Source

pypy / rpython / rtyper / lltypesystem / rdict.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
from rpython.tool.pairtype import pairtype
from rpython.flowspace.model import Constant
from rpython.rtyper.rdict import AbstractDictRepr, AbstractDictIteratorRepr
from rpython.rtyper.lltypesystem import lltype
from rpython.rlib import objectmodel, jit
from rpython.rlib.debug import ll_assert
from rpython.rlib.rarithmetic import r_uint, intmask, LONG_BIT
from rpython.rtyper import rmodel
from rpython.rtyper.error import TyperError


HIGHEST_BIT = r_uint(intmask(1 << (LONG_BIT - 1)))
MASK = r_uint(intmask(HIGHEST_BIT - 1))

# ____________________________________________________________
#
#  generic implementation of RPython dictionary, with parametric DICTKEY and
#  DICTVALUE types.
#
#  XXX for immutable dicts, the array should be inlined and
#      resize_counter and everused are not needed.
#
#    struct dictentry {
#        DICTKEY key;
#        bool f_valid;      # (optional) the entry is filled
#        bool f_everused;   # (optional) the entry is or has ever been filled
#        DICTVALUE value;
#        int f_hash;        # (optional) key hash, if hard to recompute
#    }
#
#    struct dicttable {
#        int num_items;
#        int resize_counter;
#        Array *entries;
#        (Function DICTKEY, DICTKEY -> bool) *fnkeyeq;
#        (Function DICTKEY -> int) *fnkeyhash;
#    }
#
#

class DictRepr(AbstractDictRepr):

    def __init__(self, rtyper, key_repr, value_repr, dictkey, dictvalue,
                 custom_eq_hash=None, force_non_null=False):
        self.rtyper = rtyper
        self.DICT = lltype.GcForwardReference()
        self.lowleveltype = lltype.Ptr(self.DICT)
        self.custom_eq_hash = custom_eq_hash is not None
        if not isinstance(key_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(key_repr)
            self._key_repr_computer = key_repr
        else:
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if not isinstance(value_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(value_repr)
            self._value_repr_computer = value_repr
        else:
            self.external_value_repr, self.value_repr = self.pickrepr(value_repr)
        self.dictkey = dictkey
        self.dictvalue = dictvalue
        self.dict_cache = {}
        self._custom_eq_hash_repr = custom_eq_hash
        self.force_non_null = force_non_null
        # setup() needs to be called to finish this initialization

    def _externalvsinternal(self, rtyper, item_repr):
        return rmodel.externalvsinternal(self.rtyper, item_repr)

    def _setup_repr(self):
        if 'key_repr' not in self.__dict__:
            key_repr = self._key_repr_computer()
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if 'value_repr' not in self.__dict__:
            self.external_value_repr, self.value_repr = self.pickrepr(self._value_repr_computer())
        if isinstance(self.DICT, lltype.GcForwardReference):
            self.DICTKEY = self.key_repr.lowleveltype
            self.DICTVALUE = self.value_repr.lowleveltype

            # compute the shape of the DICTENTRY structure
            entryfields = []
            entrymeths = {
                'allocate': lltype.typeMethod(_ll_malloc_entries),
                'delete': _ll_free_entries,
                'must_clear_key':   (isinstance(self.DICTKEY, lltype.Ptr)
                                     and self.DICTKEY._needsgc()),
                'must_clear_value': (isinstance(self.DICTVALUE, lltype.Ptr)
                                     and self.DICTVALUE._needsgc()),
                }

            # * the key
            entryfields.append(("key", self.DICTKEY))

            # * if NULL is not a valid ll value for the key or the value
            #   field of the entry, it can be used as a marker for
            #   never-used entries.  Otherwise, we need an explicit flag.
            s_key   = self.dictkey.s_value
            s_value = self.dictvalue.s_value
            nullkeymarker = not self.key_repr.can_ll_be_null(s_key)
            nullvaluemarker = not self.value_repr.can_ll_be_null(s_value)
            if self.force_non_null:
                if not nullkeymarker:
                    rmodel.warning("%s can be null, but forcing non-null in dict key" % s_key)
                    nullkeymarker = True
                if not nullvaluemarker:
                    rmodel.warning("%s can be null, but forcing non-null in dict value" % s_value)
                    nullvaluemarker = True
            dummykeyobj = self.key_repr.get_ll_dummyval_obj(self.rtyper,
                                                            s_key)
            dummyvalueobj = self.value_repr.get_ll_dummyval_obj(self.rtyper,
                                                                s_value)

            # * the state of the entry - trying to encode it as dummy objects
            if nullkeymarker and dummykeyobj:
                # all the state can be encoded in the key
                entrymeths['everused'] = ll_everused_from_key
                entrymeths['dummy_obj'] = dummykeyobj
                entrymeths['valid'] = ll_valid_from_key
                entrymeths['mark_deleted'] = ll_mark_deleted_in_key
                # the key is overwritten by 'dummy' when the entry is deleted
                entrymeths['must_clear_key'] = False

            elif nullvaluemarker and dummyvalueobj:
                # all the state can be encoded in the value
                entrymeths['everused'] = ll_everused_from_value
                entrymeths['dummy_obj'] = dummyvalueobj
                entrymeths['valid'] = ll_valid_from_value
                entrymeths['mark_deleted'] = ll_mark_deleted_in_value
                # value is overwritten by 'dummy' when entry is deleted
                entrymeths['must_clear_value'] = False

            else:
                # we need a flag to know if the entry was ever used
                # (we cannot use a NULL as a marker for this, because
                # the key and value will be reset to NULL to clear their
                # reference)
                entryfields.append(("f_everused", lltype.Bool))
                entrymeths['everused'] = ll_everused_from_flag

                # can we still rely on a dummy obj to mark deleted entries?
                if dummykeyobj:
                    entrymeths['dummy_obj'] = dummykeyobj
                    entrymeths['valid'] = ll_valid_from_key
                    entrymeths['mark_deleted'] = ll_mark_deleted_in_key
                    # key is overwritten by 'dummy' when entry is deleted
                    entrymeths['must_clear_key'] = False
                elif dummyvalueobj:
                    entrymeths['dummy_obj'] = dummyvalueobj
                    entrymeths['valid'] = ll_valid_from_value
                    entrymeths['mark_deleted'] = ll_mark_deleted_in_value
                    # value is overwritten by 'dummy' when entry is deleted
                    entrymeths['must_clear_value'] = False
                else:
                    entryfields.append(("f_valid", lltype.Bool))
                    entrymeths['valid'] = ll_valid_from_flag
                    entrymeths['mark_deleted'] = ll_mark_deleted_in_flag

            # * the value
            entryfields.append(("value", self.DICTVALUE))

            # * the hash, if needed
            if self.custom_eq_hash:
                fasthashfn = None
            else:
                fasthashfn = self.key_repr.get_ll_fasthash_function()
            if fasthashfn is None:
                entryfields.append(("f_hash", lltype.Signed))
                entrymeths['hash'] = ll_hash_from_cache
            else:
                entrymeths['hash'] = ll_hash_recomputed
                entrymeths['fasthashfn'] = fasthashfn

            # Build the lltype data structures
            self.DICTENTRY = lltype.Struct("dictentry", *entryfields)
            self.DICTENTRYARRAY = lltype.GcArray(self.DICTENTRY,
                                                 adtmeths=entrymeths)
            fields =          [ ("num_items", lltype.Signed),
                                ("resize_counter", lltype.Signed),
                                ("entries", lltype.Ptr(self.DICTENTRYARRAY)) ]
            if self.custom_eq_hash:
                self.r_rdict_eqfn, self.r_rdict_hashfn = self._custom_eq_hash_repr()
                fields.extend([ ("fnkeyeq", self.r_rdict_eqfn.lowleveltype),
                                ("fnkeyhash", self.r_rdict_hashfn.lowleveltype) ])
                adtmeths = {
                    'keyhash':        ll_keyhash_custom,
                    'keyeq':          ll_keyeq_custom,
                    'r_rdict_eqfn':   self.r_rdict_eqfn,
                    'r_rdict_hashfn': self.r_rdict_hashfn,
                    'paranoia':       True,
                    }
            else:
                # figure out which functions must be used to hash and compare
                ll_keyhash = self.key_repr.get_ll_hash_function()
                ll_keyeq = self.key_repr.get_ll_eq_function()  # can be None
                ll_keyhash = lltype.staticAdtMethod(ll_keyhash)
                if ll_keyeq is not None:
                    ll_keyeq = lltype.staticAdtMethod(ll_keyeq)
                adtmeths = {
                    'keyhash':  ll_keyhash,
                    'keyeq':    ll_keyeq,
                    'paranoia': False,
                    }
            adtmeths['KEY']   = self.DICTKEY
            adtmeths['VALUE'] = self.DICTVALUE
            adtmeths['allocate'] = lltype.typeMethod(_ll_malloc_dict)
            self.DICT.become(lltype.GcStruct("dicttable", adtmeths=adtmeths,
                                             *fields))


    def convert_const(self, dictobj):
        from rpython.rtyper.lltypesystem import llmemory
        # get object from bound dict methods
        #dictobj = getattr(dictobj, '__self__', dictobj)
        if dictobj is None:
            return lltype.nullptr(self.DICT)
        if not isinstance(dictobj, (dict, objectmodel.r_dict)):
            raise TypeError("expected a dict: %r" % (dictobj,))
        try:
            key = Constant(dictobj)
            return self.dict_cache[key]
        except KeyError:
            self.setup()
            l_dict = ll_newdict_size(self.DICT, len(dictobj))
            self.dict_cache[key] = l_dict
            r_key = self.key_repr
            if r_key.lowleveltype == llmemory.Address:
                raise TypeError("No prebuilt dicts of address keys")
            r_value = self.value_repr
            if isinstance(dictobj, objectmodel.r_dict):
                if self.r_rdict_eqfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_eqfn.convert_const(dictobj.key_eq)
                    l_dict.fnkeyeq = l_fn
                if self.r_rdict_hashfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_hashfn.convert_const(dictobj.key_hash)
                    l_dict.fnkeyhash = l_fn

                for dictkeycontainer, dictvalue in dictobj._dict.items():
                    llkey = r_key.convert_const(dictkeycontainer.key)
                    llvalue = r_value.convert_const(dictvalue)
                    ll_dict_insertclean(l_dict, llkey, llvalue,
                                        dictkeycontainer.hash)
                return l_dict

            else:
                for dictkey, dictvalue in dictobj.items():
                    llkey = r_key.convert_const(dictkey)
                    llvalue = r_value.convert_const(dictvalue)
                    ll_dict_insertclean(l_dict, llkey, llvalue,
                                        l_dict.keyhash(llkey))
                return l_dict

    def rtype_len(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_len, v_dict)

    def rtype_is_true(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_is_true, v_dict)

    def make_iterator_repr(self, *variant):
        return DictIteratorRepr(self, *variant)

    def rtype_method_get(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_get, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_setdefault(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_setdefault, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_copy(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_copy, v_dict)

    def rtype_method_update(self, hop):
        v_dic1, v_dic2 = hop.inputargs(self, self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_update, v_dic1, v_dic2)

    def _rtype_method_kvi(self, hop, ll_func):
        v_dic, = hop.inputargs(self)
        r_list = hop.r_result
        cLIST = hop.inputconst(lltype.Void, r_list.lowleveltype.TO)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_func, cLIST, v_dic)

    def rtype_method_keys(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_keys)

    def rtype_method_values(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_values)

    def rtype_method_items(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_items)

    def rtype_method_iterkeys(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "keys").newiter(hop)

    def rtype_method_itervalues(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "values").newiter(hop)

    def rtype_method_iteritems(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "items").newiter(hop)

    def rtype_method_clear(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_clear, v_dict)

    def rtype_method_popitem(self, hop):
        v_dict, = hop.inputargs(self)
        r_tuple = hop.r_result
        cTUPLE = hop.inputconst(lltype.Void, r_tuple.lowleveltype)
        hop.exception_is_here()
        return hop.gendirectcall(ll_popitem, cTUPLE, v_dict)

    def rtype_method_pop(self, hop):
        if hop.nb_args == 2:
            v_args = hop.inputargs(self, self.key_repr)
            target = ll_pop
        elif hop.nb_args == 3:
            v_args = hop.inputargs(self, self.key_repr, self.value_repr)
            target = ll_pop_default
        hop.exception_is_here()
        v_res = hop.gendirectcall(target, *v_args)
        return self.recast_value(hop.llops, v_res)

class __extend__(pairtype(DictRepr, rmodel.Repr)):

    def rtype_getitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        v_res = hop.gendirectcall(ll_dict_getitem, v_dict, v_key)
        return r_dict.recast_value(hop.llops, v_res)

    def rtype_delitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_delitem, v_dict, v_key)

    def rtype_setitem((r_dict, r_key), hop):
        v_dict, v_key, v_value = hop.inputargs(r_dict, r_dict.key_repr, r_dict.value_repr)
        if r_dict.custom_eq_hash:
            hop.exception_is_here()
        else:
            hop.exception_cannot_occur()
        hop.gendirectcall(ll_dict_setitem, v_dict, v_key, v_value)

    def rtype_contains((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        hop.exception_is_here()
        return hop.gendirectcall(ll_contains, v_dict, v_key)

class __extend__(pairtype(DictRepr, DictRepr)):
    def convert_from_to((r_dict1, r_dict2), v, llops):
        # check that we don't convert from Dicts with
        # different key/value types
        if r_dict1.dictkey is None or r_dict2.dictkey is None:
            return NotImplemented
        if r_dict1.dictkey is not r_dict2.dictkey:
            return NotImplemented
        if r_dict1.dictvalue is None or r_dict2.dictvalue is None:
            return NotImplemented
        if r_dict1.dictvalue is not r_dict2.dictvalue:
            return NotImplemented
        return v

# ____________________________________________________________
#
#  Low-level methods.  These can be run for testing, but are meant to
#  be direct_call'ed from rtyped flow graphs, which means that they will
#  get flowed and annotated, mostly with SomePtr.

def ll_everused_from_flag(entries, i):
    return entries[i].f_everused

def ll_everused_from_key(entries, i):
    return bool(entries[i].key)

def ll_everused_from_value(entries, i):
    return bool(entries[i].value)

def ll_valid_from_flag(entries, i):
    return entries[i].f_valid

def ll_mark_deleted_in_flag(entries, i):
    entries[i].f_valid = False

def ll_valid_from_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries.everused(i) and entries[i].key != dummy

def ll_mark_deleted_in_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].key = dummy

def ll_valid_from_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries.everused(i) and entries[i].value != dummy

def ll_mark_deleted_in_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].value = dummy

def ll_hash_from_cache(entries, i):
    return entries[i].f_hash

def ll_hash_recomputed(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    return ENTRIES.fasthashfn(entries[i].key)

def ll_get_value(d, i):
    return d.entries[i].value

def ll_keyhash_custom(d, key):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_hashfn, d.fnkeyhash, key)

def ll_keyeq_custom(d, key1, key2):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_eqfn, d.fnkeyeq, key1, key2)

def ll_dict_len(d):
    return d.num_items

def ll_dict_is_true(d):
    # check if a dict is True, allowing for None
    return bool(d) and d.num_items != 0

def ll_dict_getitem(d, key):
    i = ll_dict_lookup(d, key, d.keyhash(key))
    if not i & HIGHEST_BIT:
        return ll_get_value(d, i)
    else:
        raise KeyError

def ll_dict_setitem(d, key, value):
    hash = d.keyhash(key)
    i = ll_dict_lookup(d, key, hash)
    return _ll_dict_setitem_lookup_done(d, key, value, hash, i)

# It may be safe to look inside always, it has a few branches though, and their
# frequencies needs to be investigated.
@jit.look_inside_iff(lambda d, key, value, hash, i: jit.isvirtual(d) and jit.isconstant(key))
def _ll_dict_setitem_lookup_done(d, key, value, hash, i):
    valid = (i & HIGHEST_BIT) == 0
    i = i & MASK
    ENTRY = lltype.typeOf(d.entries).TO.OF
    entry = d.entries[i]
    if not d.entries.everused(i):
        # a new entry that was never used before
        ll_assert(not valid, "valid but not everused")
        rc = d.resize_counter - 3
        if rc <= 0:       # if needed, resize the dict -- before the insertion
            ll_dict_resize(d)
            i = ll_dict_lookup_clean(d, hash)  # then redo the lookup for 'key'
            entry = d.entries[i]
            rc = d.resize_counter - 3
            ll_assert(rc > 0, "ll_dict_resize failed?")
        d.resize_counter = rc
        if hasattr(ENTRY, 'f_everused'): entry.f_everused = True
        entry.value = value
    else:
        # override an existing or deleted entry
        entry.value = value
        if valid:
            return
    entry.key = key
    if hasattr(ENTRY, 'f_hash'):  entry.f_hash = hash
    if hasattr(ENTRY, 'f_valid'): entry.f_valid = True
    d.num_items += 1

def ll_dict_insertclean(d, key, value, hash):
    # Internal routine used by ll_dict_resize() to insert an item which is
    # known to be absent from the dict.  This routine also assumes that
    # the dict contains no deleted entries.  This routine has the advantage
    # of never calling d.keyhash() and d.keyeq(), so it cannot call back
    # to user code.  ll_dict_insertclean() doesn't resize the dict, either.
    i = ll_dict_lookup_clean(d, hash)
    ENTRY = lltype.typeOf(d.entries).TO.OF
    entry = d.entries[i]
    entry.value = value
    entry.key = key
    if hasattr(ENTRY, 'f_hash'):     entry.f_hash = hash
    if hasattr(ENTRY, 'f_valid'):    entry.f_valid = True
    if hasattr(ENTRY, 'f_everused'): entry.f_everused = True
    d.num_items += 1
    d.resize_counter -= 3

def ll_dict_delitem(d, key):
    i = ll_dict_lookup(d, key, d.keyhash(key))
    if i & HIGHEST_BIT:
        raise KeyError
    _ll_dict_del(d, i)

@jit.look_inside_iff(lambda d, i: jit.isvirtual(d) and jit.isconstant(i))
def _ll_dict_del(d, i):
    d.entries.mark_deleted(i)
    d.num_items -= 1
    # clear the key and the value if they are GC pointers
    ENTRIES = lltype.typeOf(d.entries).TO
    ENTRY = ENTRIES.OF
    entry = d.entries[i]
    if ENTRIES.must_clear_key:
        entry.key = lltype.nullptr(ENTRY.key.TO)
    if ENTRIES.must_clear_value:
        entry.value = lltype.nullptr(ENTRY.value.TO)
    #
    # The rest is commented out: like CPython we no longer shrink the
    # dictionary here.  It may shrink later if we try to append a number
    # of new items to it.  Unsure if this behavior was designed in
    # CPython or is accidental.  A design reason would be that if you
    # delete all items in a dictionary (e.g. with a series of
    # popitem()), then CPython avoids shrinking the table several times.
    #num_entries = len(d.entries)
    #if num_entries > DICT_INITSIZE and d.num_items <= num_entries / 4:
    #    ll_dict_resize(d)
    # A previous xxx: move the size checking and resize into a single
    # call which is opaque to the JIT when the dict isn't virtual, to
    # avoid extra branches.

def ll_dict_resize(d):
    old_entries = d.entries
    old_size = len(old_entries)
    # make a 'new_size' estimate and shrink it if there are many
    # deleted entry markers.  See CPython for why it is a good idea to
    # quadruple the dictionary size as long as it's not too big.
    num_items = d.num_items + 1
    if num_items > 50000: new_estimate = num_items * 2
    else:                 new_estimate = num_items * 4
    new_size = DICT_INITSIZE
    while new_size <= new_estimate:
        new_size *= 2
    #
    d.entries = lltype.typeOf(old_entries).TO.allocate(new_size)
    d.num_items = 0
    d.resize_counter = new_size * 2
    i = 0
    while i < old_size:
        if old_entries.valid(i):
            hash = old_entries.hash(i)
            entry = old_entries[i]
            ll_dict_insertclean(d, entry.key, entry.value, hash)
        i += 1
    old_entries.delete()
ll_dict_resize.oopspec = 'dict.resize(d)'

# ------- a port of CPython's dictobject.c's lookdict implementation -------
PERTURB_SHIFT = 5

@jit.look_inside_iff(lambda d, key, hash: jit.isvirtual(d) and jit.isconstant(key))
def ll_dict_lookup(d, key, hash):
    entries = d.entries
    ENTRIES = lltype.typeOf(entries).TO
    direct_compare = not hasattr(ENTRIES, 'no_direct_compare')
    mask = len(entries) - 1
    i = r_uint(hash & mask)
    # do the first try before any looping
    if entries.valid(i):
        checkingkey = entries[i].key
        if direct_compare and checkingkey == key:
            return i   # found the entry
        if d.keyeq is not None and entries.hash(i) == hash:
            # correct hash, maybe the key is e.g. a different pointer to
            # an equal object
            found = d.keyeq(checkingkey, key)
            if d.paranoia:
                if (entries != d.entries or
                    not entries.valid(i) or entries[i].key != checkingkey):
                    # the compare did major nasty stuff to the dict: start over
                    return ll_dict_lookup(d, key, hash)
            if found:
                return i   # found the entry
        freeslot = -1
    elif entries.everused(i):
        freeslot = intmask(i)
    else:
        return i | HIGHEST_BIT # pristine entry -- lookup failed

    # In the loop, a deleted entry (everused and not valid) is by far
    # (factor of 100s) the least likely outcome, so test for that last.
    perturb = r_uint(hash)
    while 1:
        # compute the next index using unsigned arithmetic
        i = (i << 2) + i + perturb + 1
        i = i & mask
        # keep 'i' as a signed number here, to consistently pass signed
        # arguments to the small helper methods.
        if not entries.everused(i):
            if freeslot == -1:
                freeslot = intmask(i)
            return r_uint(freeslot) | HIGHEST_BIT
        elif entries.valid(i):
            checkingkey = entries[i].key
            if direct_compare and checkingkey == key:
                return i
            if d.keyeq is not None and entries.hash(i) == hash:
                # correct hash, maybe the key is e.g. a different pointer to
                # an equal object
                found = d.keyeq(checkingkey, key)
                if d.paranoia:
                    if (entries != d.entries or
                        not entries.valid(i) or entries[i].key != checkingkey):
                        # the compare did major nasty stuff to the dict:
                        # start over
                        return ll_dict_lookup(d, key, hash)
                if found:
                    return i   # found the entry
        elif freeslot == -1:
            freeslot = intmask(i)
        perturb >>= PERTURB_SHIFT

def ll_dict_lookup_clean(d, hash):
    # a simplified version of ll_dict_lookup() which assumes that the
    # key is new, and the dictionary doesn't contain deleted entries.
    # It only finds the next free slot for the given hash.
    entries = d.entries
    mask = len(entries) - 1
    i = r_uint(hash & mask)
    perturb = r_uint(hash)
    while entries.everused(i):
        i = (i << 2) + i + perturb + 1
        i = i & mask
        perturb >>= PERTURB_SHIFT
    return i

# ____________________________________________________________
#
#  Irregular operations.

DICT_INITSIZE = 8

def ll_newdict(DICT):
    d = DICT.allocate()
    d.entries = DICT.entries.TO.allocate(DICT_INITSIZE)
    d.num_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    return d

def ll_newdict_size(DICT, length_estimate):
    length_estimate = (length_estimate // 2) * 3
    n = DICT_INITSIZE
    while n < length_estimate:
        n *= 2
    d = DICT.allocate()
    d.entries = DICT.entries.TO.allocate(n)
    d.num_items = 0
    d.resize_counter = n * 2
    return d

# rpython.memory.lldict uses a dict based on Struct and Array
# instead of GcStruct and GcArray, which is done by using different
# 'allocate' and 'delete' adtmethod implementations than the ones below
def _ll_malloc_dict(DICT):
    return lltype.malloc(DICT)
def _ll_malloc_entries(ENTRIES, n):
    return lltype.malloc(ENTRIES, n, zero=True)
def _ll_free_entries(entries):
    pass


def rtype_r_dict(hop, i_force_non_null=None):
    r_dict = hop.r_result
    if not r_dict.custom_eq_hash:
        raise TyperError("r_dict() call does not return an r_dict instance")
    v_eqfn = hop.inputarg(r_dict.r_rdict_eqfn, arg=0)
    v_hashfn = hop.inputarg(r_dict.r_rdict_hashfn, arg=1)
    if i_force_non_null is not None:
        assert i_force_non_null == 2
        hop.inputarg(lltype.Void, arg=2)
    cDICT = hop.inputconst(lltype.Void, r_dict.DICT)
    hop.exception_cannot_occur()
    v_result = hop.gendirectcall(ll_newdict, cDICT)
    if r_dict.r_rdict_eqfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyeq')
        hop.genop('setfield', [v_result, cname, v_eqfn])
    if r_dict.r_rdict_hashfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyhash')
        hop.genop('setfield', [v_result, cname, v_hashfn])
    return v_result

# ____________________________________________________________
#
#  Iteration.

class DictIteratorRepr(AbstractDictIteratorRepr):

    def __init__(self, r_dict, variant="keys"):
        self.r_dict = r_dict
        self.variant = variant
        self.lowleveltype = lltype.Ptr(lltype.GcStruct('dictiter',
                                         ('dict', r_dict.lowleveltype),
                                         ('index', lltype.Signed)))
        self.ll_dictiter = ll_dictiter
        self.ll_dictnext = ll_dictnext_group[variant]


def ll_dictiter(ITERPTR, d):
    iter = lltype.malloc(ITERPTR.TO)
    iter.dict = d
    iter.index = 0
    return iter

def _make_ll_dictnext(kind):
    # make three versions of the following function: keys, values, items
    @jit.look_inside_iff(lambda RETURNTYPE, iter: jit.isvirtual(iter)
                         and (iter.dict is None or
                              jit.isvirtual(iter.dict)))
    @jit.oopspec("dictiter.next%s(iter)" % kind)
    def ll_dictnext(RETURNTYPE, iter):
        # note that RETURNTYPE is None for keys and values
        dict = iter.dict
        if dict:
            entries = dict.entries
            index = iter.index
            assert index >= 0
            entries_len = len(entries)
            while index < entries_len:
                entry = entries[index]
                is_valid = entries.valid(index)
                index = index + 1
                if is_valid:
                    iter.index = index
                    if RETURNTYPE is lltype.Void:
                        return None
                    elif kind == 'items':
                        r = lltype.malloc(RETURNTYPE.TO)
                        r.item0 = recast(RETURNTYPE.TO.item0, entry.key)
                        r.item1 = recast(RETURNTYPE.TO.item1, entry.value)
                        return r
                    elif kind == 'keys':
                        return entry.key
                    elif kind == 'values':
                        return entry.value
            # clear the reference to the dict and prevent restarts
            iter.dict = lltype.nullptr(lltype.typeOf(iter).TO.dict.TO)
        raise StopIteration
    return ll_dictnext

ll_dictnext_group = {'keys'  : _make_ll_dictnext('keys'),
                     'values': _make_ll_dictnext('values'),
                     'items' : _make_ll_dictnext('items')}

# _____________________________________________________________
# methods

def ll_get(dict, key, default):
    i = ll_dict_lookup(dict, key, dict.keyhash(key))
    if not i & HIGHEST_BIT:
        return ll_get_value(dict, i)
    else:
        return default

def ll_setdefault(dict, key, default):
    hash = dict.keyhash(key)
    i = ll_dict_lookup(dict, key, hash)
    if not i & HIGHEST_BIT:
        return ll_get_value(dict, i)
    else:
        _ll_dict_setitem_lookup_done(dict, key, default, hash, i)
        return default

def ll_copy(dict):
    DICT = lltype.typeOf(dict).TO
    dictsize = len(dict.entries)
    d = DICT.allocate()
    d.entries = DICT.entries.TO.allocate(dictsize)
    d.num_items = dict.num_items
    d.resize_counter = dict.resize_counter
    if hasattr(DICT, 'fnkeyeq'):   d.fnkeyeq   = dict.fnkeyeq
    if hasattr(DICT, 'fnkeyhash'): d.fnkeyhash = dict.fnkeyhash
    i = 0
    while i < dictsize:
        d_entry = d.entries[i]
        entry = dict.entries[i]
        ENTRY = lltype.typeOf(d.entries).TO.OF
        d_entry.key = entry.key
        if hasattr(ENTRY, 'f_valid'):    d_entry.f_valid    = entry.f_valid
        if hasattr(ENTRY, 'f_everused'): d_entry.f_everused = entry.f_everused
        d_entry.value = entry.value
        if hasattr(ENTRY, 'f_hash'):     d_entry.f_hash     = entry.f_hash
        i += 1
    return d
ll_copy.oopspec = 'dict.copy(dict)'

def ll_clear(d):
    if (len(d.entries) == DICT_INITSIZE and
        d.resize_counter == DICT_INITSIZE * 2):
        return
    old_entries = d.entries
    d.entries = lltype.typeOf(old_entries).TO.allocate(DICT_INITSIZE)
    d.num_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    old_entries.delete()
ll_clear.oopspec = 'dict.clear(d)'

def ll_update(dic1, dic2):
    entries = dic2.entries
    d2len = len(entries)
    i = 0
    while i < d2len:
        if entries.valid(i):
            entry = entries[i]
            hash = entries.hash(i)
            key = entry.key
            j = ll_dict_lookup(dic1, key, hash)
            _ll_dict_setitem_lookup_done(dic1, key, entry.value, hash, j)
        i += 1
ll_update.oopspec = 'dict.update(dic1, dic2)'

# this is an implementation of keys(), values() and items()
# in a single function.
# note that by specialization on func, three different
# and very efficient functions are created.

def recast(P, v):
    if isinstance(P, lltype.Ptr):
        return lltype.cast_pointer(P, v)
    else:
        return v

def _make_ll_keys_values_items(kind):
    def ll_kvi(LIST, dic):
        res = LIST.ll_newlist(dic.num_items)
        entries = dic.entries
        dlen = len(entries)
        items = res.ll_items()
        i = 0
        p = 0
        while i < dlen:
            if entries.valid(i):
                ELEM = lltype.typeOf(items).TO.OF
                if ELEM is not lltype.Void:
                    entry = entries[i]
                    if kind == 'items':
                        r = lltype.malloc(ELEM.TO)
                        r.item0 = recast(ELEM.TO.item0, entry.key)
                        r.item1 = recast(ELEM.TO.item1, entry.value)
                        items[p] = r
                    elif kind == 'keys':
                        items[p] = recast(ELEM, entry.key)
                    elif kind == 'values':
                        items[p] = recast(ELEM, entry.value)
                p += 1
            i += 1
        assert p == res.ll_length()
        return res
    ll_kvi.oopspec = 'dict.%s(dic)' % kind
    return ll_kvi

ll_dict_keys   = _make_ll_keys_values_items('keys')
ll_dict_values = _make_ll_keys_values_items('values')
ll_dict_items  = _make_ll_keys_values_items('items')

def ll_contains(d, key):
    i = ll_dict_lookup(d, key, d.keyhash(key))
    return not i & HIGHEST_BIT

POPITEMINDEX = lltype.Struct('PopItemIndex', ('nextindex', lltype.Unsigned),
                             hints={'stm_dont_track_raw_accesses': True})
global_popitem_index = lltype.malloc(POPITEMINDEX, zero=True, immortal=True)

def _ll_getnextitem(dic):
    entries = dic.entries
    ENTRY = lltype.typeOf(entries).TO.OF
    dmask = r_uint(len(entries) - 1)
    if hasattr(ENTRY, 'f_hash'):
        if entries.valid(0):
            return 0
        base = r_uint(entries[0].f_hash)
    else:
        base = global_popitem_index.nextindex
    counter = r_uint(0)
    while counter <= dmask:
        i = intmask((base + counter) & dmask)
        counter += r_uint(1)
        if entries.valid(i):
            break
    else:
        raise KeyError
    if hasattr(ENTRY, 'f_hash'):
        entries[0].f_hash = intmask(base + counter)
    else:
        global_popitem_index.nextindex = base + counter
    return i

def ll_popitem(ELEM, dic):
    i = _ll_getnextitem(dic)
    entry = dic.entries[i]
    r = lltype.malloc(ELEM.TO)
    r.item0 = recast(ELEM.TO.item0, entry.key)
    r.item1 = recast(ELEM.TO.item1, entry.value)
    _ll_dict_del(dic, r_uint(i))
    return r

def ll_pop(dic, key):
    i = ll_dict_lookup(dic, key, dic.keyhash(key))
    if not i & HIGHEST_BIT:
        value = ll_get_value(dic, r_uint(i))
        _ll_dict_del(dic, r_uint(i))
        return value
    else:
        raise KeyError

def ll_pop_default(dic, key, dfl):
    try:
        return ll_pop(dic, key)
    except KeyError:
        return dfl