.next()
-             
-
-
-
-class imap(object):
-    """Make an iterator that computes the function using arguments
-    from each of the iterables. If function is set to None, then
-    imap() returns the arguments as a tuple. Like map() but stops
-    when the shortest iterable is exhausted instead of filling in
-    None for shorter iterables. The reason for the difference is that
-    infinite iterator arguments are typically an error for map()
-    (because the output is fully evaluated) but represent a common
-    and useful way of supplying arguments to imap().
-
-    Equivalent to :
-
-    def imap(function, *iterables):
-        iterables = map(iter, iterables)
-        while True:
-            args = [i.next() for i in iterables]
-            if function is None:
-                yield tuple(args)
-            else:
-                yield function(*args)
-    
-    """
-    def __init__(self, function, iterable, *other_iterables):
-        self._func = function
-        self._iters = map(iter, (iterable, ) + other_iterables)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        try:
-            args = [it.next() for it in self._iters]
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (it))
-        if self._func is None:
-            return tuple(args)
-        else:
-            return self._func(*args)
-
-
-
-class islice(object):
-    """Make an iterator that returns selected elements from the
-    iterable.  If start is non-zero, then elements from the iterable
-    are skipped until start is reached. Afterward, elements are
-    returned consecutively unless step is set higher than one which
-    results in items being skipped. If stop is None, then iteration
-    continues until the iterator is exhausted, if at all; otherwise,
-    it stops at the specified position. Unlike regular slicing,
-    islice() does not support negative values for start, stop, or
-    step. Can be used to extract related fields from data where the
-    internal structure has been flattened (for example, a multi-line
-    report may list a name field on every third line).
-    """ 
-    def __init__(self, iterable, *args):
-        s = slice(*args)
-        self.start, self.stop, self.step = s.start or 0, s.stop, s.step
-        if not isinstance(self.start, (int, long)):
-           raise ValueError("Start argument must be an integer")
-        if self.stop is not None and not isinstance(self.stop, (int,long)):
-           raise ValueError("Stop argument must be an integer or None")
-        if self.step is None:
-            self.step = 1
-        if self.start<0 or (self.stop is not None and self.stop<0
-           ) or self.step<=0:
-            raise ValueError, "indices for islice() must be positive"
-        self.it = iter(iterable)
-        self.donext = None
-        self.cnt = 0
-
-    def __iter__(self):
-        return self
-
-    def next(self): 
-        if self.donext is None:
-            try:
-                self.donext = self.it.next
-            except AttributeError:
-                raise TypeError
-        nextindex = self.start
-        if self.stop is not None and nextindex >= self.stop:
-            raise StopIteration
-        while self.cnt <= nextindex:
-            nextitem = self.donext()
-            self.cnt += 1
-        self.start += self.step 
-        return nextitem
-
-class izip(object):
-    """Make an iterator that aggregates elements from each of the
-    iterables.  Like zip() except that it returns an iterator instead
-    of a list. Used for lock-step iteration over several iterables at
-    a time.
-
-    Equivalent to :
-
-    def izip(*iterables):
-        iterables = map(iter, iterables)
-        while iterables:
-            result = [i.next() for i in iterables]
-            yield tuple(result)
-    """
-    def __init__(self, *iterables):
-        self._iterators = map(iter, iterables)
-        self._result = [None] * len(self._iterators)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        if not self._iterators:
-            raise StopIteration()
-        try:
-            return tuple([i.next() for i in self._iterators])
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % (i))
-
-
-class product(object):
-
-    def __init__(self, *args, **kw):
-        if len(kw) > 1:
-            raise TypeError("product() takes at most 1 argument (%d given)" %
-                             len(kw))
-        self.repeat = kw.get('repeat', 1)
-        self.gears = [x for x in args] * self.repeat
-        self.num_gears = len(self.gears)
-        # initialization of indicies to loop over
-        self.indicies = [(0, len(self.gears[x]))
-                         for x in range(0, self.num_gears)]
-        self.cont = True
-
-    def roll_gears(self):
-        # Starting from the end of the gear indicies work to the front
-        # incrementing the gear until the limit is reached. When the limit
-        # is reached carry operation to the next gear
-        should_carry = True
-        for n in range(0, self.num_gears):
-            nth_gear = self.num_gears - n - 1
-            if should_carry:
-                count, lim = self.indicies[nth_gear]
-                count += 1
-                if count == lim and nth_gear == 0:
-                    self.cont = False
-                if count == lim:
-                    should_carry = True
-                    count = 0
-                else:
-                    should_carry = False
-                self.indicies[nth_gear] = (count, lim)
-            else:
-                break
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        if not self.cont:
-            raise StopIteration
-        l = []
-        for x in range(0, self.num_gears):
-            index, limit = self.indicies[x]
-            l.append(self.gears[x][index])
-        self.roll_gears()
-        return tuple(l)
-
-
-class repeat(object):
-    """Make an iterator that returns object over and over again.
-    Runs indefinitely unless the times argument is specified.  Used
-    as argument to imap() for invariant parameters to the called
-    function. Also used with izip() to create an invariant part of a
-    tuple record.
-
-    Equivalent to :
-
-    def repeat(object, times=None):
-        if times is None:
-            while True:
-                yield object
-        else:
-            for i in xrange(times):
-                yield object
-    """
-    def __init__(self, obj, times=None):
-        self._obj = obj
-        if times is not None:
-            xrange(times) # Raise a TypeError
-            if times < 0:
-                times = 0
-        self._times = times
-        
-    def __iter__(self):
-        return self
-
-    def next(self):
-        # next() *need* to decrement self._times when consumed
-        if self._times is not None:
-            if self._times <= 0: 
-                raise StopIteration()
-            self._times -= 1
-        return self._obj
-
-    def __repr__(self):
-        if self._times is not None:
-            return 'repeat(%r, %r)' % (self._obj, self._times)
-        else:
-            return 'repeat(%r)' % (self._obj,)
-
-    def __len__(self):
-        if self._times == -1 or self._times is None:
-            raise TypeError("len() of uniszed object")
-        return self._times
-    
-
-class starmap(object):
-    """Make an iterator that computes the function using arguments
-    tuples obtained from the iterable. Used instead of imap() when
-    argument parameters are already grouped in tuples from a single
-    iterable (the data has been ``pre-zipped''). The difference
-    between imap() and starmap() parallels the distinction between
-    function(a,b) and function(*c).
-
-    Equivalent to :
-
-    def starmap(function, iterable):
-        iterable = iter(iterable)
-        while True:
-            yield function(*iterable.next())    
-    """
-    def __init__(self, function, iterable):
-        self._func = function
-        self._iter = iter(iterable)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        # CPython raises a TypeError when the iterator doesn't return a tuple
-        try:
-            t = self._iter.next()
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % self._iter)
-        if not isinstance(t, tuple):
-            raise TypeError("iterator must return a tuple")
-        return self._func(*t)
-
-
-
-class takewhile(object):
-    """Make an iterator that returns elements from the iterable as
-    long as the predicate is true.
-
-    Equivalent to :
-    
-    def takewhile(predicate, iterable):
-        for x in iterable:
-            if predicate(x):
-                yield x
-            else:
-                break
-    """
-    def __init__(self, predicate, iterable):
-        self._predicate = predicate
-        self._iter = iter(iterable)
-
-    def __iter__(self):
-        return self
-
-    def next(self):
-        try:
-            value = self._iter.next()
-        except AttributeError:
-            # CPython raises a TypeError when next() is not defined
-            raise TypeError('%s has no next() method' % \
-                            (self._iter))
-        if not self._predicate(value):
-            raise StopIteration()
-        return value
-
-    
-class TeeData(object):
-    """Holds cached values for TeeObjects"""
-    def __init__(self, iterator):
-        self.data = []
-        self._iter = iterator
-
-    def __getitem__(self, i):
-        # iterates until 'i' if not done yet
-        while i>= len(self.data):
-            try:
-                self.data.append( self._iter.next() )
-            except AttributeError:
-                # CPython raises a TypeError when next() is not defined
-                raise TypeError('%s has no next() method' % self._iter)
-        return self.data[i]
-
-
-class TeeObject(object):
-    """Iterables / Iterators as returned by the tee() function"""
-    def __init__(self, iterable=None, tee_data=None):
-        if tee_data:
-            self.tee_data = tee_data
-            self.pos = 0
-        # <=> Copy constructor
-        elif isinstance(iterable, TeeObject):
-            self.tee_data = iterable.tee_data
-            self.pos = iterable.pos
-        else:
-            self.tee_data = TeeData(iter(iterable))
-            self.pos = 0
-            
-    def next(self):
-        data = self.tee_data[self.pos]
-        self.pos += 1
-        return data
-    
-    def __iter__(self):
-        return self
-
-
-@builtinify
-def tee(iterable, n=2):
-    """Return n independent iterators from a single iterable.
-    Note : once tee() has made a split, the original iterable
-    should not be used anywhere else; otherwise, the iterable could get
-    advanced without the tee objects being informed.
-    
-    Note : this member of the toolkit may require significant auxiliary
-    storage (depending on how much temporary data needs to be stored).
-    In general, if one iterator is going to use most or all of the
-    data before the other iterator, it is faster to use list() instead
-    of tee()
-    
-    Equivalent to :
-    
-    def tee(iterable, n=2):
-        def gen(next, data={}, cnt=[0]):
-            for i in count():
-                if i == cnt[0]:
-                    item = data[i] = next()
-                    cnt[0] += 1
-                else:
-                    item = data.pop(i)
-                yield item
-        it = iter(iterable)
-        return tuple([gen(it.next) for i in range(n)])
-    """
-    if isinstance(iterable, TeeObject):
-        # a,b = tee(range(10)) ; c,d = tee(a) ; self.assert_(a is c)
-        return tuple([iterable] +
-        [TeeObject(tee_data=iterable.tee_data) for i in xrange(n-1)])
-    tee_data = TeeData(iter(iterable))
-    return tuple([TeeObject(tee_data=tee_data) for i in xrange(n)])

File lib_pypy/pypy_test/test_itertools.py

  • Ignore whitespace
-from py.test import raises
-from lib_pypy import itertools
-
-class TestItertools(object):
-
-    def test_compress(self):
-        it = itertools.compress(['a', 'b', 'c'], [0, 1, 0])
-
-        assert list(it) == ['b']
-
-    def test_compress_diff_len(self):
-        it = itertools.compress(['a'], [])
-        raises(StopIteration, it.next)
-
-    def test_product(self):
-        l = [1, 2]
-        m = ['a', 'b']
-
-        prodlist = itertools.product(l, m)
-        assert list(prodlist) == [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]
-
-    def test_product_repeat(self):
-        l = [1, 2]
-        m = ['a', 'b']
-
-        prodlist = itertools.product(l, m, repeat=2)
-        ans = [(1, 'a', 1, 'a'), (1, 'a', 1, 'b'), (1, 'a', 2, 'a'),
-               (1, 'a', 2, 'b'), (1, 'b', 1, 'a'), (1, 'b', 1, 'b'),
-               (1, 'b', 2, 'a'), (1, 'b', 2, 'b'), (2, 'a', 1, 'a'),
-               (2, 'a', 1, 'b'), (2, 'a', 2, 'a'), (2, 'a', 2, 'b'),
-               (2, 'b', 1, 'a'), (2, 'b', 1, 'b'), (2, 'b', 2, 'a'),
-               (2, 'b', 2, 'b')]
-        assert list(prodlist) == ans
-
-    def test_product_diff_sizes(self):
-        l = [1, 2]
-        m = ['a']
-
-        prodlist = itertools.product(l, m)
-        assert list(prodlist) == [(1, 'a'), (2, 'a')]
-
-        l = [1]
-        m = ['a', 'b']
-        prodlist = itertools.product(l, m)
-        assert list(prodlist) == [(1, 'a'), (1, 'b')]
-
-    def test_product_toomany_args(self):
-        l = [1, 2]
-        m = ['a']
-        raises(TypeError, itertools.product, l, m, repeat=1, foo=2)

File pypy/module/itertools/interp_itertools.py

View file
  • Ignore whitespace
         next = interp2app(W_Count.next_w),
         __reduce__ = interp2app(W_Count.reduce_w),
         __repr__ = interp2app(W_Count.repr_w),
-        __doc__ = """Make an iterator that returns consecutive integers starting
-    with n.  If not specified n defaults to zero. Does not currently
-    support python long integers. Often used as an argument to imap()
-    to generate consecutive data points.  Also, used with izip() to
-    add sequence numbers.
+        __doc__ = """Make an iterator that returns evenly spaced values starting
+    with n.  If not specified n defaults to zero.  Often used as an
+    argument to imap() to generate consecutive data points.  Also,
+    used with izip() to add sequence numbers.
 
-    Equivalent to :
+    Equivalent to:
 
-    def count(n=0):
-        if not isinstance(n, int):
-            raise TypeError("%s is not a regular integer" % n)
+    def count(start=0, step=1):
+        n = start
         while True:
             yield n
-            n += 1
+            n += step
     """)
 
 

File pypy/module/micronumpy/interp_numarray.py

View file
  • Ignore whitespace
 
     def _binop_right_impl(ufunc_name):
         def impl(self, space, w_other, w_out=None):
-            dtype = interp_ufuncs.find_dtype_for_scalar(space, w_other,
-                                                        self.get_dtype())
-            w_other = W_NDimArray.new_scalar(space, dtype, w_other)
+            w_other = convert_to_array(space, w_other)
             return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [w_other, self, w_out])
         return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)
 

File pypy/module/micronumpy/test/test_numarray.py

View file
  • Ignore whitespace
         r = 3 + array(range(3))
         for i in range(3):
             assert r[i] == i + 3
+        r = [1, 2] + array([1, 2])
+        assert (r == [2, 4]).all()
 
     def test_add_list(self):
         from _numpypy import array, ndarray