Source

pypy / rpython / rtyper / lltypesystem / rordereddict.py

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
import sys
from rpython.tool.pairtype import pairtype
from rpython.flowspace.model import Constant
from rpython.rtyper.rdict import AbstractDictRepr, AbstractDictIteratorRepr
from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
from rpython.rlib import objectmodel, jit, rgc
from rpython.rlib.objectmodel import specialize
from rpython.rlib.debug import ll_assert
from rpython.rlib.rarithmetic import r_uint, intmask
from rpython.rtyper import rmodel
from rpython.rtyper.error import TyperError
from rpython.rtyper.annlowlevel import llhelper


# ____________________________________________________________
#
#  generic implementation of RPython dictionary, with parametric DICTKEY and
#  DICTVALUE types. The basic implementation is a sparse array of indexes
#  plus a dense array of structs that contain keys and values. struct looks
#  like that:
#
#
#    struct dictentry {
#        DICTKEY key;
#        DICTVALUE value;
#        long f_hash;        # (optional) key hash, if hard to recompute
#        bool f_valid;      # (optional) the entry is filled
#    }
#
#    struct dicttable {
#        int num_items;
#        int num_used_items;
#        int resize_counter;
#        {byte, short, int, long} *indexes;
#        dictentry *entries;
#        lookup_function_no; # one of the four possible functions for different
#                         # size dicts
#        (Function DICTKEY, DICTKEY -> bool) *fnkeyeq;
#        (Function DICTKEY -> int) *fnkeyhash;
#    }
#
#

def ll_call_lookup_function(d, key, hash, flag):
    DICT = lltype.typeOf(d).TO
    fun = d.lookup_function_no
    if fun == FUNC_BYTE:
        return ll_dict_lookup(d, key, hash, flag, TYPE_BYTE)
    elif fun == FUNC_SHORT:
        return ll_dict_lookup(d, key, hash, flag, TYPE_SHORT)
    elif IS_64BIT and fun == FUNC_INT:
        return ll_dict_lookup(d, key, hash, flag, TYPE_INT)
    elif fun == FUNC_LONG:
        return ll_dict_lookup(d, key, hash, flag, TYPE_LONG)
    assert False

def get_ll_dict(DICTKEY, DICTVALUE, get_custom_eq_hash=None, DICT=None,
                ll_fasthash_function=None, ll_hash_function=None,
                ll_eq_function=None, method_cache={},
                dummykeyobj=None, dummyvalueobj=None, rtyper=None):
    # get the actual DICT type. if DICT is None, it's created, otherwise
    # forward reference is becoming DICT
    if DICT is None:
        DICT = lltype.GcForwardReference()
    # compute the shape of the DICTENTRY structure
    entryfields = []
    entrymeths = {
        'allocate': lltype.typeMethod(_ll_malloc_entries),
        'delete': _ll_free_entries,
        'must_clear_key':   (isinstance(DICTKEY, lltype.Ptr)
                             and DICTKEY._needsgc()),
        'must_clear_value': (isinstance(DICTVALUE, lltype.Ptr)
                             and DICTVALUE._needsgc()),
        }

    # * the key
    entryfields.append(("key", DICTKEY))

    # * the state of the entry - trying to encode it as dummy objects
    if dummykeyobj:
        # all the state can be encoded in the key
        entrymeths['dummy_obj'] = dummykeyobj
        entrymeths['valid'] = ll_valid_from_key
        entrymeths['mark_deleted'] = ll_mark_deleted_in_key
        # the key is overwritten by 'dummy' when the entry is deleted
        entrymeths['must_clear_key'] = False

    elif dummyvalueobj:
        # all the state can be encoded in the value
        entrymeths['dummy_obj'] = dummyvalueobj
        entrymeths['valid'] = ll_valid_from_value
        entrymeths['mark_deleted'] = ll_mark_deleted_in_value
        # value is overwritten by 'dummy' when entry is deleted
        entrymeths['must_clear_value'] = False

    else:
        # we need a flag to know if the entry was ever used
        entryfields.append(("f_valid", lltype.Bool))
        entrymeths['valid'] = ll_valid_from_flag
        entrymeths['mark_deleted'] = ll_mark_deleted_in_flag

    # * the value
    entryfields.append(("value", DICTVALUE))

    if ll_fasthash_function is None:
        entryfields.append(("f_hash", lltype.Signed))
        entrymeths['hash'] = ll_hash_from_cache
    else:
        entrymeths['hash'] = ll_hash_recomputed
        entrymeths['fasthashfn'] = ll_fasthash_function

    # Build the lltype data structures
    DICTENTRY = lltype.Struct("odictentry", *entryfields)
    DICTENTRYARRAY = lltype.GcArray(DICTENTRY,
                                    adtmeths=entrymeths)
    fields =          [ ("num_items", lltype.Signed),
                        ("num_used_items", lltype.Signed),
                        ("resize_counter", lltype.Signed),
                        ("indexes", llmemory.GCREF),
                        ("lookup_function_no", lltype.Signed),
                        ("entries", lltype.Ptr(DICTENTRYARRAY)) ]
    if get_custom_eq_hash is not None:
        r_rdict_eqfn, r_rdict_hashfn = get_custom_eq_hash()
        fields.extend([ ("fnkeyeq", r_rdict_eqfn.lowleveltype),
                        ("fnkeyhash", r_rdict_hashfn.lowleveltype) ])
        adtmeths = {
            'keyhash':        ll_keyhash_custom,
            'keyeq':          ll_keyeq_custom,
            'r_rdict_eqfn':   r_rdict_eqfn,
            'r_rdict_hashfn': r_rdict_hashfn,
            'paranoia':       True,
            }
    else:
        # figure out which functions must be used to hash and compare
        ll_keyhash = ll_hash_function
        ll_keyeq = ll_eq_function
        ll_keyhash = lltype.staticAdtMethod(ll_keyhash)
        if ll_keyeq is not None:
            ll_keyeq = lltype.staticAdtMethod(ll_keyeq)
        adtmeths = {
            'keyhash':  ll_keyhash,
            'keyeq':    ll_keyeq,
            'paranoia': False,
            }
    adtmeths['KEY']   = DICTKEY
    adtmeths['VALUE'] = DICTVALUE
    adtmeths['lookup_function'] = lltype.staticAdtMethod(ll_call_lookup_function)
    adtmeths['allocate'] = lltype.typeMethod(_ll_malloc_dict)

    DICT.become(lltype.GcStruct("dicttable", adtmeths=adtmeths,
                                *fields))
    return DICT


class OrderedDictRepr(AbstractDictRepr):

    def __init__(self, rtyper, key_repr, value_repr, dictkey, dictvalue,
                 custom_eq_hash=None, force_non_null=False):
        assert not force_non_null
        self.rtyper = rtyper
        self.finalized = False
        self.DICT = lltype.GcForwardReference()
        self.lowleveltype = lltype.Ptr(self.DICT)
        self.custom_eq_hash = custom_eq_hash is not None
        if not isinstance(key_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(key_repr)
            self._key_repr_computer = key_repr
        else:
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if not isinstance(value_repr, rmodel.Repr):  # not computed yet, done by setup()
            assert callable(value_repr)
            self._value_repr_computer = value_repr
        else:
            self.external_value_repr, self.value_repr = self.pickrepr(value_repr)
        self.dictkey = dictkey
        self.dictvalue = dictvalue
        self.dict_cache = {}
        self._custom_eq_hash_repr = custom_eq_hash
        # setup() needs to be called to finish this initialization

    def _externalvsinternal(self, rtyper, item_repr):
        return rmodel.externalvsinternal(self.rtyper, item_repr)

    def _setup_repr(self):
        if 'key_repr' not in self.__dict__:
            key_repr = self._key_repr_computer()
            self.external_key_repr, self.key_repr = self.pickkeyrepr(key_repr)
        if 'value_repr' not in self.__dict__:
            self.external_value_repr, self.value_repr = self.pickrepr(self._value_repr_computer())
        if isinstance(self.DICT, lltype.GcForwardReference):
            DICTKEY = self.key_repr.lowleveltype
            DICTVALUE = self.value_repr.lowleveltype
            # * we need an explicit flag if the key and the value is not
            #   able to store dummy values
            s_key   = self.dictkey.s_value
            s_value = self.dictvalue.s_value
            kwd = {}
            if self.custom_eq_hash:
                self.r_rdict_eqfn, self.r_rdict_hashfn = (
                    self._custom_eq_hash_repr())
                kwd['get_custom_eq_hash'] = self._custom_eq_hash_repr
            else:
                kwd['ll_hash_function'] = self.key_repr.get_ll_hash_function()
                kwd['ll_eq_function'] = self.key_repr.get_ll_eq_function()
                kwd['ll_fasthash_function'] = self.key_repr.get_ll_fasthash_function()
            kwd['dummykeyobj'] = self.key_repr.get_ll_dummyval_obj(self.rtyper,
                                                                   s_key)
            kwd['dummyvalueobj'] = self.value_repr.get_ll_dummyval_obj(
                self.rtyper, s_value)
            get_ll_dict(DICTKEY, DICTVALUE, DICT=self.DICT,
                        rtyper=self.rtyper, **kwd)


    def convert_const(self, dictobj):
        from rpython.rtyper.lltypesystem import llmemory
        # get object from bound dict methods
        #dictobj = getattr(dictobj, '__self__', dictobj)
        if dictobj is None:
            return lltype.nullptr(self.DICT)
        if not isinstance(dictobj, (dict, objectmodel.r_dict)):
            raise TypeError("expected a dict: %r" % (dictobj,))
        try:
            key = Constant(dictobj)
            return self.dict_cache[key]
        except KeyError:
            self.setup()
            self.setup_final()
            l_dict = ll_newdict_size(self.DICT, len(dictobj))
            self.dict_cache[key] = l_dict
            r_key = self.key_repr
            if r_key.lowleveltype == llmemory.Address:
                raise TypeError("No prebuilt dicts of address keys")
            r_value = self.value_repr
            if isinstance(dictobj, objectmodel.r_dict):
                if self.r_rdict_eqfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_eqfn.convert_const(dictobj.key_eq)
                    l_dict.fnkeyeq = l_fn
                if self.r_rdict_hashfn.lowleveltype != lltype.Void:
                    l_fn = self.r_rdict_hashfn.convert_const(dictobj.key_hash)
                    l_dict.fnkeyhash = l_fn

                for dictkeycontainer, dictvalue in dictobj._dict.items():
                    llkey = r_key.convert_const(dictkeycontainer.key)
                    llvalue = r_value.convert_const(dictvalue)
                    _ll_dict_insertclean(l_dict, llkey, llvalue,
                                         dictkeycontainer.hash)
                return l_dict

            else:
                for dictkey, dictvalue in dictobj.items():
                    llkey = r_key.convert_const(dictkey)
                    llvalue = r_value.convert_const(dictvalue)
                    _ll_dict_insertclean(l_dict, llkey, llvalue,
                                         l_dict.keyhash(llkey))
                return l_dict

    def rtype_len(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_len, v_dict)

    def rtype_bool(self, hop):
        v_dict, = hop.inputargs(self)
        return hop.gendirectcall(ll_dict_bool, v_dict)

    def make_iterator_repr(self, *variant):
        return DictIteratorRepr(self, *variant)

    def rtype_method_get(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_dict_get, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_setdefault(self, hop):
        v_dict, v_key, v_default = hop.inputargs(self, self.key_repr,
                                                 self.value_repr)
        hop.exception_cannot_occur()
        v_res = hop.gendirectcall(ll_dict_setdefault, v_dict, v_key, v_default)
        return self.recast_value(hop.llops, v_res)

    def rtype_method_copy(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_copy, v_dict)

    def rtype_method_update(self, hop):
        v_dic1, v_dic2 = hop.inputargs(self, self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_update, v_dic1, v_dic2)

    def _rtype_method_kvi(self, hop, ll_func):
        v_dic, = hop.inputargs(self)
        r_list = hop.r_result
        cLIST = hop.inputconst(lltype.Void, r_list.lowleveltype.TO)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_func, cLIST, v_dic)

    def rtype_method_keys(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_keys)

    def rtype_method_values(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_values)

    def rtype_method_items(self, hop):
        return self._rtype_method_kvi(hop, ll_dict_items)

    def rtype_method_iterkeys(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "keys").newiter(hop)

    def rtype_method_itervalues(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "values").newiter(hop)

    def rtype_method_iteritems(self, hop):
        hop.exception_cannot_occur()
        return DictIteratorRepr(self, "items").newiter(hop)

    def rtype_method_clear(self, hop):
        v_dict, = hop.inputargs(self)
        hop.exception_cannot_occur()
        return hop.gendirectcall(ll_dict_clear, v_dict)

    def rtype_method_popitem(self, hop):
        v_dict, = hop.inputargs(self)
        r_tuple = hop.r_result
        cTUPLE = hop.inputconst(lltype.Void, r_tuple.lowleveltype)
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_popitem, cTUPLE, v_dict)

    def rtype_method_pop(self, hop):
        if hop.nb_args == 2:
            v_args = hop.inputargs(self, self.key_repr)
            target = ll_dict_pop
        elif hop.nb_args == 3:
            v_args = hop.inputargs(self, self.key_repr, self.value_repr)
            target = ll_dict_pop_default
        hop.exception_is_here()
        v_res = hop.gendirectcall(target, *v_args)
        return self.recast_value(hop.llops, v_res)

class __extend__(pairtype(OrderedDictRepr, rmodel.Repr)):

    def rtype_getitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        v_res = hop.gendirectcall(ll_dict_getitem, v_dict, v_key)
        return r_dict.recast_value(hop.llops, v_res)

    def rtype_delitem((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        if not r_dict.custom_eq_hash:
            hop.has_implicit_exception(KeyError)   # record that we know about it
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_delitem, v_dict, v_key)

    def rtype_setitem((r_dict, r_key), hop):
        v_dict, v_key, v_value = hop.inputargs(r_dict, r_dict.key_repr, r_dict.value_repr)
        if r_dict.custom_eq_hash:
            hop.exception_is_here()
        else:
            hop.exception_cannot_occur()
        hop.gendirectcall(ll_dict_setitem, v_dict, v_key, v_value)

    def rtype_contains((r_dict, r_key), hop):
        v_dict, v_key = hop.inputargs(r_dict, r_dict.key_repr)
        hop.exception_is_here()
        return hop.gendirectcall(ll_dict_contains, v_dict, v_key)

class __extend__(pairtype(OrderedDictRepr, OrderedDictRepr)):
    def convert_from_to((r_dict1, r_dict2), v, llops):
        # check that we don't convert from Dicts with
        # different key/value types
        if r_dict1.dictkey is None or r_dict2.dictkey is None:
            return NotImplemented
        if r_dict1.dictkey is not r_dict2.dictkey:
            return NotImplemented
        if r_dict1.dictvalue is None or r_dict2.dictvalue is None:
            return NotImplemented
        if r_dict1.dictvalue is not r_dict2.dictvalue:
            return NotImplemented
        return v

# ____________________________________________________________
#
#  Low-level methods.  These can be run for testing, but are meant to
#  be direct_call'ed from rtyped flow graphs, which means that they will
#  get flowed and annotated, mostly with SomePtr.

DICTINDEX_LONG = lltype.Ptr(lltype.GcArray(lltype.Unsigned))
DICTINDEX_INT = lltype.Ptr(lltype.GcArray(rffi.UINT))
DICTINDEX_SHORT = lltype.Ptr(lltype.GcArray(rffi.USHORT))
DICTINDEX_BYTE = lltype.Ptr(lltype.GcArray(rffi.UCHAR))

IS_64BIT = sys.maxint != 2 ** 31 - 1

if IS_64BIT:
    FUNC_BYTE, FUNC_SHORT, FUNC_INT, FUNC_LONG = range(4)
else:
    FUNC_BYTE, FUNC_SHORT, FUNC_LONG = range(3)
TYPE_BYTE  = rffi.UCHAR
TYPE_SHORT = rffi.USHORT
TYPE_INT   = rffi.UINT
TYPE_LONG  = lltype.Unsigned

def ll_malloc_indexes_and_choose_lookup(d, n):
    if n <= 256:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_BYTE.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_BYTE
    elif n <= 65536:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_SHORT.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_SHORT
    elif IS_64BIT and n <= 2 ** 32:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_INT.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_INT
    else:
        d.indexes = lltype.cast_opaque_ptr(llmemory.GCREF,
                                           lltype.malloc(DICTINDEX_LONG.TO, n,
                                                         zero=True))
        d.lookup_function_no = FUNC_LONG

def ll_call_insert_clean_function(d, hash, i):
    DICT = lltype.typeOf(d).TO
    if d.lookup_function_no == FUNC_BYTE:
        ll_dict_store_clean(d, hash, i, TYPE_BYTE)
    elif d.lookup_function_no == FUNC_SHORT:
        ll_dict_store_clean(d, hash, i, TYPE_SHORT)
    elif IS_64BIT and d.lookup_function_no == FUNC_INT:
        ll_dict_store_clean(d, hash, i, TYPE_INT)
    elif d.lookup_function_no == FUNC_LONG:
        ll_dict_store_clean(d, hash, i, TYPE_LONG)
    else:
        assert False

def ll_valid_from_flag(entries, i):
    return entries[i].f_valid

def ll_valid_from_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries[i].key != dummy

def ll_valid_from_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    return entries[i].value != dummy

def ll_mark_deleted_in_flag(entries, i):
    entries[i].f_valid = False

def ll_mark_deleted_in_key(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].key = dummy

def ll_mark_deleted_in_value(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    dummy = ENTRIES.dummy_obj.ll_dummy_value
    entries[i].value = dummy

def ll_hash_from_cache(entries, i):
    return entries[i].f_hash

def ll_hash_recomputed(entries, i):
    ENTRIES = lltype.typeOf(entries).TO
    return ENTRIES.fasthashfn(entries[i].key)

def ll_keyhash_custom(d, key):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_hashfn, d.fnkeyhash, key)

def ll_keyeq_custom(d, key1, key2):
    DICT = lltype.typeOf(d).TO
    return objectmodel.hlinvoke(DICT.r_rdict_eqfn, d.fnkeyeq, key1, key2)

def ll_dict_len(d):
    return d.num_items

def ll_dict_bool(d):
    # check if a dict is True, allowing for None
    return bool(d) and d.num_items != 0

def ll_dict_getitem(d, key):
    index = d.lookup_function(d, key, d.keyhash(key), FLAG_LOOKUP)
    if index != -1:
        return d.entries[index].value
    else:
        raise KeyError

def ll_dict_setitem(d, key, value):
    hash = d.keyhash(key)
    index = d.lookup_function(d, key, hash, FLAG_STORE)
    return _ll_dict_setitem_lookup_done(d, key, value, hash, index)

# It may be safe to look inside always, it has a few branches though, and their
# frequencies needs to be investigated.
@jit.look_inside_iff(lambda d, key, value, hash, i: jit.isvirtual(d) and jit.isconstant(key))
def _ll_dict_setitem_lookup_done(d, key, value, hash, i):
    ENTRY = lltype.typeOf(d.entries).TO.OF
    if i >= 0:
        entry = d.entries[i]
        entry.value = value
    else:
        if len(d.entries) == d.num_used_items:
            if ll_dict_grow(d):
                ll_call_insert_clean_function(d, hash, d.num_used_items)
        entry = d.entries[d.num_used_items]
        entry.key = key
        entry.value = value
        if hasattr(ENTRY, 'f_hash'):
            entry.f_hash = hash
        if hasattr(ENTRY, 'f_valid'):
            entry.f_valid = True
        d.num_used_items += 1
        d.num_items += 1
        rc = d.resize_counter - 3
        if rc <= 0:
            ll_dict_resize(d)
            rc = d.resize_counter - 3
            ll_assert(rc > 0, "ll_dict_resize failed?")
        d.resize_counter = rc

def _ll_dict_insertclean(d, key, value, hash):
    ENTRY = lltype.typeOf(d.entries).TO.OF
    ll_call_insert_clean_function(d, hash, d.num_used_items)
    entry = d.entries[d.num_used_items]
    entry.key = key
    entry.value = value
    if hasattr(ENTRY, 'f_hash'):
        entry.f_hash = hash
    if hasattr(ENTRY, 'f_valid'):
        entry.f_valid = True
    d.num_used_items += 1
    d.num_items += 1
    rc = d.resize_counter - 3
    d.resize_counter = rc

def _ll_len_of_d_indexes(d):
    # xxx Haaaack: returns len(d.indexes).  Works independently of
    # the exact type pointed to by d, using a forced cast...
    return len(rffi.cast(DICTINDEX_BYTE, d.indexes))

def _overallocate_entries_len(baselen):
    # This over-allocates proportional to the list size, making room
    # for additional growth.  The over-allocation is mild, but is
    # enough to give linear-time amortized behavior over a long
    # sequence of appends() in the presence of a poorly-performing
    # system malloc().
    # The growth pattern is:  0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
    newsize = baselen + 1
    if newsize < 9:
        some = 3
    else:
        some = 6
    some += newsize >> 3
    return newsize + some

@jit.dont_look_inside
def ll_dict_grow(d):
    if d.num_items < d.num_used_items // 4:
        ll_dict_remove_deleted_items(d)
        return True

    new_allocated = _overallocate_entries_len(len(d.entries))

    # Detect an obscure case where the indexes numeric type is too
    # small to store all the entry indexes
    if (max(128, _ll_len_of_d_indexes(d)) - new_allocated
                   < MIN_INDEXES_MINUS_ENTRIES):
        ll_dict_remove_deleted_items(d)
        return True

    newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
    rgc.ll_arraycopy(d.entries, newitems, 0, 0, len(d.entries))
    d.entries = newitems
    return False

def ll_dict_remove_deleted_items(d):
    new_allocated = _overallocate_entries_len(d.num_items)
    if new_allocated < len(d.entries) // 2:
        newitems = lltype.malloc(lltype.typeOf(d).TO.entries.TO, new_allocated)
    else:
        newitems = d.entries
    #
    ENTRY = lltype.typeOf(d).TO.entries.TO.OF
    isrc = 0
    idst = 0
    while isrc < len(d.entries):
        if d.entries.valid(isrc):
            src = d.entries[isrc]
            dst = newitems[idst]
            dst.key = src.key
            dst.value = src.value
            if hasattr(ENTRY, 'f_hash'):
                dst.f_hash = src.f_hash
            if hasattr(ENTRY, 'f_valid'):
                assert src.f_valid
                dst.f_valid = True
            idst += 1
        isrc += 1
    d.entries = newitems
    assert d.num_items == idst
    d.num_used_items = idst

    ll_dict_reindex(d, _ll_len_of_d_indexes(d))


def ll_dict_delitem(d, key):
    index = d.lookup_function(d, key, d.keyhash(key), FLAG_DELETE)
    if index == -1:
        raise KeyError
    _ll_dict_del(d, index)

@jit.look_inside_iff(lambda d, i: jit.isvirtual(d) and jit.isconstant(i))
def _ll_dict_del(d, index):
    d.entries.mark_deleted(index)
    d.num_items -= 1
    # clear the key and the value if they are GC pointers
    ENTRIES = lltype.typeOf(d.entries).TO
    ENTRY = ENTRIES.OF
    entry = d.entries[index]
    if ENTRIES.must_clear_key:
        entry.key = lltype.nullptr(ENTRY.key.TO)
    if ENTRIES.must_clear_value:
        entry.value = lltype.nullptr(ENTRY.value.TO)
    #
    # The rest is commented out: like CPython we no longer shrink the
    # dictionary here.  It may shrink later if we try to append a number
    # of new items to it.  Unsure if this behavior was designed in
    # CPython or is accidental.  A design reason would be that if you
    # delete all items in a dictionary (e.g. with a series of
    # popitem()), then CPython avoids shrinking the table several times.
    #num_entries = len(d.entries)
    #if num_entries > DICT_INITSIZE and d.num_items <= num_entries / 4:
    #    ll_dict_resize(d)
    # A previous xxx: move the size checking and resize into a single
    # call which is opaque to the JIT when the dict isn't virtual, to
    # avoid extra branches.

def ll_dict_resize(d):
    # make a 'new_size' estimate and shrink it if there are many
    # deleted entry markers.  See CPython for why it is a good idea to
    # quadruple the dictionary size as long as it's not too big.
    num_items = d.num_items
    if num_items > 50000:
        new_estimate = num_items * 2
    else:
        new_estimate = num_items * 4
    new_size = DICT_INITSIZE
    while new_size <= new_estimate:
        new_size *= 2

    if new_size < _ll_len_of_d_indexes(d):
        ll_dict_remove_deleted_items(d)
    else:
        ll_dict_reindex(d, new_size)
ll_dict_resize.oopspec = 'odict.resize(d)'

def ll_dict_reindex(d, new_size):
    ll_malloc_indexes_and_choose_lookup(d, new_size)
    d.resize_counter = new_size * 2 - d.num_items * 3
    assert d.resize_counter > 0
    #
    entries = d.entries
    i = 0
    while i < d.num_used_items:
        if entries.valid(i):
            hash = entries.hash(i)
            ll_call_insert_clean_function(d, hash, i)
        i += 1
    #old_entries.delete() XXXX!

# ------- a port of CPython's dictobject.c's lookdict implementation -------
PERTURB_SHIFT = 5

FREE = 0
DELETED = 1
VALID_OFFSET = 2
MIN_INDEXES_MINUS_ENTRIES = VALID_OFFSET + 1

FLAG_LOOKUP = 0
FLAG_STORE = 1
FLAG_DELETE = 2
FLAG_DELETE_TRY_HARD = 3

@specialize.memo()
def _ll_ptr_to_array_of(T):
    return lltype.Ptr(lltype.GcArray(T))

def ll_kill_something(d, T):
    INDEXES = _ll_ptr_to_array_of(T)
    i = 0
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    while True:
        index = rffi.cast(lltype.Signed, indexes[i])
        if index >= VALID_OFFSET:
            indexes[i] = rffi.cast(T, DELETED)
            return index
        i += 1

@jit.look_inside_iff(lambda d, key, hash, store_flag, T:
                     jit.isvirtual(d) and jit.isconstant(key))
def ll_dict_lookup(d, key, hash, store_flag, T):
    INDEXES = _ll_ptr_to_array_of(T)
    entries = d.entries
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    mask = len(indexes) - 1
    i = r_uint(hash & mask)
    # do the first try before any looping
    ENTRIES = lltype.typeOf(entries).TO
    direct_compare = not hasattr(ENTRIES, 'no_direct_compare')
    index = rffi.cast(lltype.Signed, indexes[intmask(i)])
    if index >= VALID_OFFSET:
        checkingkey = entries[index - VALID_OFFSET].key
        if direct_compare and checkingkey == key:
            if store_flag == FLAG_DELETE:
                indexes[i] = rffi.cast(T, DELETED)
            return index - VALID_OFFSET   # found the entry
        if d.keyeq is not None and entries.hash(index - VALID_OFFSET) == hash:
            # correct hash, maybe the key is e.g. a different pointer to
            # an equal object
            found = d.keyeq(checkingkey, key)
            #llop.debug_print(lltype.Void, "comparing keys", ll_debugrepr(checkingkey), ll_debugrepr(key), found)
            if d.paranoia:
                if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
                    not entries.valid(index - VALID_OFFSET) or
                    entries[index - VALID_OFFSET].key != checkingkey):
                    # the compare did major nasty stuff to the dict: start over
                    return ll_dict_lookup(d, key, hash, store_flag, T)
            if found:
                if store_flag == FLAG_DELETE:
                    indexes[i] = rffi.cast(T, DELETED)
                return index - VALID_OFFSET
        deletedslot = -1
    elif index == DELETED:
        deletedslot = intmask(i)
    else:
        # pristine entry -- lookup failed
        if store_flag == FLAG_STORE:
            indexes[i] = rffi.cast(T, d.num_used_items + VALID_OFFSET)
        elif d.paranoia and store_flag == FLAG_DELETE_TRY_HARD:
            return ll_kill_something(d, T)
        return -1

    # In the loop, a deleted entry (everused and not valid) is by far
    # (factor of 100s) the least likely outcome, so test for that last.
    perturb = r_uint(hash)
    while 1:
        # compute the next index using unsigned arithmetic
        i = (i << 2) + i + perturb + 1
        i = i & mask
        index = rffi.cast(lltype.Signed, indexes[intmask(i)])
        if index == FREE:
            if store_flag == FLAG_STORE:
                if deletedslot == -1:
                    deletedslot = intmask(i)
                indexes[deletedslot] = rffi.cast(T, d.num_used_items +
                                                 VALID_OFFSET)
            elif d.paranoia and store_flag == FLAG_DELETE_TRY_HARD:
                return ll_kill_something(d, T)
            return -1
        elif index >= VALID_OFFSET:
            checkingkey = entries[index - VALID_OFFSET].key
            if direct_compare and checkingkey == key:
                if store_flag == FLAG_DELETE:
                    indexes[i] = rffi.cast(T, DELETED)
                return index - VALID_OFFSET   # found the entry
            if d.keyeq is not None and entries.hash(index - VALID_OFFSET) == hash:
                # correct hash, maybe the key is e.g. a different pointer to
                # an equal object
                found = d.keyeq(checkingkey, key)
                if d.paranoia:
                    if (entries != d.entries or lltype.cast_opaque_ptr(llmemory.GCREF, indexes) != d.indexes or
                        not entries.valid(index - VALID_OFFSET) or
                        entries[index - VALID_OFFSET].key != checkingkey):
                        # the compare did major nasty stuff to the dict: start over
                        return ll_dict_lookup(d, key, hash, store_flag, T)
                if found:
                    if store_flag == FLAG_DELETE:
                        indexes[i] = rffi.cast(T, DELETED)
                    return index - VALID_OFFSET
        elif deletedslot == -1:
            deletedslot = intmask(i)
        perturb >>= PERTURB_SHIFT

def ll_dict_store_clean(d, hash, index, T):
    # a simplified version of ll_dict_lookup() which assumes that the
    # key is new, and the dictionary doesn't contain deleted entries.
    # It only finds the next free slot for the given hash.
    INDEXES = _ll_ptr_to_array_of(T)
    indexes = lltype.cast_opaque_ptr(INDEXES, d.indexes)
    mask = len(indexes) - 1
    i = r_uint(hash & mask)
    perturb = r_uint(hash)
    while rffi.cast(lltype.Signed, indexes[i]) != 0:
        i = (i << 2) + i + perturb + 1
        i = i & mask
        perturb >>= PERTURB_SHIFT
    indexes[i] = rffi.cast(T, index + VALID_OFFSET)

# ____________________________________________________________
#
#  Irregular operations.

DICT_INITSIZE = 8


@specialize.memo()
def _ll_empty_array(DICT):
    """Memo function: cache a single prebuilt allocated empty array."""
    return DICT.entries.TO.allocate(0)

def ll_newdict(DICT):
    d = DICT.allocate()
    d.entries = _ll_empty_array(DICT)
    ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    return d

def ll_newdict_size(DICT, orig_length_estimate):
    length_estimate = (orig_length_estimate // 2) * 3
    n = DICT_INITSIZE
    while n < length_estimate:
        n *= 2
    d = DICT.allocate()
    d.entries = DICT.entries.TO.allocate(orig_length_estimate)
    ll_malloc_indexes_and_choose_lookup(d, n)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = n * 2
    return d

# rpython.memory.lldict uses a dict based on Struct and Array
# instead of GcStruct and GcArray, which is done by using different
# 'allocate' and 'delete' adtmethod implementations than the ones below
def _ll_malloc_dict(DICT):
    return lltype.malloc(DICT)
def _ll_malloc_entries(ENTRIES, n):
    return lltype.malloc(ENTRIES, n, zero=True)
def _ll_free_entries(entries):
    pass


def rtype_r_dict(hop):
    r_dict = hop.r_result
    if not r_dict.custom_eq_hash:
        raise TyperError("r_dict() call does not return an r_dict instance")
    v_eqfn = hop.inputarg(r_dict.r_rdict_eqfn, arg=0)
    v_hashfn = hop.inputarg(r_dict.r_rdict_hashfn, arg=1)
    cDICT = hop.inputconst(lltype.Void, r_dict.DICT)
    hop.exception_cannot_occur()
    v_result = hop.gendirectcall(ll_newdict, cDICT)
    if r_dict.r_rdict_eqfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyeq')
        hop.genop('setfield', [v_result, cname, v_eqfn])
    if r_dict.r_rdict_hashfn.lowleveltype != lltype.Void:
        cname = hop.inputconst(lltype.Void, 'fnkeyhash')
        hop.genop('setfield', [v_result, cname, v_hashfn])
    return v_result

# ____________________________________________________________
#
#  Iteration.

def get_ll_dictiter(DICTPTR):
    return lltype.Ptr(lltype.GcStruct('dictiter',
                                      ('dict', DICTPTR),
                                      ('index', lltype.Signed)))

class DictIteratorRepr(AbstractDictIteratorRepr):

    def __init__(self, r_dict, variant="keys"):
        self.r_dict = r_dict
        self.variant = variant
        self.lowleveltype = get_ll_dictiter(r_dict.lowleveltype)
        self.ll_dictiter = ll_dictiter
        self.ll_dictnext = ll_dictnext_group[variant]


def ll_dictiter(ITERPTR, d):
    iter = lltype.malloc(ITERPTR.TO)
    iter.dict = d
    iter.index = 0
    return iter

def _make_ll_dictnext(kind):
    # make three versions of the following function: keys, values, items
    @jit.look_inside_iff(lambda RETURNTYPE, iter: jit.isvirtual(iter)
                         and (iter.dict is None or
                              jit.isvirtual(iter.dict)))
    @jit.oopspec("odictiter.next%s(iter)" % kind)
    def ll_dictnext(RETURNTYPE, iter):
        # note that RETURNTYPE is None for keys and values
        dict = iter.dict
        if not dict:
            raise StopIteration

        entries = dict.entries
        index = iter.index
        assert index >= 0
        entries_len = dict.num_used_items
        while index < entries_len:
            entry = entries[index]
            is_valid = entries.valid(index)
            index = index + 1
            if is_valid:
                iter.index = index
                if RETURNTYPE is lltype.Void:
                    return None
                elif kind == 'items':
                    r = lltype.malloc(RETURNTYPE.TO)
                    r.item0 = recast(RETURNTYPE.TO.item0, entry.key)
                    r.item1 = recast(RETURNTYPE.TO.item1, entry.value)
                    return r
                elif kind == 'keys':
                    return entry.key
                elif kind == 'values':
                    return entry.value

        # clear the reference to the dict and prevent restarts
        iter.dict = lltype.nullptr(lltype.typeOf(iter).TO.dict.TO)
        raise StopIteration

    return ll_dictnext

ll_dictnext_group = {'keys'  : _make_ll_dictnext('keys'),
                     'values': _make_ll_dictnext('values'),
                     'items' : _make_ll_dictnext('items')}

# _____________________________________________________________
# methods

def ll_dict_get(dict, key, default):
    index = dict.lookup_function(dict, key, dict.keyhash(key), FLAG_LOOKUP)
    if index == -1:
        return default
    else:
        return dict.entries[index].value

def ll_dict_setdefault(dict, key, default):
    hash = dict.keyhash(key)
    index = dict.lookup_function(dict, key, hash, FLAG_STORE)
    if index == -1:
        _ll_dict_setitem_lookup_done(dict, key, default, hash, -1)
        return default
    else:
        return dict.entries[index].value

def ll_dict_copy(dict):
    DICT = lltype.typeOf(dict).TO
    newdict = DICT.allocate()
    newdict.entries = DICT.entries.TO.allocate(len(dict.entries))

    newdict.num_items = dict.num_items
    newdict.num_used_items = dict.num_used_items
    if hasattr(DICT, 'fnkeyeq'):
        newdict.fnkeyeq = dict.fnkeyeq
    if hasattr(DICT, 'fnkeyhash'):
        newdict.fnkeyhash = dict.fnkeyhash

    i = 0
    while i < newdict.num_used_items:
        d_entry = newdict.entries[i]
        entry = dict.entries[i]
        ENTRY = lltype.typeOf(newdict.entries).TO.OF
        d_entry.key = entry.key
        if hasattr(ENTRY, 'f_valid'):
            d_entry.f_valid = entry.f_valid
        d_entry.value = entry.value
        if hasattr(ENTRY, 'f_hash'):
            d_entry.f_hash = entry.f_hash
        i += 1

    ll_dict_reindex(newdict, _ll_len_of_d_indexes(dict))
    return newdict
ll_dict_copy.oopspec = 'odict.copy(dict)'

def ll_dict_clear(d):
    if d.num_used_items == 0:
        return
    DICT = lltype.typeOf(d).TO
    old_entries = d.entries
    d.entries = _ll_empty_array(DICT)
    ll_malloc_indexes_and_choose_lookup(d, DICT_INITSIZE)
    d.num_items = 0
    d.num_used_items = 0
    d.resize_counter = DICT_INITSIZE * 2
    # old_entries.delete() XXX
ll_dict_clear.oopspec = 'odict.clear(d)'

def ll_dict_update(dic1, dic2):
    i = 0
    while i < dic2.num_used_items:
        entries = dic2.entries
        if entries.valid(i):
            entry = entries[i]
            hash = entries.hash(i)
            key = entry.key
            value = entry.value
            index = dic1.lookup_function(dic1, key, hash, FLAG_STORE)
            _ll_dict_setitem_lookup_done(dic1, key, value, hash, index)
        i += 1
ll_dict_update.oopspec = 'odict.update(dic1, dic2)'

# this is an implementation of keys(), values() and items()
# in a single function.
# note that by specialization on func, three different
# and very efficient functions are created.

def recast(P, v):
    if isinstance(P, lltype.Ptr):
        return lltype.cast_pointer(P, v)
    else:
        return v

def _make_ll_keys_values_items(kind):
    def ll_kvi(LIST, dic):
        res = LIST.ll_newlist(dic.num_items)
        entries = dic.entries
        dlen = dic.num_used_items
        items = res.ll_items()
        i = 0
        p = 0
        while i < dlen:
            if entries.valid(i):
                ELEM = lltype.typeOf(items).TO.OF
                if ELEM is not lltype.Void:
                    entry = entries[i]
                    if kind == 'items':
                        r = lltype.malloc(ELEM.TO)
                        r.item0 = recast(ELEM.TO.item0, entry.key)
                        r.item1 = recast(ELEM.TO.item1, entry.value)
                        items[p] = r
                    elif kind == 'keys':
                        items[p] = recast(ELEM, entry.key)
                    elif kind == 'values':
                        items[p] = recast(ELEM, entry.value)
                p += 1
            i += 1
        assert p == res.ll_length()
        return res
    ll_kvi.oopspec = 'odict.%s(dic)' % kind
    return ll_kvi

ll_dict_keys   = _make_ll_keys_values_items('keys')
ll_dict_values = _make_ll_keys_values_items('values')
ll_dict_items  = _make_ll_keys_values_items('items')

def ll_dict_contains(d, key):
    i = d.lookup_function(d, key, d.keyhash(key), FLAG_LOOKUP)
    return i != -1

def _ll_getnextitem(dic):
    if dic.num_items == 0:
        raise KeyError

    entries = dic.entries

    while True:
        i = dic.num_used_items - 1
        if entries.valid(i):
            break
        dic.num_used_items -= 1

    key = entries[i].key
    index = dic.lookup_function(dic, key, entries.hash(i),
                                FLAG_DELETE_TRY_HARD)
    # if the lookup function returned me a random strange thing,
    # don't care about deleting the item
    if index == dic.num_used_items - 1:
        dic.num_used_items -= 1
    else:
        assert index != -1
    return index

def ll_dict_popitem(ELEM, dic):
    i = _ll_getnextitem(dic)
    entry = dic.entries[i]
    r = lltype.malloc(ELEM.TO)
    r.item0 = recast(ELEM.TO.item0, entry.key)
    r.item1 = recast(ELEM.TO.item1, entry.value)
    _ll_dict_del(dic, i)
    return r

def ll_dict_pop(dic, key):
    index = dic.lookup_function(dic, key, dic.keyhash(key), FLAG_DELETE)
    if index == -1:
        raise KeyError
    value = dic.entries[index].value
    _ll_dict_del(dic, index)
    return value

def ll_dict_pop_default(dic, key, dfl):
    index = dic.lookup_function(dic, key, dic.keyhash(key), FLAG_DELETE)
    if index == -1:
        return dfl
    value = dic.entries[index].value
    _ll_dict_del(dic, index)
    return value