pypy / lib_pypy / _md5.py

The branch 'kill-gen-store-back-in' does not exist.
#!/usr/bin/env python
# -*- coding: iso-8859-1 -*-

# Note that PyPy contains also a built-in module 'md5' which will hide
# this one if compiled in.

"""A sample implementation of MD5 in pure Python.

This is an implementation of the MD5 hash function, as specified by
RFC 1321, in pure Python. It was implemented using Bruce Schneier's
excellent book "Applied Cryptography", 2nd ed., 1996.

Surely this is not meant to compete with the existing implementation
of the Python standard library (written in C). Rather, it should be
seen as a Python complement that is more readable than C and can be
used more conveniently for learning and experimenting purposes in
the field of cryptography.

This module tries very hard to follow the API of the existing Python
standard library's "md5" module, but although it seems to work fine,
it has not been extensively tested! (But note that there is a test
module, test_md5py.py, that compares this Python implementation with
the C one of the Python standard library.

BEWARE: this comes with no guarantee whatsoever about fitness and/or
other properties! Specifically, do not use this in any production
code! License is Python License!

Special thanks to Aurelian Coman who fixed some nasty bugs!

Dinu C. Gherman
"""


__date__    = '2004-11-17'
__version__ = 0.91 # Modernised by J. Hall�n and L. Creighton for Pypy

__metaclass__ = type # or genrpy won't work

import struct, copy


# ======================================================================
# Bit-Manipulation helpers
# ======================================================================

def _bytelist2long(list):
    "Transform a list of characters into a list of longs."

    imax = len(list) // 4
    hl = [0] * imax

    j = 0
    i = 0
    while i < imax:
        b0 = ord(list[j])
        b1 = ord(list[j+1]) << 8
        b2 = ord(list[j+2]) << 16
        b3 = ord(list[j+3]) << 24
        hl[i] = b0 | b1 |b2 | b3
        i = i+1
        j = j+4

    return hl


def _rotateLeft(x, n):
    "Rotate x (32 bit) left n bits circularly."

    return (x << n) | (x >> (32-n))


# ======================================================================
# The real MD5 meat...
#
#   Implemented after "Applied Cryptography", 2nd ed., 1996,
#   pp. 436-441 by Bruce Schneier.
# ======================================================================

# F, G, H and I are basic MD5 functions.

def F(x, y, z):
    return (x & y) | ((~x) & z)

def G(x, y, z):
    return (x & z) | (y & (~z))

def H(x, y, z):
    return x ^ y ^ z

def I(x, y, z):
    return y ^ (x | (~z))


def XX(func, a, b, c, d, x, s, ac):
    """Wrapper for call distribution to functions F, G, H and I.

    This replaces functions FF, GG, HH and II from "Appl. Crypto."
    Rotation is separate from addition to prevent recomputation
    (now summed-up in one function).
    """

    res = 0
    res = res + a + func(b, c, d)
    res = res + x 
    res = res + ac
    res = res & 0xffffffff
    res = _rotateLeft(res, s)
    res = res & 0xffffffff
    res = res + b

    return res & 0xffffffff


class MD5Type:
    "An implementation of the MD5 hash function in pure Python."

    digest_size = digestsize = 16
    block_size = 64

    def __init__(self):
        "Initialisation."
        
        # Initial message length in bits(!).
        self.length = 0
        self.count = [0, 0]

        # Initial empty message as a sequence of bytes (8 bit characters).
        self.input = []

        # Call a separate init function, that can be used repeatedly
        # to start from scratch on the same object.
        self.init()


    def init(self):
        "Initialize the message-digest and set all fields to zero."

        self.length = 0
        self.count = [0, 0]
        self.input = []

        # Load magic initialization constants.
        self.A = 0x67452301
        self.B = 0xefcdab89
        self.C = 0x98badcfe
        self.D = 0x10325476


    def _transform(self, inp):
        """Basic MD5 step transforming the digest based on the input.

        Note that if the Mysterious Constants are arranged backwards
        in little-endian order and decrypted with the DES they produce
        OCCULT MESSAGES!
        """

        a, b, c, d = A, B, C, D = self.A, self.B, self.C, self.D

        # Round 1.

        S11, S12, S13, S14 = 7, 12, 17, 22

        a = XX(F, a, b, c, d, inp[ 0], S11, 0xD76AA478) # 1 
        d = XX(F, d, a, b, c, inp[ 1], S12, 0xE8C7B756) # 2 
        c = XX(F, c, d, a, b, inp[ 2], S13, 0x242070DB) # 3 
        b = XX(F, b, c, d, a, inp[ 3], S14, 0xC1BDCEEE) # 4 
        a = XX(F, a, b, c, d, inp[ 4], S11, 0xF57C0FAF) # 5 
        d = XX(F, d, a, b, c, inp[ 5], S12, 0x4787C62A) # 6 
        c = XX(F, c, d, a, b, inp[ 6], S13, 0xA8304613) # 7 
        b = XX(F, b, c, d, a, inp[ 7], S14, 0xFD469501) # 8 
        a = XX(F, a, b, c, d, inp[ 8], S11, 0x698098D8) # 9 
        d = XX(F, d, a, b, c, inp[ 9], S12, 0x8B44F7AF) # 10 
        c = XX(F, c, d, a, b, inp[10], S13, 0xFFFF5BB1) # 11 
        b = XX(F, b, c, d, a, inp[11], S14, 0x895CD7BE) # 12 
        a = XX(F, a, b, c, d, inp[12], S11, 0x6B901122) # 13 
        d = XX(F, d, a, b, c, inp[13], S12, 0xFD987193) # 14 
        c = XX(F, c, d, a, b, inp[14], S13, 0xA679438E) # 15 
        b = XX(F, b, c, d, a, inp[15], S14, 0x49B40821) # 16 

        # Round 2.

        S21, S22, S23, S24 = 5, 9, 14, 20

        a = XX(G, a, b, c, d, inp[ 1], S21, 0xF61E2562) # 17 
        d = XX(G, d, a, b, c, inp[ 6], S22, 0xC040B340) # 18 
        c = XX(G, c, d, a, b, inp[11], S23, 0x265E5A51) # 19 
        b = XX(G, b, c, d, a, inp[ 0], S24, 0xE9B6C7AA) # 20 
        a = XX(G, a, b, c, d, inp[ 5], S21, 0xD62F105D) # 21 
        d = XX(G, d, a, b, c, inp[10], S22, 0x02441453) # 22 
        c = XX(G, c, d, a, b, inp[15], S23, 0xD8A1E681) # 23 
        b = XX(G, b, c, d, a, inp[ 4], S24, 0xE7D3FBC8) # 24 
        a = XX(G, a, b, c, d, inp[ 9], S21, 0x21E1CDE6) # 25 
        d = XX(G, d, a, b, c, inp[14], S22, 0xC33707D6) # 26 
        c = XX(G, c, d, a, b, inp[ 3], S23, 0xF4D50D87) # 27 
        b = XX(G, b, c, d, a, inp[ 8], S24, 0x455A14ED) # 28 
        a = XX(G, a, b, c, d, inp[13], S21, 0xA9E3E905) # 29 
        d = XX(G, d, a, b, c, inp[ 2], S22, 0xFCEFA3F8) # 30 
        c = XX(G, c, d, a, b, inp[ 7], S23, 0x676F02D9) # 31 
        b = XX(G, b, c, d, a, inp[12], S24, 0x8D2A4C8A) # 32 

        # Round 3.

        S31, S32, S33, S34 = 4, 11, 16, 23

        a = XX(H, a, b, c, d, inp[ 5], S31, 0xFFFA3942) # 33 
        d = XX(H, d, a, b, c, inp[ 8], S32, 0x8771F681) # 34 
        c = XX(H, c, d, a, b, inp[11], S33, 0x6D9D6122) # 35 
        b = XX(H, b, c, d, a, inp[14], S34, 0xFDE5380C) # 36 
        a = XX(H, a, b, c, d, inp[ 1], S31, 0xA4BEEA44) # 37 
        d = XX(H, d, a, b, c, inp[ 4], S32, 0x4BDECFA9) # 38 
        c = XX(H, c, d, a, b, inp[ 7], S33, 0xF6BB4B60) # 39 
        b = XX(H, b, c, d, a, inp[10], S34, 0xBEBFBC70) # 40 
        a = XX(H, a, b, c, d, inp[13], S31, 0x289B7EC6) # 41 
        d = XX(H, d, a, b, c, inp[ 0], S32, 0xEAA127FA) # 42 
        c = XX(H, c, d, a, b, inp[ 3], S33, 0xD4EF3085) # 43 
        b = XX(H, b, c, d, a, inp[ 6], S34, 0x04881D05) # 44 
        a = XX(H, a, b, c, d, inp[ 9], S31, 0xD9D4D039) # 45 
        d = XX(H, d, a, b, c, inp[12], S32, 0xE6DB99E5) # 46 
        c = XX(H, c, d, a, b, inp[15], S33, 0x1FA27CF8) # 47 
        b = XX(H, b, c, d, a, inp[ 2], S34, 0xC4AC5665) # 48 

        # Round 4.

        S41, S42, S43, S44 = 6, 10, 15, 21

        a = XX(I, a, b, c, d, inp[ 0], S41, 0xF4292244) # 49 
        d = XX(I, d, a, b, c, inp[ 7], S42, 0x432AFF97) # 50 
        c = XX(I, c, d, a, b, inp[14], S43, 0xAB9423A7) # 51 
        b = XX(I, b, c, d, a, inp[ 5], S44, 0xFC93A039) # 52 
        a = XX(I, a, b, c, d, inp[12], S41, 0x655B59C3) # 53 
        d = XX(I, d, a, b, c, inp[ 3], S42, 0x8F0CCC92) # 54 
        c = XX(I, c, d, a, b, inp[10], S43, 0xFFEFF47D) # 55 
        b = XX(I, b, c, d, a, inp[ 1], S44, 0x85845DD1) # 56 
        a = XX(I, a, b, c, d, inp[ 8], S41, 0x6FA87E4F) # 57 
        d = XX(I, d, a, b, c, inp[15], S42, 0xFE2CE6E0) # 58 
        c = XX(I, c, d, a, b, inp[ 6], S43, 0xA3014314) # 59 
        b = XX(I, b, c, d, a, inp[13], S44, 0x4E0811A1) # 60 
        a = XX(I, a, b, c, d, inp[ 4], S41, 0xF7537E82) # 61 
        d = XX(I, d, a, b, c, inp[11], S42, 0xBD3AF235) # 62 
        c = XX(I, c, d, a, b, inp[ 2], S43, 0x2AD7D2BB) # 63 
        b = XX(I, b, c, d, a, inp[ 9], S44, 0xEB86D391) # 64 

        A = (A + a) & 0xffffffff
        B = (B + b) & 0xffffffff
        C = (C + c) & 0xffffffff
        D = (D + d) & 0xffffffff

        self.A, self.B, self.C, self.D = A, B, C, D


    # Down from here all methods follow the Python Standard Library
    # API of the md5 module.

    def update(self, inBuf):
        """Add to the current message.

        Update the md5 object with the string arg. Repeated calls
        are equivalent to a single call with the concatenation of all
        the arguments, i.e. m.update(a); m.update(b) is equivalent
        to m.update(a+b).

        The hash is immediately calculated for all full blocks. The final
        calculation is made in digest(). This allows us to keep an
        intermediate value for the hash, so that we only need to make
        minimal recalculation if we call update() to add moredata to
        the hashed string.
        """

        leninBuf = len(inBuf)

        # Compute number of bytes mod 64.
        index = (self.count[0] >> 3) & 0x3F

        # Update number of bits.
        self.count[0] = self.count[0] + (leninBuf << 3)
        if self.count[0] < (leninBuf << 3):
            self.count[1] = self.count[1] + 1
        self.count[1] = self.count[1] + (leninBuf >> 29)

        partLen = 64 - index

        if leninBuf >= partLen:
            self.input[index:] = list(inBuf[:partLen])
            self._transform(_bytelist2long(self.input))
            i = partLen
            while i + 63 < leninBuf:
                self._transform(_bytelist2long(list(inBuf[i:i+64])))
                i = i + 64
            else:
                self.input = list(inBuf[i:leninBuf])
        else:
            i = 0
            self.input = self.input + list(inBuf)


    def digest(self):
        """Terminate the message-digest computation and return digest.

        Return the digest of the strings passed to the update()
        method so far. This is a 16-byte string which may contain
        non-ASCII characters, including null bytes.
        """

        A = self.A
        B = self.B
        C = self.C
        D = self.D
        input = [] + self.input
        count = [] + self.count

        index = (self.count[0] >> 3) & 0x3f

        if index < 56:
            padLen = 56 - index
        else:
            padLen = 120 - index

        padding = [b'\200'] + [b'\000'] * 63
        self.update(padding[:padLen])

        # Append length (before padding).
        bits = _bytelist2long(self.input[:56]) + count

        self._transform(bits)

        # Store state in digest.
        digest = struct.pack("<IIII", self.A, self.B, self.C, self.D)

        self.A = A 
        self.B = B
        self.C = C
        self.D = D
        self.input = input 
        self.count = count 

        return digest


    def hexdigest(self):
        """Terminate and return digest in HEX form.

        Like digest() except the digest is returned as a string of
        length 32, containing only hexadecimal digits. This may be
        used to exchange the value safely in email or other non-
        binary environments.
        """

        return ''.join(['%02x' % ord(c) for c in self.digest()])

    def copy(self):
        """Return a clone object.

        Return a copy ('clone') of the md5 object. This can be used
        to efficiently compute the digests of strings that share
        a common initial substring.
        """
        if 0: # set this to 1 to make the flow space crash
            return copy.deepcopy(self)
        clone = self.__class__()
        clone.length = self.length
        clone.count  = [] + self.count[:]
        clone.input  = [] + self.input
        clone.A = self.A
        clone.B = self.B
        clone.C = self.C
        clone.D = self.D
        return clone


# ======================================================================
# Mimic Python top-level functions from standard library API
# for consistency with the _md5 module of the standard library.
# ======================================================================

digest_size = 16

def new(arg=None):
    """Return a new md5 crypto object.
    If arg is present, the method call update(arg) is made.
    """

    crypto = MD5Type()
    if arg:
        crypto.update(arg)

    return crypto
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.