pypy / lib_pypy / numpypy / core / fromnumeric.py

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
######################################################################    
# This is a copy of numpy/core/fromnumeric.py modified for numpypy
######################################################################
# Each name in __all__ was a function in  'numeric' that is now 
# a method in 'numpy'.
# When the corresponding method is added to numpypy BaseArray
# each function should be added as a module function 
# at the applevel 
# This can be as simple as doing the following
#
# def func(a, ...):
#     if not hasattr(a, 'func')
#         a = numpypy.array(a)
#     return a.func(...)
#
######################################################################

import numpypy

# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"

# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
           'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
           'searchsorted', 'alen',
           'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
           'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
           'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
           'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
           'amax', 'amin',
          ]

def take(a, indices, axis=None, out=None, mode='raise'):
    """
    Take elements from an array along an axis.

    This function does the same thing as "fancy" indexing (indexing arrays
    using arrays); however, it can be easier to use if you need elements
    along a given axis.

    Parameters
    ----------
    a : array_like
        The source array.
    indices : array_like
        The indices of the values to extract.
    axis : int, optional
        The axis over which to select values. By default, the flattened
        input array is used.
    out : ndarray, optional
        If provided, the result will be placed in this array. It should
        be of the appropriate shape and dtype.
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.

        * 'raise' -- raise an error (default)
        * 'wrap' -- wrap around
        * 'clip' -- clip to the range

        'clip' mode means that all indices that are too large are replaced
        by the index that addresses the last element along that axis. Note
        that this disables indexing with negative numbers.

    Returns
    -------
    subarray : ndarray
        The returned array has the same type as `a`.

    See Also
    --------
    ndarray.take : equivalent method

    Examples
    --------
    >>> a = [4, 3, 5, 7, 6, 8]
    >>> indices = [0, 1, 4]
    >>> np.take(a, indices)
    array([4, 3, 6])

    In this example if `a` is an ndarray, "fancy" indexing can be used.

    >>> a = np.array(a)
    >>> a[indices]
    array([4, 3, 6])

    """
    raise NotImplementedError('Waiting on interp level method')


# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
    """
    Gives a new shape to an array without changing its data.

    Parameters
    ----------
    a : array_like
        Array to be reshaped.
    newshape : int or tuple of ints
        The new shape should be compatible with the original shape. If
        an integer, then the result will be a 1-D array of that length.
        One shape dimension can be -1. In this case, the value is inferred
        from the length of the array and remaining dimensions.
    order : {'C', 'F', 'A'}, optional
        Determines whether the array data should be viewed as in C
        (row-major) order, FORTRAN (column-major) order, or the C/FORTRAN
        order should be preserved.

    Returns
    -------
    reshaped_array : ndarray
        This will be a new view object if possible; otherwise, it will
        be a copy.


    See Also
    --------
    ndarray.reshape : Equivalent method.

    Notes
    -----

    It is not always possible to change the shape of an array without
    copying the data. If you want an error to be raise if the data is copied,
    you should assign the new shape to the shape attribute of the array::

     >>> a = np.zeros((10, 2))
     # A transpose make the array non-contiguous
     >>> b = a.T
     # Taking a view makes it possible to modify the shape without modiying the
     # initial object.
     >>> c = b.view()
     >>> c.shape = (20)
     AttributeError: incompatible shape for a non-contiguous array


    Examples
    --------
    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> np.reshape(a, 6)
    array([1, 2, 3, 4, 5, 6])
    >>> np.reshape(a, 6, order='F')
    array([1, 4, 2, 5, 3, 6])

    >>> np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2
    array([[1, 2],
           [3, 4],
           [5, 6]])

    """
    assert order == 'C'
    if not hasattr(a, 'reshape'):
       a = numpypy.array(a)
    return a.reshape(newshape)


def choose(a, choices, out=None, mode='raise'):
    """
    Construct an array from an index array and a set of arrays to choose from.

    First of all, if confused or uncertain, definitely look at the Examples -
    in its full generality, this function is less simple than it might
    seem from the following code description (below ndi =
    `numpy.lib.index_tricks`):

    ``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``.

    But this omits some subtleties.  Here is a fully general summary:

    Given an "index" array (`a`) of integers and a sequence of `n` arrays
    (`choices`), `a` and each choice array are first broadcast, as necessary,
    to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =
    0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape``
    for each `i`.  Then, a new array with shape ``Ba.shape`` is created as
    follows:

    * if ``mode=raise`` (the default), then, first of all, each element of
      `a` (and thus `Ba`) must be in the range `[0, n-1]`; now, suppose that
      `i` (in that range) is the value at the `(j0, j1, ..., jm)` position
      in `Ba` - then the value at the same position in the new array is the
      value in `Bchoices[i]` at that same position;

    * if ``mode=wrap``, values in `a` (and thus `Ba`) may be any (signed)
      integer; modular arithmetic is used to map integers outside the range
      `[0, n-1]` back into that range; and then the new array is constructed
      as above;

    * if ``mode=clip``, values in `a` (and thus `Ba`) may be any (signed)
      integer; negative integers are mapped to 0; values greater than `n-1`
      are mapped to `n-1`; and then the new array is constructed as above.

    Parameters
    ----------
    a : int array
        This array must contain integers in `[0, n-1]`, where `n` is the number
        of choices, unless ``mode=wrap`` or ``mode=clip``, in which cases any
        integers are permissible.
    choices : sequence of arrays
        Choice arrays. `a` and all of the choices must be broadcastable to the
        same shape.  If `choices` is itself an array (not recommended), then
        its outermost dimension (i.e., the one corresponding to
        ``choices.shape[0]``) is taken as defining the "sequence".
    out : array, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype.
    mode : {'raise' (default), 'wrap', 'clip'}, optional
        Specifies how indices outside `[0, n-1]` will be treated:

          * 'raise' : an exception is raised
          * 'wrap' : value becomes value mod `n`
          * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1

    Returns
    -------
    merged_array : array
        The merged result.

    Raises
    ------
    ValueError: shape mismatch
        If `a` and each choice array are not all broadcastable to the same
        shape.

    See Also
    --------
    ndarray.choose : equivalent method

    Notes
    -----
    To reduce the chance of misinterpretation, even though the following
    "abuse" is nominally supported, `choices` should neither be, nor be
    thought of as, a single array, i.e., the outermost sequence-like container
    should be either a list or a tuple.

    Examples
    --------

    >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
    ...   [20, 21, 22, 23], [30, 31, 32, 33]]
    >>> np.choose([2, 3, 1, 0], choices
    ... # the first element of the result will be the first element of the
    ... # third (2+1) "array" in choices, namely, 20; the second element
    ... # will be the second element of the fourth (3+1) choice array, i.e.,
    ... # 31, etc.
    ... )
    array([20, 31, 12,  3])
    >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
    array([20, 31, 12,  3])
    >>> # because there are 4 choice arrays
    >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
    array([20,  1, 12,  3])
    >>> # i.e., 0

    A couple examples illustrating how choose broadcasts:

    >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
    >>> choices = [-10, 10]
    >>> np.choose(a, choices)
    array([[ 10, -10,  10],
           [-10,  10, -10],
           [ 10, -10,  10]])

    >>> # With thanks to Anne Archibald
    >>> a = np.array([0, 1]).reshape((2,1,1))
    >>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
    >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
    >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
    array([[[ 1,  1,  1,  1,  1],
            [ 2,  2,  2,  2,  2],
            [ 3,  3,  3,  3,  3]],
           [[-1, -2, -3, -4, -5],
            [-1, -2, -3, -4, -5],
            [-1, -2, -3, -4, -5]]])

    """
    raise NotImplementedError('Waiting on interp level method')


def repeat(a, repeats, axis=None):
    """
    Repeat elements of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    repeats : {int, array of ints}
        The number of repetitions for each element.  `repeats` is broadcasted
        to fit the shape of the given axis.
    axis : int, optional
        The axis along which to repeat values.  By default, use the
        flattened input array, and return a flat output array.

    Returns
    -------
    repeated_array : ndarray
        Output array which has the same shape as `a`, except along
        the given axis.

    See Also
    --------
    tile : Tile an array.

    Examples
    --------
    >>> x = np.array([[1,2],[3,4]])
    >>> np.repeat(x, 2)
    array([1, 1, 2, 2, 3, 3, 4, 4])
    >>> np.repeat(x, 3, axis=1)
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])
    >>> np.repeat(x, [1, 2], axis=0)
    array([[1, 2],
           [3, 4],
           [3, 4]])

    """
    raise NotImplementedError('Waiting on interp level method')


def put(a, ind, v, mode='raise'):
    """
    Replaces specified elements of an array with given values.

    The indexing works on the flattened target array. `put` is roughly
    equivalent to:

    ::

        a.flat[ind] = v

    Parameters
    ----------
    a : ndarray
        Target array.
    ind : array_like
        Target indices, interpreted as integers.
    v : array_like
        Values to place in `a` at target indices. If `v` is shorter than
        `ind` it will be repeated as necessary.
    mode : {'raise', 'wrap', 'clip'}, optional
        Specifies how out-of-bounds indices will behave.

        * 'raise' -- raise an error (default)
        * 'wrap' -- wrap around
        * 'clip' -- clip to the range

        'clip' mode means that all indices that are too large are replaced
        by the index that addresses the last element along that axis. Note
        that this disables indexing with negative numbers.

    See Also
    --------
    putmask, place

    Examples
    --------
    >>> a = np.arange(5)
    >>> np.put(a, [0, 2], [-44, -55])
    >>> a
    array([-44,   1, -55,   3,   4])

    >>> a = np.arange(5)
    >>> np.put(a, 22, -5, mode='clip')
    >>> a
    array([ 0,  1,  2,  3, -5])

    """
    raise NotImplementedError('Waiting on interp level method')


def swapaxes(a, axis1, axis2):
    """
    Interchange two axes of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    axis1 : int
        First axis.
    axis2 : int
        Second axis.

    Returns
    -------
    a_swapped : ndarray
        If `a` is an ndarray, then a view of `a` is returned; otherwise
        a new array is created.

    Examples
    --------
    >>> x = np.array([[1,2,3]])
    >>> np.swapaxes(x,0,1)
    array([[1],
           [2],
           [3]])

    >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
    >>> x
    array([[[0, 1],
            [2, 3]],
           [[4, 5],
            [6, 7]]])

    >>> np.swapaxes(x,0,2)
    array([[[0, 4],
            [2, 6]],
           [[1, 5],
            [3, 7]]])

    """
    swapaxes = a.swapaxes
    return swapaxes(axis1, axis2)


def transpose(a, axes=None):
    """
    Permute the dimensions of an array.

    Parameters
    ----------
    a : array_like
        Input array.
    axes : list of ints, optional
        By default, reverse the dimensions, otherwise permute the axes
        according to the values given.

    Returns
    -------
    p : ndarray
        `a` with its axes permuted.  A view is returned whenever
        possible.

    See Also
    --------
    rollaxis

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.transpose(x)
    array([[0, 2],
           [1, 3]])

    >>> x = np.ones((1, 2, 3))
    >>> np.transpose(x, (1, 0, 2)).shape
    (2, 1, 3)

    """
    if axes is not None:
        raise NotImplementedError('No "axes" arg yet.')
    if not hasattr(a, 'T'):
        a = numpypy.array(a)
    return a.T

def sort(a, axis=-1, kind='quicksort', order=None):
    """
    Return a sorted copy of an array.

    Parameters
    ----------
    a : array_like
        Array to be sorted.
    axis : int or None, optional
        Axis along which to sort. If None, the array is flattened before
        sorting. The default is -1, which sorts along the last axis.
    kind : {'quicksort', 'mergesort', 'heapsort'}, optional
        Sorting algorithm. Default is 'quicksort'.
    order : list, optional
        When `a` is a structured array, this argument specifies which fields
        to compare first, second, and so on.  This list does not need to
        include all of the fields.

    Returns
    -------
    sorted_array : ndarray
        Array of the same type and shape as `a`.

    See Also
    --------
    ndarray.sort : Method to sort an array in-place.
    argsort : Indirect sort.
    lexsort : Indirect stable sort on multiple keys.
    searchsorted : Find elements in a sorted array.

    Notes
    -----
    The various sorting algorithms are characterized by their average speed,
    worst case performance, work space size, and whether they are stable. A
    stable sort keeps items with the same key in the same relative
    order. The three available algorithms have the following
    properties:

    =========== ======= ============= ============ =======
       kind      speed   worst case    work space  stable
    =========== ======= ============= ============ =======
    'quicksort'    1     O(n^2)            0          no
    'mergesort'    2     O(n*log(n))      ~n/2        yes
    'heapsort'     3     O(n*log(n))       0          no
    =========== ======= ============= ============ =======

    All the sort algorithms make temporary copies of the data when
    sorting along any but the last axis.  Consequently, sorting along
    the last axis is faster and uses less space than sorting along
    any other axis.

    The sort order for complex numbers is lexicographic. If both the real
    and imaginary parts are non-nan then the order is determined by the
    real parts except when they are equal, in which case the order is
    determined by the imaginary parts.

    Previous to numpy 1.4.0 sorting real and complex arrays containing nan
    values led to undefined behaviour. In numpy versions >= 1.4.0 nan
    values are sorted to the end. The extended sort order is:

      * Real: [R, nan]
      * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

    where R is a non-nan real value. Complex values with the same nan
    placements are sorted according to the non-nan part if it exists.
    Non-nan values are sorted as before.

    Examples
    --------
    >>> a = np.array([[1,4],[3,1]])
    >>> np.sort(a)                # sort along the last axis
    array([[1, 4],
           [1, 3]])
    >>> np.sort(a, axis=None)     # sort the flattened array
    array([1, 1, 3, 4])
    >>> np.sort(a, axis=0)        # sort along the first axis
    array([[1, 1],
           [3, 4]])

    Use the `order` keyword to specify a field to use when sorting a
    structured array:

    >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
    >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
    ...           ('Galahad', 1.7, 38)]
    >>> a = np.array(values, dtype=dtype)       # create a structured array
    >>> np.sort(a, order='height')                        # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
           ('Lancelot', 1.8999999999999999, 38)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

    Sort by age, then height if ages are equal:

    >>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
           ('Arthur', 1.8, 41)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

    """
    raise NotImplementedError('Waiting on interp level method')


def argsort(a, axis=-1, kind='quicksort', order=None):
    """
    Returns the indices that would sort an array.

    Perform an indirect sort along the given axis using the algorithm specified
    by the `kind` keyword. It returns an array of indices of the same shape as
    `a` that index data along the given axis in sorted order.

    Parameters
    ----------
    a : array_like
        Array to sort.
    axis : int or None, optional
        Axis along which to sort.  The default is -1 (the last axis). If None,
        the flattened array is used.
    kind : {'quicksort', 'mergesort', 'heapsort'}, optional
        Sorting algorithm.
    order : list, optional
        When `a` is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.

    Returns
    -------
    index_array : ndarray, int
        Array of indices that sort `a` along the specified axis.
        In other words, ``a[index_array]`` yields a sorted `a`.

    See Also
    --------
    sort : Describes sorting algorithms used.
    lexsort : Indirect stable sort with multiple keys.
    ndarray.sort : Inplace sort.

    Notes
    -----
    See `sort` for notes on the different sorting algorithms.

    As of NumPy 1.4.0 `argsort` works with real/complex arrays containing
    nan values. The enhanced sort order is documented in `sort`.

    Examples
    --------
    One dimensional array:

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])

    Two-dimensional array:

    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])

    >>> np.argsort(x, axis=0)
    array([[0, 1],
           [1, 0]])

    >>> np.argsort(x, axis=1)
    array([[0, 1],
           [0, 1]])

    Sorting with keys:

    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])

    >>> np.argsort(x, order=('x','y'))
    array([1, 0])

    >>> np.argsort(x, order=('y','x'))
    array([0, 1])

    """
    raise NotImplementedError('Waiting on interp level method')


def argmax(a, axis=None):
    """
    Indices of the maximum values along an axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        By default, the index is into the flattened array, otherwise
        along the specified axis.

    Returns
    -------
    index_array : ndarray of ints
        Array of indices into the array. It has the same shape as `a.shape`
        with the dimension along `axis` removed.

    See Also
    --------
    ndarray.argmax, argmin
    amax : The maximum value along a given axis.
    unravel_index : Convert a flat index into an index tuple.

    Notes
    -----
    In case of multiple occurrences of the maximum values, the indices
    corresponding to the first occurrence are returned.

    Examples
    --------
    >>> a = np.arange(6).reshape(2,3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.argmax(a)
    5
    >>> np.argmax(a, axis=0)
    array([1, 1, 1])
    >>> np.argmax(a, axis=1)
    array([2, 2])

    >>> b = np.arange(6)
    >>> b[1] = 5
    >>> b
    array([0, 5, 2, 3, 4, 5])
    >>> np.argmax(b) # Only the first occurrence is returned.
    1

    """
    assert axis is None
    if not hasattr(a, 'argmax'):
        a = numpypy.array(a)
    return a.argmax()


def argmin(a, axis=None):
    """
    Return the indices of the minimum values along an axis.

    See Also
    --------
    argmax : Similar function.  Please refer to `numpy.argmax` for detailed
        documentation.

    """
    assert axis is None
    if not hasattr(a, 'argmin'):
        a = numpypy.array(a)
    return a.argmin()


def searchsorted(a, v, side='left'):
    """
    Find indices where elements should be inserted to maintain order.

    Find the indices into a sorted array `a` such that, if the corresponding
    elements in `v` were inserted before the indices, the order of `a` would
    be preserved.

    Parameters
    ----------
    a : 1-D array_like
        Input array, sorted in ascending order.
    v : array_like
        Values to insert into `a`.
    side : {'left', 'right'}, optional
        If 'left', the index of the first suitable location found is given.  If
        'right', return the last such index.  If there is no suitable
        index, return either 0 or N (where N is the length of `a`).

    Returns
    -------
    indices : array of ints
        Array of insertion points with the same shape as `v`.

    See Also
    --------
    sort : Return a sorted copy of an array.
    histogram : Produce histogram from 1-D data.

    Notes
    -----
    Binary search is used to find the required insertion points.

    As of Numpy 1.4.0 `searchsorted` works with real/complex arrays containing
    `nan` values. The enhanced sort order is documented in `sort`.

    Examples
    --------
    >>> np.searchsorted([1,2,3,4,5], 3)
    2
    >>> np.searchsorted([1,2,3,4,5], 3, side='right')
    3
    >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
    array([0, 5, 1, 2])

    """
    raise NotImplementedError('Waiting on interp level method')


def resize(a, new_shape):
    """
    Return a new array with the specified shape.

    If the new array is larger than the original array, then the new
    array is filled with repeated copies of `a`.  Note that this behavior
    is different from a.resize(new_shape) which fills with zeros instead
    of repeated copies of `a`.

    Parameters
    ----------
    a : array_like
        Array to be resized.

    new_shape : int or tuple of int
        Shape of resized array.

    Returns
    -------
    reshaped_array : ndarray
        The new array is formed from the data in the old array, repeated
        if necessary to fill out the required number of elements.  The
        data are repeated in the order that they are stored in memory.

    See Also
    --------
    ndarray.resize : resize an array in-place.

    Examples
    --------
    >>> a=np.array([[0,1],[2,3]])
    >>> np.resize(a,(1,4))
    array([[0, 1, 2, 3]])
    >>> np.resize(a,(2,4))
    array([[0, 1, 2, 3],
           [0, 1, 2, 3]])

    """
    raise NotImplementedError('Waiting on interp level method')


def squeeze(a):
    """
    Remove single-dimensional entries from the shape of an array.

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    squeezed : ndarray
        The input array, but with with all dimensions of length 1
        removed.  Whenever possible, a view on `a` is returned.

    Examples
    --------
    >>> x = np.array([[[0], [1], [2]]])
    >>> x.shape
    (1, 3, 1)
    >>> np.squeeze(x).shape
    (3,)

    """
    raise NotImplementedError('Waiting on interp level method')


def diagonal(a, offset=0, axis1=0, axis2=1):
    """
    Return specified diagonals.

    If `a` is 2-D, returns the diagonal of `a` with the given offset,
    i.e., the collection of elements of the form ``a[i, i+offset]``.  If
    `a` has more than two dimensions, then the axes specified by `axis1`
    and `axis2` are used to determine the 2-D sub-array whose diagonal is
    returned.  The shape of the resulting array can be determined by
    removing `axis1` and `axis2` and appending an index to the right equal
    to the size of the resulting diagonals.

    Parameters
    ----------
    a : array_like
        Array from which the diagonals are taken.
    offset : int, optional
        Offset of the diagonal from the main diagonal.  Can be positive or
        negative.  Defaults to main diagonal (0).
    axis1 : int, optional
        Axis to be used as the first axis of the 2-D sub-arrays from which
        the diagonals should be taken.  Defaults to first axis (0).
    axis2 : int, optional
        Axis to be used as the second axis of the 2-D sub-arrays from
        which the diagonals should be taken. Defaults to second axis (1).

    Returns
    -------
    array_of_diagonals : ndarray
        If `a` is 2-D, a 1-D array containing the diagonal is returned.
        If the dimension of `a` is larger, then an array of diagonals is
        returned, "packed" from left-most dimension to right-most (e.g.,
        if `a` is 3-D, then the diagonals are "packed" along rows).

    Raises
    ------
    ValueError
        If the dimension of `a` is less than 2.

    See Also
    --------
    diag : MATLAB work-a-like for 1-D and 2-D arrays.
    diagflat : Create diagonal arrays.
    trace : Sum along diagonals.

    Examples
    --------
    >>> a = np.arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> a.diagonal()
    array([0, 3])
    >>> a.diagonal(1)
    array([1])

    A 3-D example:

    >>> a = np.arange(8).reshape(2,2,2); a
    array([[[0, 1],
            [2, 3]],
           [[4, 5],
            [6, 7]]])
    >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
    ...            0, # across the outer(left)-most axis last and
    ...            1) # the "middle" (row) axis first.
    array([[0, 6],
           [1, 7]])

    The sub-arrays whose main diagonals we just obtained; note that each
    corresponds to fixing the right-most (column) axis, and that the
    diagonals are "packed" in rows.

    >>> a[:,:,0] # main diagonal is [0 6]
    array([[0, 2],
           [4, 6]])
    >>> a[:,:,1] # main diagonal is [1 7]
    array([[1, 3],
           [5, 7]])

    """
    raise NotImplementedError('Waiting on interp level method')


def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
    """
    Return the sum along diagonals of the array.

    If `a` is 2-D, the sum along its diagonal with the given offset
    is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.

    If `a` has more than two dimensions, then the axes specified by axis1 and
    axis2 are used to determine the 2-D sub-arrays whose traces are returned.
    The shape of the resulting array is the same as that of `a` with `axis1`
    and `axis2` removed.

    Parameters
    ----------
    a : array_like
        Input array, from which the diagonals are taken.
    offset : int, optional
        Offset of the diagonal from the main diagonal. Can be both positive
        and negative. Defaults to 0.
    axis1, axis2 : int, optional
        Axes to be used as the first and second axis of the 2-D sub-arrays
        from which the diagonals should be taken. Defaults are the first two
        axes of `a`.
    dtype : dtype, optional
        Determines the data-type of the returned array and of the accumulator
        where the elements are summed. If dtype has the value None and `a` is
        of integer type of precision less than the default integer
        precision, then the default integer precision is used. Otherwise,
        the precision is the same as that of `a`.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and
        it must be of the right shape to hold the output.

    Returns
    -------
    sum_along_diagonals : ndarray
        If `a` is 2-D, the sum along the diagonal is returned.  If `a` has
        larger dimensions, then an array of sums along diagonals is returned.

    See Also
    --------
    diag, diagonal, diagflat

    Examples
    --------
    >>> np.trace(np.eye(3))
    3.0
    >>> a = np.arange(8).reshape((2,2,2))
    >>> np.trace(a)
    array([6, 8])

    >>> a = np.arange(24).reshape((2,2,2,3))
    >>> np.trace(a).shape
    (2, 3)

    """
    raise NotImplementedError('Waiting on interp level method')

def ravel(a, order='C'):
    """
    Return a flattened array.

    A 1-D array, containing the elements of the input, is returned.  A copy is
    made only if needed.

    Parameters
    ----------
    a : array_like
        Input array.  The elements in ``a`` are read in the order specified by
        `order`, and packed as a 1-D array.
    order : {'C','F', 'A', 'K'}, optional
        The elements of ``a`` are read in this order. 'C' means to view
        the elements in C (row-major) order. 'F' means to view the elements
        in Fortran (column-major) order. 'A' means to view the elements
        in 'F' order if a is Fortran contiguous, 'C' order otherwise.
        'K' means to view the elements in the order they occur in memory,
        except for reversing the data when strides are negative.
        By default, 'C' order is used.

    Returns
    -------
    1d_array : ndarray
        Output of the same dtype as `a`, and of shape ``(a.size(),)``.

    See Also
    --------
    ndarray.flat : 1-D iterator over an array.
    ndarray.flatten : 1-D array copy of the elements of an array
                      in row-major order.

    Notes
    -----
    In row-major order, the row index varies the slowest, and the column
    index the quickest.  This can be generalized to multiple dimensions,
    where row-major order implies that the index along the first axis
    varies slowest, and the index along the last quickest.  The opposite holds
    for Fortran-, or column-major, mode.

    Examples
    --------
    It is equivalent to ``reshape(-1, order=order)``.

    >>> x = np.array([[1, 2, 3], [4, 5, 6]])
    >>> print np.ravel(x)
    [1 2 3 4 5 6]

    >>> print x.reshape(-1)
    [1 2 3 4 5 6]

    >>> print np.ravel(x, order='F')
    [1 4 2 5 3 6]

    When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:

    >>> print np.ravel(x.T)
    [1 4 2 5 3 6]
    >>> print np.ravel(x.T, order='A')
    [1 2 3 4 5 6]

    When ``order`` is 'K', it will preserve orderings that are neither 'C'
    nor 'F', but won't reverse axes:

    >>> a = np.arange(3)[::-1]; a
    array([2, 1, 0])
    >>> a.ravel(order='C')
    array([2, 1, 0])
    >>> a.ravel(order='K')
    array([2, 1, 0])

    >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
    array([[[ 0,  2,  4],
            [ 1,  3,  5]],
           [[ 6,  8, 10],
            [ 7,  9, 11]]])
    >>> a.ravel(order='C')
    array([ 0,  2,  4,  1,  3,  5,  6,  8, 10,  7,  9, 11])
    >>> a.ravel(order='K')
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

    """
    if not hasattr(a, 'ravel'):
        a = numpypy.array(a)
    return a.ravel(order=order)

def nonzero(a):
    """
    Return the indices of the elements that are non-zero.

    Returns a tuple of arrays, one for each dimension of `a`, containing
    the indices of the non-zero elements in that dimension. The
    corresponding non-zero values can be obtained with::

        a[nonzero(a)]

    To group the indices by element, rather than dimension, use::

        transpose(nonzero(a))

    The result of this is always a 2-D array, with a row for
    each non-zero element.

    Parameters
    ----------
    a : array_like
        Input array.

    Returns
    -------
    tuple_of_arrays : tuple
        Indices of elements that are non-zero.

    See Also
    --------
    flatnonzero :
        Return indices that are non-zero in the flattened version of the input
        array.
    ndarray.nonzero :
        Equivalent ndarray method.
    count_nonzero :
        Counts the number of non-zero elements in the input array.

    Examples
    --------
    >>> x = np.eye(3)
    >>> x
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> np.nonzero(x)
    (array([0, 1, 2]), array([0, 1, 2]))

    >>> x[np.nonzero(x)]
    array([ 1.,  1.,  1.])
    >>> np.transpose(np.nonzero(x))
    array([[0, 0],
           [1, 1],
           [2, 2]])

    A common use for ``nonzero`` is to find the indices of an array, where
    a condition is True.  Given an array `a`, the condition `a` > 3 is a
    boolean array and since False is interpreted as 0, np.nonzero(a > 3)
    yields the indices of the `a` where the condition is true.

    >>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
    >>> a > 3
    array([[False, False, False],
           [ True,  True,  True],
           [ True,  True,  True]], dtype=bool)
    >>> np.nonzero(a > 3)
    (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

    The ``nonzero`` method of the boolean array can also be called.

    >>> (a > 3).nonzero()
    (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

    """
    raise NotImplementedError('Waiting on interp level method')


def shape(a):
    """
    Return the shape of an array.

    Parameters
    ----------
    a : array_like
        Input array.

    Returns
    -------
    shape : tuple of ints
        The elements of the shape tuple give the lengths of the
        corresponding array dimensions.

    See Also
    --------
    alen
    ndarray.shape : Equivalent array method.

    Examples
    --------
    >>> np.shape(np.eye(3))
    (3, 3)
    >>> np.shape([[1, 2]])
    (1, 2)
    >>> np.shape([0])
    (1,)
    >>> np.shape(0)
    ()

    >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
    >>> np.shape(a)
    (2,)
    >>> a.shape
    (2,)

    """
    if not hasattr(a, 'shape'):
        a = numpypy.array(a)
    return a.shape


def compress(condition, a, axis=None, out=None):
    """
    Return selected slices of an array along given axis.

    When working along a given axis, a slice along that axis is returned in
    `output` for each index where `condition` evaluates to True. When
    working on a 1-D array, `compress` is equivalent to `extract`.

    Parameters
    ----------
    condition : 1-D array of bools
        Array that selects which entries to return. If len(condition)
        is less than the size of `a` along the given axis, then output is
        truncated to the length of the condition array.
    a : array_like
        Array from which to extract a part.
    axis : int, optional
        Axis along which to take slices. If None (default), work on the
        flattened array.
    out : ndarray, optional
        Output array.  Its type is preserved and it must be of the right
        shape to hold the output.

    Returns
    -------
    compressed_array : ndarray
        A copy of `a` without the slices along axis for which `condition`
        is false.

    See Also
    --------
    take, choose, diag, diagonal, select
    ndarray.compress : Equivalent method.
    numpy.doc.ufuncs : Section "Output arguments"

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4], [5, 6]])
    >>> a
    array([[1, 2],
           [3, 4],
           [5, 6]])
    >>> np.compress([0, 1], a, axis=0)
    array([[3, 4]])
    >>> np.compress([False, True, True], a, axis=0)
    array([[3, 4],
           [5, 6]])
    >>> np.compress([False, True], a, axis=1)
    array([[2],
           [4],
           [6]])

    Working on the flattened array does not return slices along an axis but
    selects elements.

    >>> np.compress([False, True], a)
    array([2])

    """
    raise NotImplementedError('Waiting on interp level method')


def clip(a, a_min, a_max, out=None):
    """
    Clip (limit) the values in an array.

    Given an interval, values outside the interval are clipped to
    the interval edges.  For example, if an interval of ``[0, 1]``
    is specified, values smaller than 0 become 0, and values larger
    than 1 become 1.

    Parameters
    ----------
    a : array_like
        Array containing elements to clip.
    a_min : scalar or array_like
        Minimum value.
    a_max : scalar or array_like
        Maximum value.  If `a_min` or `a_max` are array_like, then they will
        be broadcasted to the shape of `a`.
    out : ndarray, optional
        The results will be placed in this array. It may be the input
        array for in-place clipping.  `out` must be of the right shape
        to hold the output.  Its type is preserved.

    Returns
    -------
    clipped_array : ndarray
        An array with the elements of `a`, but where values
        < `a_min` are replaced with `a_min`, and those > `a_max`
        with `a_max`.

    See Also
    --------
    numpy.doc.ufuncs : Section "Output arguments"

    Examples
    --------
    >>> a = np.arange(10)
    >>> np.clip(a, 1, 8)
    array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, 3, 6, out=a)
    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
    >>> a = np.arange(10)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
    array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

    """
    if not hasattr(a, 'clip'):
        a = numpypy.array(a)
    return a.clip(a_min, a_max, out=out)


def sum(a, axis=None, dtype=None, out=None):
    """
    Sum of array elements over a given axis.

    Parameters
    ----------
    a : array_like
        Elements to sum.
    axis : integer, optional
        Axis over which the sum is taken. By default `axis` is None,
        and all elements are summed.
    dtype : dtype, optional
        The type of the returned array and of the accumulator in which
        the elements are summed.  By default, the dtype of `a` is used.
        An exception is when `a` has an integer type with less precision
        than the default platform integer.  In that case, the default
        platform integer is used instead.
    out : ndarray, optional
        Array into which the output is placed.  By default, a new array is
        created.  If `out` is given, it must be of the appropriate shape
        (the shape of `a` with `axis` removed, i.e.,
        ``numpy.delete(a.shape, axis)``).  Its type is preserved. See
        `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    sum_along_axis : ndarray
        An array with the same shape as `a`, with the specified
        axis removed.   If `a` is a 0-d array, or if `axis` is None, a scalar
        is returned.  If an output array is specified, a reference to
        `out` is returned.

    See Also
    --------
    ndarray.sum : Equivalent method.

    cumsum : Cumulative sum of array elements.

    trapz : Integration of array values using the composite trapezoidal rule.

    mean, average

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> np.sum([0.5, 1.5])
    2.0
    >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
    1
    >>> np.sum([[0, 1], [0, 5]])
    6
    >>> np.sum([[0, 1], [0, 5]], axis=0)
    array([0, 6])
    >>> np.sum([[0, 1], [0, 5]], axis=1)
    array([1, 5])

    If the accumulator is too small, overflow occurs:

    >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    -128

    """
    assert dtype is None
    if not hasattr(a, "sum"):
        a = numpypy.array(a)
    return a.sum(axis=axis, out=out)


def product (a, axis=None, dtype=None, out=None):
    """
    Return the product of array elements over a given axis.

    See Also
    --------
    prod : equivalent function; see for details.

    """
    raise NotImplementedError('Waiting on interp level method')


def sometrue(a, axis=None, out=None):
    """
    Check whether some values are true.

    Refer to `any` for full documentation.

    See Also
    --------
    any : equivalent function

    """
    assert axis is None
    assert out is None
    if not hasattr(a, 'any'):
        a = numpypy.array(a)
    return a.any()


def alltrue (a, axis=None, out=None):
    """
    Check if all elements of input array are true.

    See Also
    --------
    numpy.all : Equivalent function; see for details.

    """
    assert axis is None
    assert out is None
    if not hasattr(a, 'all'):
        a = numpypy.array(a)
    return a.all()

def any(a,axis=None, out=None):
    """
    Test whether any array element along a given axis evaluates to True.

    Returns single boolean unless `axis` is not ``None``

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int, optional
        Axis along which a logical OR is performed.  The default
        (`axis` = `None`) is to perform a logical OR over a flattened
        input array. `axis` may be negative, in which case it counts
        from the last to the first axis.
    out : ndarray, optional
        Alternate output array in which to place the result.  It must have
        the same shape as the expected output and its type is preserved
        (e.g., if it is of type float, then it will remain so, returning
        1.0 for True and 0.0 for False, regardless of the type of `a`).
        See `doc.ufuncs` (Section "Output arguments") for details.

    Returns
    -------
    any : bool or ndarray
        A new boolean or `ndarray` is returned unless `out` is specified,
        in which case a reference to `out` is returned.

    See Also
    --------
    ndarray.any : equivalent method

    all : Test whether all elements along a given axis evaluate to True.

    Notes
    -----
    Not a Number (NaN), positive infinity and negative infinity evaluate
    to `True` because these are not equal to zero.

    Examples
    --------
    >>> np.any([[True, False], [True, True]])
    True

    >>> np.any([[True, False], [False, False]], axis=0)
    array([ True, False], dtype=bool)

    >>> np.any([-1, 0, 5])
    True

    >>> np.any(np.nan)
    True

    >>> o=np.array([False])
    >>> z=np.any([-1, 4, 5], out=o)
    >>> z, o
    (array([ True], dtype=bool), array([ True], dtype=bool))
    >>> # Check now that z is a reference to o
    >>> z is o
    True
    >>> id(z), id(o) # identity of z and o              # doctest: +SKIP
    (191614240, 191614240)

    """
    assert axis is None
    assert out is None
    if not hasattr(a, 'any'):
        a = numpypy.array(a)
    return a.any()


def all(a,axis=None, out=None):
    """
    Test whether all array elements along a given axis evaluate to True.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int, optional
        Axis along which a logical AND is performed.
        The default (`axis` = `None`) is to perform a logical AND
        over a flattened input array.  `axis` may be negative, in which
        case it counts from the last to the first axis.
    out : ndarray, optional
        Alternate output array in which to place the result.
        It must have the same shape as the expected output and its
        type is preserved (e.g., if ``dtype(out)`` is float, the result
        will consist of 0.0's and 1.0's).  See `doc.ufuncs` (Section
        "Output arguments") for more details.

    Returns
    -------
    all : ndarray, bool
        A new boolean or array is returned unless `out` is specified,
        in which case a reference to `out` is returned.

    See Also
    --------
    ndarray.all : equivalent method

    any : Test whether any element along a given axis evaluates to True.

    Notes
    -----
    Not a Number (NaN), positive infinity and negative infinity
    evaluate to `True` because these are not equal to zero.

    Examples
    --------
    >>> np.all([[True,False],[True,True]])
    False

    >>> np.all([[True,False],[True,True]], axis=0)
    array([ True, False], dtype=bool)

    >>> np.all([-1, 4, 5])
    True

    >>> np.all([1.0, np.nan])
    True

    >>> o=np.array([False])
    >>> z=np.all([-1, 4, 5], out=o)
    >>> id(z), id(o), z                             # doctest: +SKIP
    (28293632, 28293632, array([ True], dtype=bool))

    """
    assert axis is None
    assert out is None
    if not hasattr(a, 'all'):
        a = numpypy.array(a)
    return a.all()


def cumsum (a, axis=None, dtype=None, out=None):
    """
    Return the cumulative sum of the elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        Axis along which the cumulative sum is computed. The default
        (None) is to compute the cumsum over the flattened array.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed.  If `dtype` is not specified, it defaults
        to the dtype of `a`, unless `a` has an integer dtype with a
        precision less than that of the default platform integer.  In
        that case, the default platform integer is used.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type will be cast if necessary. See `doc.ufuncs`
        (Section "Output arguments") for more details.

    Returns
    -------
    cumsum_along_axis : ndarray.
        A new array holding the result is returned unless `out` is
        specified, in which case a reference to `out` is returned. The
        result has the same size as `a`, and the same shape as `a` if
        `axis` is not None or `a` is a 1-d array.


    See Also
    --------
    sum : Sum array elements.

    trapz : Integration of array values using the composite trapezoidal rule.

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> a
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.cumsum(a)
    array([ 1,  3,  6, 10, 15, 21])
    >>> np.cumsum(a, dtype=float)     # specifies type of output value(s)
    array([  1.,   3.,   6.,  10.,  15.,  21.])

    >>> np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns
    array([[1, 2, 3],
           [5, 7, 9]])
    >>> np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows
    array([[ 1,  3,  6],
           [ 4,  9, 15]])

    """
    raise NotImplementedError('Waiting on interp level method')


def cumproduct(a, axis=None, dtype=None, out=None):
    """
    Return the cumulative product over the given axis.


    See Also
    --------
    cumprod : equivalent function; see for details.

    """
    raise NotImplementedError('Waiting on interp level method')


def ptp(a, axis=None, out=None):
    """
    Range of values (maximum - minimum) along an axis.

    The name of the function comes from the acronym for 'peak to peak'.

    Parameters
    ----------
    a : array_like
        Input values.
    axis : int, optional
        Axis along which to find the peaks.  By default, flatten the
        array.
    out : array_like
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type of the output values will be cast if necessary.

    Returns
    -------
    ptp : ndarray
        A new array holding the result, unless `out` was
        specified, in which case a reference to `out` is returned.

    Examples
    --------
    >>> x = np.arange(4).reshape((2,2))
    >>> x
    array([[0, 1],
           [2, 3]])

    >>> np.ptp(x, axis=0)
    array([2, 2])

    >>> np.ptp(x, axis=1)
    array([1, 1])

    """
    raise NotImplementedError('Waiting on interp level method')


def amax(a, axis=None, out=None):
    """
    Return the maximum of an array or maximum along an axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default flattened input is used.
    out : ndarray, optional
        Alternate output array in which to place the result.  Must be of
        the same shape and buffer length as the expected output.  See
        `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    amax : ndarray or scalar
        Maximum of `a`. If `axis` is None, the result is a scalar value.
        If `axis` is given, the result is an array of dimension
        ``a.ndim - 1``.

    See Also
    --------
    nanmax : NaN values are ignored instead of being propagated.
    fmax : same behavior as the C99 fmax function.
    argmax : indices of the maximum values.

    Notes
    -----
    NaN values are propagated, that is if at least one item is NaN, the
    corresponding max value will be NaN as well.  To ignore NaN values
    (MATLAB behavior), please use nanmax.

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amax(a)
    3
    >>> np.amax(a, axis=0)
    array([2, 3])
    >>> np.amax(a, axis=1)
    array([1, 3])

    >>> b = np.arange(5, dtype=np.float)
    >>> b[2] = np.NaN
    >>> np.amax(b)
    nan
    >>> np.nanmax(b)
    4.0

    """
    if not hasattr(a, "max"):
        a = numpypy.array(a)
    if a.size < 1:
        return numpypy.array([])
    return a.max(axis=axis, out=out)


def amin(a, axis=None, out=None):
    """
    Return the minimum of an array or minimum along an axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which to operate.  By default a flattened input is used.
    out : ndarray, optional
        Alternative output array in which to place the result.  Must
        be of the same shape and buffer length as the expected output.
        See `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    amin : ndarray
        A new array or a scalar array with the result.

    See Also
    --------
    nanmin: nan values are ignored instead of being propagated
    fmin: same behavior as the C99 fmin function
    argmin: Return the indices of the minimum values.

    amax, nanmax, fmax

    Notes
    -----
    NaN values are propagated, that is if at least one item is nan, the
    corresponding min value will be nan as well. To ignore NaN values (matlab
    behavior), please use nanmin.

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amin(a)           # Minimum of the flattened array
    0
    >>> np.amin(a, axis=0)         # Minima along the first axis
    array([0, 1])
    >>> np.amin(a, axis=1)         # Minima along the second axis
    array([0, 2])

    >>> b = np.arange(5, dtype=np.float)
    >>> b[2] = np.NaN
    >>> np.amin(b)
    nan
    >>> np.nanmin(b)
    0.0

    """
    if not hasattr(a, 'min'):
        a = numpypy.array(a)
    if a.size < 1:
        return numpypy.array([])
    return a.min(axis=axis, out=out)

def alen(a):
    """
    Return the length of the first dimension of the input array.

    Parameters
    ----------
    a : array_like
       Input array.

    Returns
    -------
    l : int
       Length of the first dimension of `a`.

    See Also
    --------
    shape, size

    Examples
    --------
    >>> a = np.zeros((7,4,5))
    >>> a.shape[0]
    7
    >>> np.alen(a)
    7

    """
    if not hasattr(a, 'shape'):
        a = numpypy.array(a)
    return a.shape[0]


def prod(a, axis=None, dtype=None, out=None):
    """
    Return the product of array elements over a given axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis over which the product is taken.  By default, the product
        of all elements is calculated.
    dtype : data-type, optional
        The data-type of the returned array, as well as of the accumulator
        in which the elements are multiplied.  By default, if `a` is of
        integer type, `dtype` is the default platform integer. (Note: if
        the type of `a` is unsigned, then so is `dtype`.)  Otherwise,
        the dtype is the same as that of `a`.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output, but the type of the
        output values will be cast if necessary.

    Returns
    -------
    product_along_axis : ndarray, see `dtype` parameter above.
        An array shaped as `a` but with the specified axis removed.
        Returns a reference to `out` if specified.

    See Also
    --------
    ndarray.prod : equivalent method
    numpy.doc.ufuncs : Section "Output arguments"

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.  That means that, on a 32-bit platform:

    >>> x = np.array([536870910, 536870910, 536870910, 536870910])
    >>> np.prod(x) #random
    16

    Examples
    --------
    By default, calculate the product of all elements:

    >>> np.prod([1.,2.])
    2.0

    Even when the input array is two-dimensional:

    >>> np.prod([[1.,2.],[3.,4.]])
    24.0

    But we can also specify the axis over which to multiply:

    >>> np.prod([[1.,2.],[3.,4.]], axis=1)
    array([  2.,  12.])

    If the type of `x` is unsigned, then the output type is
    the unsigned platform integer:

    >>> x = np.array([1, 2, 3], dtype=np.uint8)
    >>> np.prod(x).dtype == np.uint
    True

    If `x` is of a signed integer type, then the output type
    is the default platform integer:

    >>> x = np.array([1, 2, 3], dtype=np.int8)
    >>> np.prod(x).dtype == np.int
    True

    """
    raise NotImplementedError('Waiting on interp level method')


def cumprod(a, axis=None, dtype=None, out=None):
    """
    Return the cumulative product of elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        Axis along which the cumulative product is computed.  By default
        the input is flattened.
    dtype : dtype, optional
        Type of the returned array, as well as of the accumulator in which
        the elements are multiplied.  If *dtype* is not specified, it
        defaults to the dtype of `a`, unless `a` has an integer dtype with
        a precision less than that of the default platform integer.  In
        that case, the default platform integer is used instead.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type of the resulting values will be cast if necessary.

    Returns
    -------
    cumprod : ndarray
        A new array holding the result is returned unless `out` is
        specified, in which case a reference to out is returned.

    See Also
    --------
    numpy.doc.ufuncs : Section "Output arguments"

    Notes
    -----
    Arithmetic is modular when using integer types, and no error is
    raised on overflow.

    Examples
    --------
    >>> a = np.array([1,2,3])
    >>> np.cumprod(a) # intermediate results 1, 1*2
    ...               # total product 1*2*3 = 6
    array([1, 2, 6])
    >>> a = np.array([[1, 2, 3], [4, 5, 6]])
    >>> np.cumprod(a, dtype=float) # specify type of output
    array([   1.,    2.,    6.,   24.,  120.,  720.])

    The cumulative product for each column (i.e., over the rows) of `a`:

    >>> np.cumprod(a, axis=0)
    array([[ 1,  2,  3],
           [ 4, 10, 18]])

    The cumulative product for each row (i.e. over the columns) of `a`:

    >>> np.cumprod(a,axis=1)
    array([[  1,   2,   6],
           [  4,  20, 120]])

    """
    raise NotImplementedError('Waiting on interp level method')


def ndim(a):
    """
    Return the number of dimensions of an array.

    Parameters
    ----------
    a : array_like
        Input array.  If it is not already an ndarray, a conversion is
        attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in `a`.  Scalars are zero-dimensional.

    See Also
    --------
    ndarray.ndim : equivalent method
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Examples
    --------
    >>> np.ndim([[1,2,3],[4,5,6]])
    2
    >>> np.ndim(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.ndim(1)
    0

    """
    if not hasattr(a, 'ndim'):
        a = numpypy.array(a)
    return a.ndim


def rank(a):
    """
    Return the number of dimensions of an array.

    If `a` is not already an array, a conversion is attempted.
    Scalars are zero dimensional.

    Parameters
    ----------
    a : array_like
        Array whose number of dimensions is desired. If `a` is not an array,
        a conversion is attempted.

    Returns
    -------
    number_of_dimensions : int
        The number of dimensions in the array.

    See Also
    --------
    ndim : equivalent function
    ndarray.ndim : equivalent property
    shape : dimensions of array
    ndarray.shape : dimensions of array

    Notes
    -----
    In the old Numeric package, `rank` was the term used for the number of
    dimensions, but in Numpy `ndim` is used instead.

    Examples
    --------
    >>> np.rank([1,2,3])
    1
    >>> np.rank(np.array([[1,2,3],[4,5,6]]))
    2
    >>> np.rank(1)
    0

    """
    if not hasattr(a, 'ndim'):
        a = numpypy.array(a)
    return a.ndim


def size(a, axis=None):
    """
    Return the number of elements along a given axis.

    Parameters
    ----------
    a : array_like
        Input data.
    axis : int, optional
        Axis along which the elements are counted.  By default, give
        the total number of elements.

    Returns
    -------
    element_count : int
        Number of elements along the specified axis.

    See Also
    --------
    shape : dimensions of array
    ndarray.shape : dimensions of array
    ndarray.size : number of elements in array

    Examples
    --------
    >>> a = np.array([[1,2,3],[4,5,6]])
    >>> np.size(a)
    6
    >>> np.size(a,1)
    3
    >>> np.size(a,0)
    2

    """
    raise NotImplementedError('Waiting on interp level method')


def around(a, decimals=0, out=None):
    """
    Evenly round to the given number of decimals.

    Parameters
    ----------
    a : array_like
        Input data.
    decimals : int, optional
        Number of decimal places to round to (default: 0).  If
        decimals is negative, it specifies the number of positions to
        the left of the decimal point.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output, but the type of the output
        values will be cast if necessary. See `doc.ufuncs` (Section
        "Output arguments") for details.

    Returns
    -------
    rounded_array : ndarray
        An array of the same type as `a`, containing the rounded values.
        Unless `out` was specified, a new array is created.  A reference to
        the result is returned.

        The real and imaginary parts of complex numbers are rounded
        separately.  The result of rounding a float is a float.

    See Also
    --------
    ndarray.round : equivalent method

    ceil, fix, floor, rint, trunc


    Notes
    -----
    For values exactly halfway between rounded decimal values, Numpy
    rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
    -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
    to the inexact representation of decimal fractions in the IEEE
    floating point standard [1]_ and errors introduced when scaling
    by powers of ten.

    References
    ----------
    .. [1] "Lecture Notes on the Status of  IEEE 754", William Kahan,
           http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
    .. [2] "How Futile are Mindless Assessments of
           Roundoff in Floating-Point Computation?", William Kahan,
           http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

    Examples
    --------
    >>> np.around([0.37, 1.64])
    array([ 0.,  2.])
    >>> np.around([0.37, 1.64], decimals=1)
    array([ 0.4,  1.6])
    >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
    array([ 0.,  2.,  2.,  4.,  4.])
    >>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
    array([ 1,  2,  3, 11])
    >>> np.around([1,2,3,11], decimals=-1)
    array([ 0,  0,  0, 10])

    """
    raise NotImplementedError('Waiting on interp level method')


def round_(a, decimals=0, out=None):
    """
    Round an array to the given number of decimals.

    Refer to `around` for full documentation.

    See Also
    --------
    around : equivalent function

    """
    raise NotImplementedError('Waiting on interp level method')


def mean(a, axis=None, dtype=None, out=None):
    """
    Compute the arithmetic mean along the specified axis.

    Returns the average of the array elements.  The average is taken over
    the flattened array by default, otherwise over the specified axis.
    `float64` intermediate and return values are used for integer inputs.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose mean is desired. If `a` is not an
        array, a conversion is attempted.
    axis : int, optional
        Axis along which the means are computed. The default is to compute
        the mean of the flattened array.
    dtype : data-type, optional
        Type to use in computing the mean.  For integer inputs, the default
        is `float64`; for floating point inputs, it is the same as the
        input dtype.
    out : ndarray, optional
        Alternate output array in which to place the result.  The default
        is ``None``; if provided, it must have the same shape as the
        expected output, but the type will be cast if necessary.
        See `doc.ufuncs` for details.

    Returns
    -------
    m : ndarray, see dtype parameter above
        If `out=None`, returns a new array containing the mean values,
        otherwise a reference to the output array is returned.

    See Also
    --------
    average : Weighted average

    Notes
    -----
    The arithmetic mean is the sum of the elements along the axis divided
    by the number of elements.

    Note that for floating-point input, the mean is computed using the
    same precision the input has.  Depending on the input data, this can
    cause the results to be inaccurate, especially for `float32` (see
    example below).  Specifying a higher-precision accumulator using the
    `dtype` keyword can alleviate this issue.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.mean(a)
    2.5
    >>> np.mean(a, axis=0)
    array([ 2.,  3.])
    >>> np.mean(a, axis=1)
    array([ 1.5,  3.5])

    In single precision, `mean` can be inaccurate:

    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.mean(a)
    0.546875

    Computing the mean in float64 is more accurate:

    >>> np.mean(a, dtype=np.float64)
    0.55000000074505806

    """
    assert dtype is None
    assert out is None
    if not hasattr(a, "mean"):
        a = numpypy.array(a)
    return a.mean(axis=axis)


def std(a, axis=None, dtype=None, out=None, ddof=0):
    """
    Compute the standard deviation along the specified axis.

    Returns the standard deviation, a measure of the spread of a distribution,
    of the array elements. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    a : array_like
        Calculate the standard deviation of these values.
    axis : int, optional
        Axis along which the standard deviation is computed. The default is
        to compute the standard deviation of the flattened array.
    dtype : dtype, optional
        Type to use in computing the standard deviation. For arrays of
        integer type the default is float64, for arrays of float types it is
        the same as the array type.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type (of the calculated
        values) will be cast if necessary.
    ddof : int, optional
        Means Delta Degrees of Freedom.  The divisor used in calculations
        is ``N - ddof``, where ``N`` represents the number of elements.
        By default `ddof` is zero.

    Returns
    -------
    standard_deviation : ndarray, see dtype parameter above.
        If `out` is None, return a new array containing the standard deviation,
        otherwise return a reference to the output array.

    See Also
    --------
    var, mean
    numpy.doc.ufuncs : Section "Output arguments"

    Notes
    -----
    The standard deviation is the square root of the average of the squared
    deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``.

    The average squared deviation is normally calculated as ``x.sum() / N``, where
    ``N = len(x)``.  If, however, `ddof` is specified, the divisor ``N - ddof``
    is used instead. In standard statistical practice, ``ddof=1`` provides an
    unbiased estimator of the variance of the infinite population. ``ddof=0``
    provides a maximum likelihood estimate of the variance for normally
    distributed variables. The standard deviation computed in this function
    is the square root of the estimated variance, so even with ``ddof=1``, it
    will not be an unbiased estimate of the standard deviation per se.

    Note that, for complex numbers, `std` takes the absolute
    value before squaring, so that the result is always real and nonnegative.

    For floating-point input, the *std* is computed using the same
    precision the input has. Depending on the input data, this can cause
    the results to be inaccurate, especially for float32 (see example below).
    Specifying a higher-accuracy accumulator using the `dtype` keyword can
    alleviate this issue.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.std(a)
    1.1180339887498949
    >>> np.std(a, axis=0)
    array([ 1.,  1.])
    >>> np.std(a, axis=1)
    array([ 0.5,  0.5])

    In single precision, std() can be inaccurate:

    >>> a = np.zeros((2,512*512), dtype=np.float32)
    >>> a[0,:] = 1.0
    >>> a[1,:] = 0.1
    >>> np.std(a)
    0.45172946707416706

    Computing the standard deviation in float64 is more accurate:

    >>> np.std(a, dtype=np.float64)
    0.44999999925552653

    """
    assert dtype is None
    assert out is None
    assert ddof == 0
    if not hasattr(a, "std"):
        a = numpypy.array(a)
    return a.std(axis=axis)


def var(a, axis=None, dtype=None, out=None, ddof=0):
    """
    Compute the variance along the specified axis.

    Returns the variance of the array elements, a measure of the spread of a
    distribution.  The variance is computed for the flattened array by
    default, otherwise over the specified axis.

    Parameters
    ----------
    a : array_like
        Array containing numbers whose variance is desired.  If `a` is not an
        array, a conversion is attempted.
    axis : int, optional
        Axis along which the variance is computed.  The default is to compute
        the variance of the flattened array.
    dtype : data-type, optional
        Type to use in computing the variance.  For arrays of integer type
        the default is `float32`; for arrays of float types it is the same as
        the array type.
    out : ndarray, optional
        Alternate output array in which to place the result.  It must have
        the same shape as the expected output, but the type is cast if
        necessary.
    ddof : int, optional
        "Delta Degrees of Freedom": the divisor used in the calculation is
        ``N - ddof``, where ``N`` represents the number of elements. By
        default `ddof` is zero.

    Returns
    -------
    variance : ndarray, see dtype parameter above
        If ``out=None``, returns a new array containing the variance;
        otherwise, a reference to the output array is returned.

    See Also
    --------
    std : Standard deviation
    mean : Average
    numpy.doc.ufuncs : Section "Output arguments"

    Notes
    -----
    The variance is the average of the squared deviations from the mean,
    i.e.,  ``var = mean(abs(x - x.mean())**2)``.

    The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``.
    If, however, `ddof` is specified, the divisor ``N - ddof`` is used
    instead.  In standard statistical practice, ``ddof=1`` provides an
    unbiased estimator of the variance of a hypothetical infinite population.
    ``ddof=0`` provides a maximum likelihood estimate of the variance for
    normally distributed variables.

    Note that for complex numbers, the absolute value is taken before
    squaring, so that the result is always real and nonnegative.

    For floating-point input, the variance is computed using the same
    precision the input has.  Depending on the input data, this can cause
    the results to be inaccurate, especially for `float32` (see example
    below).  Specifying a higher-accuracy accumulator using the ``dtype``
    keyword can alleviate this issue.

    Examples
    --------
    >>> a = np.array([[1,2],[3,4]])
    >>> np.var(a)
    1.25
    >>> np.var(a,0)
    array([ 1.,  1.])
    >>> np.var(a,1)
    array([ 0.25,  0.25])

    In single precision, var() can be inaccurate:

    >>> a = np.zeros((2,512*512), dtype=np.float32)
    >>> a[0,:] = 1.0
    >>> a[1,:] = 0.1
    >>> np.var(a)
    0.20405951142311096

    Computing the standard deviation in float64 is more accurate:

    >>> np.var(a, dtype=np.float64)
    0.20249999932997387
    >>> ((1-0.55)**2 + (0.1-0.55)**2)/2
    0.20250000000000001

    """
    assert dtype is None
    assert out is None
    assert ddof == 0
    if not hasattr(a, "var"):
        a = numpypy.array(a)
    return a.var(axis=axis)
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.