Source

pypy / pypy / module / micronumpy / interp_numarray.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
from pypy.interpreter.error import operationerrfmt, OperationError
from pypy.interpreter.typedef import TypeDef, GetSetProperty, make_weakref_descr
from pypy.interpreter.gateway import interp2app, unwrap_spec, WrappedDefault
from pypy.module.micronumpy.base import W_NDimArray, convert_to_array,\
     ArrayArgumentException, issequence_w
from pypy.module.micronumpy import interp_dtype, interp_ufuncs, interp_boxes,\
     interp_arrayops
from pypy.module.micronumpy.strides import find_shape_and_elems,\
     get_shape_from_iterable, to_coords, shape_agreement, \
     shape_agreement_multiple
from pypy.module.micronumpy.interp_flatiter import W_FlatIterator
from pypy.module.micronumpy.interp_support import unwrap_axis_arg
from pypy.module.micronumpy.appbridge import get_appbridge_cache
from pypy.module.micronumpy import loop
from pypy.module.micronumpy.dot import match_dot_shapes
from pypy.module.micronumpy.interp_arrayops import repeat
from rpython.tool.sourcetools import func_with_new_name
from rpython.rlib import jit
from rpython.rlib.rstring import StringBuilder
from pypy.module.micronumpy.arrayimpl.base import BaseArrayImplementation

def _find_shape(space, w_size):
    if space.is_none(w_size):
        return []
    if space.isinstance_w(w_size, space.w_int):
        return [space.int_w(w_size)]
    shape = []
    for w_item in space.fixedview(w_size):
        shape.append(space.int_w(w_item))
    return shape[:]

class __extend__(W_NDimArray):
    @jit.unroll_safe
    def descr_get_shape(self, space):
        shape = self.get_shape()
        return space.newtuple([space.wrap(i) for i in shape])

    def get_shape(self):
        return self.implementation.get_shape()

    def descr_set_shape(self, space, w_new_shape):
        self.implementation = self.implementation.set_shape(space, self,
            get_shape_from_iterable(space, self.get_size(), w_new_shape))

    def descr_get_strides(self, space):
        strides = self.implementation.get_strides()
        return space.newtuple([space.wrap(i) for i in strides])

    def get_dtype(self):
        return self.implementation.dtype

    def get_order(self):
        return self.implementation.order

    def descr_get_dtype(self, space):
        return self.implementation.dtype

    def descr_get_ndim(self, space):
        return space.wrap(len(self.get_shape()))

    def descr_get_itemsize(self, space):
        return space.wrap(self.get_dtype().itemtype.get_element_size())

    def descr_get_nbytes(self, space):
        return space.wrap(self.get_size() * self.get_dtype().itemtype.get_element_size())

    def descr_fill(self, space, w_value):
        self.fill(self.get_dtype().coerce(space, w_value))

    def descr_tostring(self, space):
        return space.wrap(loop.tostring(space, self))

    def getitem_filter(self, space, arr):
        if len(arr.get_shape()) > 1 and arr.get_shape() != self.get_shape():
            raise OperationError(space.w_ValueError,
                                 space.wrap("boolean index array should have 1 dimension"))
        if arr.get_size() > self.get_size():
            raise OperationError(space.w_ValueError,
                                 space.wrap("index out of range for array"))
        size = loop.count_all_true(arr)
        res = W_NDimArray.from_shape([size], self.get_dtype())
        return loop.getitem_filter(res, self, arr)

    def setitem_filter(self, space, idx, val):
        if len(idx.get_shape()) > 1 and idx.get_shape() != self.get_shape():
            raise OperationError(space.w_ValueError,
                                 space.wrap("boolean index array should have 1 dimension"))
        if idx.get_size() > self.get_size():
            raise OperationError(space.w_ValueError,
                                 space.wrap("index out of range for array"))
        loop.setitem_filter(self, idx, val)

    def _prepare_array_index(self, space, w_index):
        if isinstance(w_index, W_NDimArray):
            return [], w_index.get_shape(), w_index.get_shape(), [w_index]
        w_lst = space.listview(w_index)
        for w_item in w_lst:
            if not space.isinstance_w(w_item, space.w_int):
                break
        else:
            arr = convert_to_array(space, w_index)
            return [], arr.get_shape(), arr.get_shape(), [arr]
        shape = None
        indexes_w = [None] * len(w_lst)
        res_shape = []
        arr_index_in_shape = False
        prefix = []
        for i, w_item in enumerate(w_lst):
            if (isinstance(w_item, W_NDimArray) or
                space.isinstance_w(w_item, space.w_list)):
                w_item = convert_to_array(space, w_item)
                if shape is None:
                    shape = w_item.get_shape()
                else:
                    shape = shape_agreement(space, shape, w_item)
                indexes_w[i] = w_item
                if not arr_index_in_shape:
                    res_shape.append(-1)
                    arr_index_in_shape = True
            else:
                if space.isinstance_w(w_item, space.w_slice):
                    _, _, _, lgt = space.decode_index4(w_item, self.get_shape()[i])
                    if not arr_index_in_shape:
                        prefix.append(w_item)
                    res_shape.append(lgt)
                indexes_w[i] = w_item
        real_shape = []
        for i in res_shape:
            if i == -1:
                real_shape += shape
            else:
                real_shape.append(i)
        return prefix, real_shape[:], shape, indexes_w

    def getitem_array_int(self, space, w_index):
        prefix, res_shape, iter_shape, indexes = \
                self._prepare_array_index(space, w_index)
        shape = res_shape + self.get_shape()[len(indexes):]
        res = W_NDimArray.from_shape(shape, self.get_dtype(), self.get_order())
        if not res.get_size():
            return res
        return loop.getitem_array_int(space, self, res, iter_shape, indexes,
                                      prefix)

    def setitem_array_int(self, space, w_index, w_value):
        val_arr = convert_to_array(space, w_value)
        prefix, _, iter_shape, indexes = \
                self._prepare_array_index(space, w_index)
        return loop.setitem_array_int(space, self, iter_shape, indexes, val_arr,
                                      prefix)

    def descr_getitem(self, space, w_idx):
        if (isinstance(w_idx, W_NDimArray) and
            w_idx.get_dtype().is_bool_type()):
            return self.getitem_filter(space, w_idx)
        try:
            return self.implementation.descr_getitem(space, self, w_idx)
        except ArrayArgumentException:
            return self.getitem_array_int(space, w_idx)
        except OperationError:
            raise OperationError(space.w_IndexError, space.wrap("wrong index"))

    def getitem(self, space, index_list):
        return self.implementation.getitem_index(space, index_list)

    def setitem(self, space, index_list, w_value):
        self.implementation.setitem_index(space, index_list, w_value)

    def descr_setitem(self, space, w_idx, w_value):
        if (isinstance(w_idx, W_NDimArray) and
            w_idx.get_dtype().is_bool_type()):
            return self.setitem_filter(space, w_idx,
                                       convert_to_array(space, w_value))
        try:
            self.implementation.descr_setitem(space, self, w_idx, w_value)
        except ArrayArgumentException:
            self.setitem_array_int(space, w_idx, w_value)

    def descr_len(self, space):
        shape = self.get_shape()
        if len(shape):
            return space.wrap(shape[0])
        raise OperationError(space.w_TypeError, space.wrap(
            "len() of unsized object"))

    def descr_repr(self, space):
        cache = get_appbridge_cache(space)
        if cache.w_array_repr is None:
            return space.wrap(self.dump_data())
        return space.call_function(cache.w_array_repr, self)

    def descr_str(self, space):
        cache = get_appbridge_cache(space)
        if cache.w_array_str is None:
            return space.wrap(self.dump_data())
        return space.call_function(cache.w_array_str, self)

    def dump_data(self):
        i = self.create_iter()
        first = True
        dtype = self.get_dtype()
        s = StringBuilder()
        s.append('array([')
        while not i.done():
            if first:
                first = False
            else:
                s.append(', ')
            s.append(dtype.itemtype.str_format(i.getitem()))
            i.next()
        s.append('])')
        return s.build()

    def create_iter(self, shape=None):
        assert isinstance(self.implementation, BaseArrayImplementation)
        return self.implementation.create_iter(shape)

    def create_axis_iter(self, shape, dim, cum):
        return self.implementation.create_axis_iter(shape, dim, cum)

    def create_dot_iter(self, shape, skip):
        return self.implementation.create_dot_iter(shape, skip)

    def is_scalar(self):
        return self.implementation.is_scalar()

    def set_scalar_value(self, w_val):
        self.implementation.set_scalar_value(w_val)

    def fill(self, box):
        self.implementation.fill(box)

    def descr_get_size(self, space):
        return space.wrap(self.get_size())

    def get_size(self):
        return self.implementation.get_size()

    def get_scalar_value(self):
        return self.implementation.get_scalar_value()

    def descr_copy(self, space):
        return W_NDimArray(self.implementation.copy())

    def descr_get_real(self, space):
        return W_NDimArray(self.implementation.get_real(self))

    def descr_get_imag(self, space):
        ret = self.implementation.get_imag(self)
        if ret:
            return W_NDimArray(ret)
        raise OperationError(space.w_NotImplementedError,
                    space.wrap('imag not implemented for this dtype'))

    def descr_set_real(self, space, w_value):
        # copy (broadcast) values into self
        tmp = self.implementation.get_real(self)
        tmp.setslice(space, convert_to_array(space, w_value))

    def descr_set_imag(self, space, w_value):
        # if possible, copy (broadcast) values into self
        if not self.get_dtype().is_complex_type():
            raise OperationError(space.w_TypeError,
                    space.wrap('array does not have imaginary part to set'))
        tmp = self.implementation.get_imag(self)
        tmp.setslice(space, convert_to_array(space, w_value))

    def descr_reshape(self, space, args_w):
        """reshape(...)
        a.reshape(shape)

        Returns an array containing the same data with a new shape.

        Refer to `numpypy.reshape` for full documentation.

        See Also
        --------
        numpypy.reshape : equivalent function
        """
        if len(args_w) == 1:
            w_shape = args_w[0]
        else:
            w_shape = space.newtuple(args_w)
        new_shape = get_shape_from_iterable(space, self.get_size(), w_shape)
        new_impl = self.implementation.reshape(space, self, new_shape)
        if new_impl is not None:
            return W_NDimArray(new_impl)
        # Create copy with contiguous data
        arr = self.descr_copy(space)
        if arr.get_size() > 0:
            arr.implementation = arr.implementation.reshape(space, self,
                                                            new_shape)
            assert arr.implementation
        else:
            arr.implementation.shape = new_shape
        return arr

    def descr_get_transpose(self, space):
        return W_NDimArray(self.implementation.transpose(self))

    @unwrap_spec(axis1=int, axis2=int)
    def descr_swapaxes(self, space, axis1, axis2):
        """a.swapaxes(axis1, axis2)

        Return a view of the array with `axis1` and `axis2` interchanged.

        Refer to `numpy.swapaxes` for full documentation.

        See Also
        --------
        numpy.swapaxes : equivalent function
        """
        if self.is_scalar():
            return self
        return self.implementation.swapaxes(self, axis1, axis2)

    def descr_tolist(self, space):
        if len(self.get_shape()) == 0:
            return self.get_scalar_value().item(space)
        l_w = []
        for i in range(self.get_shape()[0]):
            l_w.append(space.call_method(self.descr_getitem(space,
                                         space.wrap(i)), "tolist"))
        return space.newlist(l_w)

    def descr_ravel(self, space, w_order=None):
        if space.is_none(w_order):
            order = 'C'
        else:
            order = space.str_w(w_order)
        if order != 'C':
            raise OperationError(space.w_NotImplementedError, space.wrap(
                "order not implemented"))
        return self.descr_reshape(space, [space.wrap(-1)])

    def descr_take(self, space, w_obj, w_axis=None, w_out=None):
        # if w_axis is None and w_out is Nont this is an equivalent to
        # fancy indexing
        raise OperationError(space.w_NotImplementedError,
                             space.wrap("unsupported for now"))
        if not space.is_none(w_axis):
            raise OperationError(space.w_NotImplementedError,
                                 space.wrap("axis unsupported for take"))
        if not space.is_none(w_out):
            raise OperationError(space.w_NotImplementedError,
                                 space.wrap("out unsupported for take"))
        return self.getitem_int(space, convert_to_array(space, w_obj))

    def descr_compress(self, space, w_obj, w_axis=None):
        if not space.is_none(w_axis):
            raise OperationError(space.w_NotImplementedError,
                                 space.wrap("axis unsupported for compress"))
        index = convert_to_array(space, w_obj)
        return self.getitem_filter(space, index)

    def descr_flatten(self, space, w_order=None):
        if self.is_scalar():
            # scalars have no storage
            return self.descr_reshape(space, [space.wrap(1)])
        w_res = self.descr_ravel(space, w_order)
        if w_res.implementation.storage == self.implementation.storage:
            return w_res.descr_copy(space)
        return w_res

    @unwrap_spec(repeats=int)
    def descr_repeat(self, space, repeats, w_axis=None):
        return repeat(space, self, repeats, w_axis)

    def descr_get_flatiter(self, space):
        return space.wrap(W_FlatIterator(self))

    def to_coords(self, space, w_index):
        coords, _, _ = to_coords(space, self.get_shape(),
                                 self.get_size(), self.get_order(),
                                 w_index)
        return coords

    def descr_item(self, space, w_arg=None):
        if space.is_none(w_arg):
            if self.is_scalar():
                return self.get_scalar_value().item(space)
            if self.get_size() == 1:
                w_obj = self.getitem(space,
                                     [0] * len(self.get_shape()))
                assert isinstance(w_obj, interp_boxes.W_GenericBox)
                return w_obj.item(space)
            raise OperationError(space.w_IndexError,
                                 space.wrap("index out of bounds"))
        if space.isinstance_w(w_arg, space.w_int):
            if self.is_scalar():
                raise OperationError(space.w_IndexError,
                                     space.wrap("index out of bounds"))
            i = self.to_coords(space, w_arg)
            item = self.getitem(space, i)
            assert isinstance(item, interp_boxes.W_GenericBox)
            return item.item(space)
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "non-int arg not supported"))

    def descr_array_iface(self, space):
        addr = self.implementation.get_storage_as_int(space)
        # will explode if it can't
        w_d = space.newdict()
        space.setitem_str(w_d, 'data', space.newtuple([space.wrap(addr),
                                                       space.w_False]))
        return w_d

    w_pypy_data = None
    def fget___pypy_data__(self, space):
        return self.w_pypy_data

    def fset___pypy_data__(self, space, w_data):
        self.w_pypy_data = w_data

    def fdel___pypy_data__(self, space):
        self.w_pypy_data = None

    def descr_argsort(self, space, w_axis=None, w_kind=None, w_order=None):
        # happily ignore the kind
        # create a contiguous copy of the array
        # we must do that, because we need a working set. otherwise
        # we would modify the array in-place. Use this to our advantage
        # by converting nonnative byte order.
        s = self.get_dtype().name
        if not self.get_dtype().native:
            s = s[1:]
        dtype = interp_dtype.get_dtype_cache(space).dtypes_by_name[s]
        contig = self.implementation.astype(space, dtype)
        return contig.implementation.argsort(space, w_axis)

    def descr_astype(self, space, w_dtype):
        dtype = space.interp_w(interp_dtype.W_Dtype,
          space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype))
        return self.implementation.astype(space, dtype)

    def descr_get_base(self, space):
        impl = self.implementation
        ret = impl.base()
        if ret is None:
            return space.w_None
        return ret

    @unwrap_spec(inplace=bool)
    def descr_byteswap(self, space, inplace=False):
        if inplace:
            loop.byteswap(self.implementation, self.implementation)
            return self
        else:
            res = W_NDimArray.from_shape(self.get_shape(), self.get_dtype())
            loop.byteswap(self.implementation, res.implementation)
            return res

    @unwrap_spec(mode=str)
    def descr_choose(self, space, w_choices, mode='raise', w_out=None):
        if space.is_none(w_out):
            w_out = None
        elif not isinstance(w_out, W_NDimArray):
            raise OperationError(space.w_TypeError, space.wrap(
                "return arrays must be of ArrayType"))
        return interp_arrayops.choose(space, self, w_choices, w_out, mode)

    def descr_clip(self, space, w_min, w_max, w_out=None):
        if space.is_none(w_out):
            w_out = None
        elif not isinstance(w_out, W_NDimArray):
            raise OperationError(space.w_TypeError, space.wrap(
                "return arrays must be of ArrayType"))
        min = convert_to_array(space, w_min)
        max = convert_to_array(space, w_max)
        shape = shape_agreement_multiple(space, [self, min, max, w_out])
        out = interp_dtype.dtype_agreement(space, [self, min, max], shape,
                                           w_out)
        loop.clip(space, self, shape, min, max, out)
        return out

    def descr_get_ctypes(self, space):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "ctypes not implemented yet"))

    def descr_get_data(self, space):
        return self.implementation.get_buffer(space)

    @unwrap_spec(offset=int, axis1=int, axis2=int)
    def descr_diagonal(self, space, offset=0, axis1=0, axis2=1):
        if len(self.get_shape()) < 2:
            raise OperationError(space.w_ValueError, space.wrap(
                "need at least 2 dimensions for diagonal"))
        if (axis1 < 0 or axis2 < 0 or axis1 >= len(self.get_shape()) or
            axis2 >= len(self.get_shape())):
            raise operationerrfmt(space.w_ValueError,
                 "axis1(=%d) and axis2(=%d) must be withing range (ndim=%d)",
                                  axis1, axis2, len(self.get_shape()))
        if axis1 == axis2:
            raise OperationError(space.w_ValueError, space.wrap(
                "axis1 and axis2 cannot be the same"))
        return interp_arrayops.diagonal(space, self.implementation, offset,
                                        axis1, axis2)

    def descr_dump(self, space, w_file):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "dump not implemented yet"))

    def descr_dumps(self, space):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "dumps not implemented yet"))

    def descr_get_flags(self, space):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "getting flags not implemented yet"))

    def descr_set_flags(self, space, w_args):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "setting flags not implemented yet"))

    @unwrap_spec(offset=int)
    def descr_getfield(self, space, w_dtype, offset):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "getfield not implemented yet"))

    def descr_itemset(self, space, w_arg):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "itemset not implemented yet"))

    @unwrap_spec(neworder=str)
    def descr_newbyteorder(self, space, neworder):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "newbyteorder not implemented yet"))

    def descr_ptp(self, space, w_axis=None, w_out=None):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "ptp (peak to peak) not implemented yet"))

    def descr_put(self, space, w_indices, w_values, w_mode='raise'):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "put not implemented yet"))

    def descr_resize(self, space, w_new_shape, w_refcheck=True):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "resize not implemented yet"))

    def descr_round(self, space, w_decimals=0, w_out=None):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "round not implemented yet"))

    def descr_searchsorted(self, space, w_v, w_side='left'):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "searchsorted not implemented yet"))

    def descr_setasflat(self, space, w_v):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "setasflat not implemented yet"))

    def descr_setfield(self, space, w_val, w_dtype, w_offset=0):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "setfield not implemented yet"))

    def descr_setflags(self, space, w_write=None, w_align=None, w_uic=None):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "setflags not implemented yet"))

    def descr_sort(self, space, w_axis=-1, w_kind='quicksort', w_order=None):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "sort not implemented yet"))

    def descr_squeeze(self, space):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "squeeze not implemented yet"))

    def descr_strides(self, space):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "strides not implemented yet"))

    def descr_tofile(self, space, w_fid, w_sep="", w_format="%s"):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "tofile not implemented yet"))

    def descr_trace(self, space, w_offset=0, w_axis1=0, w_axis2=1,
                    w_dtype=None, w_out=None):
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "trace not implemented yet"))

    def descr_view(self, space, w_dtype=None, w_type=None) :
        raise OperationError(space.w_NotImplementedError, space.wrap(
            "view not implemented yet"))

    # --------------------- operations ----------------------------

    def _unaryop_impl(ufunc_name):
        def impl(self, space, w_out=None):
            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
                                                                [self, w_out])
        return func_with_new_name(impl, "unaryop_%s_impl" % ufunc_name)

    descr_pos = _unaryop_impl("positive")
    descr_neg = _unaryop_impl("negative")
    descr_abs = _unaryop_impl("absolute")
    descr_invert = _unaryop_impl("invert")

    descr_conj = _unaryop_impl('conjugate')

    def descr_nonzero(self, space):
        if self.get_size() > 1:
            raise OperationError(space.w_ValueError, space.wrap(
                "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()"))
        iter = self.create_iter()
        return space.wrap(space.is_true(iter.getitem()))

    def _binop_impl(ufunc_name):
        def impl(self, space, w_other, w_out=None):
            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
                                                        [self, w_other, w_out])
        return func_with_new_name(impl, "binop_%s_impl" % ufunc_name)

    descr_add = _binop_impl("add")
    descr_sub = _binop_impl("subtract")
    descr_mul = _binop_impl("multiply")
    descr_div = _binop_impl("divide")
    descr_truediv = _binop_impl("true_divide")
    descr_floordiv = _binop_impl("floor_divide")
    descr_mod = _binop_impl("mod")
    descr_pow = _binop_impl("power")
    descr_lshift = _binop_impl("left_shift")
    descr_rshift = _binop_impl("right_shift")
    descr_and = _binop_impl("bitwise_and")
    descr_or = _binop_impl("bitwise_or")
    descr_xor = _binop_impl("bitwise_xor")

    def descr_divmod(self, space, w_other):
        w_quotient = self.descr_div(space, w_other)
        w_remainder = self.descr_mod(space, w_other)
        return space.newtuple([w_quotient, w_remainder])

    def _binop_comp_impl(ufunc):
        def impl(self, space, w_other, w_out=None):
            try:
                return ufunc(self, space, w_other, w_out)
            except OperationError, e:
                if e.match(space, space.w_ValueError):
                    return space.w_False
                raise e

        return func_with_new_name(impl, ufunc.func_name)

    descr_eq = _binop_comp_impl(_binop_impl("equal"))
    descr_ne = _binop_comp_impl(_binop_impl("not_equal"))
    descr_lt = _binop_comp_impl(_binop_impl("less"))
    descr_le = _binop_comp_impl(_binop_impl("less_equal"))
    descr_gt = _binop_comp_impl(_binop_impl("greater"))
    descr_ge = _binop_comp_impl(_binop_impl("greater_equal"))

    def _binop_right_impl(ufunc_name):
        def impl(self, space, w_other, w_out=None):
            w_other = convert_to_array(space, w_other)
            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [w_other, self, w_out])
        return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)

    descr_radd = _binop_right_impl("add")
    descr_rsub = _binop_right_impl("subtract")
    descr_rmul = _binop_right_impl("multiply")
    descr_rdiv = _binop_right_impl("divide")
    descr_rtruediv = _binop_right_impl("true_divide")
    descr_rfloordiv = _binop_right_impl("floor_divide")
    descr_rmod = _binop_right_impl("mod")
    descr_rpow = _binop_right_impl("power")
    descr_rlshift = _binop_right_impl("left_shift")
    descr_rrshift = _binop_right_impl("right_shift")
    descr_rand = _binop_right_impl("bitwise_and")
    descr_ror = _binop_right_impl("bitwise_or")
    descr_rxor = _binop_right_impl("bitwise_xor")

    def descr_rdivmod(self, space, w_other):
        w_quotient = self.descr_rdiv(space, w_other)
        w_remainder = self.descr_rmod(space, w_other)
        return space.newtuple([w_quotient, w_remainder])

    def descr_dot(self, space, w_other):
        other = convert_to_array(space, w_other)
        if other.is_scalar():
            #Note: w_out is not modified, this is numpy compliant.
            return self.descr_mul(space, other)
        elif len(self.get_shape()) < 2 and len(other.get_shape()) < 2:
            w_res = self.descr_mul(space, other)
            assert isinstance(w_res, W_NDimArray)
            return w_res.descr_sum(space, space.wrap(-1))
        dtype = interp_ufuncs.find_binop_result_dtype(space,
                                     self.get_dtype(), other.get_dtype())
        if self.get_size() < 1 and other.get_size() < 1:
            # numpy compatability
            return W_NDimArray.new_scalar(space, dtype, space.wrap(0))
        # Do the dims match?
        out_shape, other_critical_dim = match_dot_shapes(space, self, other)
        result = W_NDimArray.from_shape(out_shape, dtype)
        # This is the place to add fpypy and blas
        return loop.multidim_dot(space, self, other,  result, dtype,
                                 other_critical_dim)

    @unwrap_spec(w_axis = WrappedDefault(None))
    def descr_var(self, space, w_axis):
        return get_appbridge_cache(space).call_method(space, '_var', self,
                                                      w_axis)

    @unwrap_spec(w_axis = WrappedDefault(None))
    def descr_std(self, space, w_axis):
        return get_appbridge_cache(space).call_method(space, '_std', self,
                                                      w_axis)

    # ----------------------- reduce -------------------------------

    def _reduce_ufunc_impl(ufunc_name, promote_to_largest=False,
                           cumultative=False):
        def impl(self, space, w_axis=None, w_out=None, w_dtype=None):
            if space.is_none(w_out):
                out = None
            elif not isinstance(w_out, W_NDimArray):
                raise OperationError(space.w_TypeError, space.wrap(
                        'output must be an array'))
            else:
                out = w_out
            return getattr(interp_ufuncs.get(space), ufunc_name).reduce(
                space, self, True, promote_to_largest, w_axis,
                False, out, w_dtype, cumultative=cumultative)
        return func_with_new_name(impl, "reduce_%s_impl_%d_%d" % (ufunc_name,
                    promote_to_largest, cumultative))

    descr_sum = _reduce_ufunc_impl("add")
    descr_sum_promote = _reduce_ufunc_impl("add", True)
    descr_prod = _reduce_ufunc_impl("multiply", True)
    descr_max = _reduce_ufunc_impl("maximum")
    descr_min = _reduce_ufunc_impl("minimum")
    descr_all = _reduce_ufunc_impl('logical_and')
    descr_any = _reduce_ufunc_impl('logical_or')

    descr_cumsum = _reduce_ufunc_impl('add', cumultative=True)
    descr_cumprod = _reduce_ufunc_impl('multiply', cumultative=True)

    def descr_mean(self, space, w_axis=None, w_out=None):
        if space.is_none(w_axis):
            w_denom = space.wrap(self.get_size())
        else:
            axis = unwrap_axis_arg(space, len(self.get_shape()), w_axis)
            w_denom = space.wrap(self.get_shape()[axis])
        return space.div(self.descr_sum_promote(space, w_axis, w_out), w_denom)

    def _reduce_argmax_argmin_impl(op_name):
        def impl(self, space):
            if self.get_size() == 0:
                raise OperationError(space.w_ValueError,
                    space.wrap("Can't call %s on zero-size arrays" % op_name))
            return space.wrap(getattr(loop, 'arg' + op_name)(self))
        return func_with_new_name(impl, "reduce_arg%s_impl" % op_name)

    descr_argmax = _reduce_argmax_argmin_impl("max")
    descr_argmin = _reduce_argmax_argmin_impl("min")


@unwrap_spec(offset=int)
def descr_new_array(space, w_subtype, w_shape, w_dtype=None, w_buffer=None,
                    offset=0, w_strides=None, w_order=None):
    if (offset != 0 or not space.is_none(w_strides) or
        not space.is_none(w_order) or
        not space.is_none(w_buffer)):
        raise OperationError(space.w_NotImplementedError,
                             space.wrap("unsupported param"))
    dtype = space.interp_w(interp_dtype.W_Dtype,
          space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype))
    shape = _find_shape(space, w_shape)
    if not shape:
        return W_NDimArray.new_scalar(space, dtype)
    return W_NDimArray.from_shape(shape, dtype)

@unwrap_spec(addr=int)
def descr__from_shape_and_storage(space, w_cls, w_shape, addr, w_dtype):
    """
    Create an array from an existing buffer, given its address as int.
    PyPy-only implementation detail.
    """
    from rpython.rtyper.lltypesystem import rffi
    from rpython.rlib.rawstorage import RAW_STORAGE_PTR
    shape = _find_shape(space, w_shape)
    storage = rffi.cast(RAW_STORAGE_PTR, addr)
    dtype = space.interp_w(interp_dtype.W_Dtype,
                           space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype))
    return W_NDimArray.from_shape_and_storage(shape, storage, dtype)

W_NDimArray.typedef = TypeDef(
    "ndarray",
    __new__ = interp2app(descr_new_array),

    __len__ = interp2app(W_NDimArray.descr_len),
    __getitem__ = interp2app(W_NDimArray.descr_getitem),
    __setitem__ = interp2app(W_NDimArray.descr_setitem),

    __repr__ = interp2app(W_NDimArray.descr_repr),
    __str__ = interp2app(W_NDimArray.descr_str),

    __pos__ = interp2app(W_NDimArray.descr_pos),
    __neg__ = interp2app(W_NDimArray.descr_neg),
    __abs__ = interp2app(W_NDimArray.descr_abs),
    __invert__ = interp2app(W_NDimArray.descr_invert),
    __nonzero__ = interp2app(W_NDimArray.descr_nonzero),

    __add__ = interp2app(W_NDimArray.descr_add),
    __sub__ = interp2app(W_NDimArray.descr_sub),
    __mul__ = interp2app(W_NDimArray.descr_mul),
    __div__ = interp2app(W_NDimArray.descr_div),
    __truediv__ = interp2app(W_NDimArray.descr_truediv),
    __floordiv__ = interp2app(W_NDimArray.descr_floordiv),
    __mod__ = interp2app(W_NDimArray.descr_mod),
    __divmod__ = interp2app(W_NDimArray.descr_divmod),
    __pow__ = interp2app(W_NDimArray.descr_pow),
    __lshift__ = interp2app(W_NDimArray.descr_lshift),
    __rshift__ = interp2app(W_NDimArray.descr_rshift),
    __and__ = interp2app(W_NDimArray.descr_and),
    __or__ = interp2app(W_NDimArray.descr_or),
    __xor__ = interp2app(W_NDimArray.descr_xor),

    __radd__ = interp2app(W_NDimArray.descr_radd),
    __rsub__ = interp2app(W_NDimArray.descr_rsub),
    __rmul__ = interp2app(W_NDimArray.descr_rmul),
    __rdiv__ = interp2app(W_NDimArray.descr_rdiv),
    __rtruediv__ = interp2app(W_NDimArray.descr_rtruediv),
    __rfloordiv__ = interp2app(W_NDimArray.descr_rfloordiv),
    __rmod__ = interp2app(W_NDimArray.descr_rmod),
    __rdivmod__ = interp2app(W_NDimArray.descr_rdivmod),
    __rpow__ = interp2app(W_NDimArray.descr_rpow),
    __rlshift__ = interp2app(W_NDimArray.descr_rlshift),
    __rrshift__ = interp2app(W_NDimArray.descr_rrshift),
    __rand__ = interp2app(W_NDimArray.descr_rand),
    __ror__ = interp2app(W_NDimArray.descr_ror),
    __rxor__ = interp2app(W_NDimArray.descr_rxor),

    __eq__ = interp2app(W_NDimArray.descr_eq),
    __ne__ = interp2app(W_NDimArray.descr_ne),
    __lt__ = interp2app(W_NDimArray.descr_lt),
    __le__ = interp2app(W_NDimArray.descr_le),
    __gt__ = interp2app(W_NDimArray.descr_gt),
    __ge__ = interp2app(W_NDimArray.descr_ge),

    dtype = GetSetProperty(W_NDimArray.descr_get_dtype),
    shape = GetSetProperty(W_NDimArray.descr_get_shape,
                           W_NDimArray.descr_set_shape),
    strides = GetSetProperty(W_NDimArray.descr_get_strides),
    ndim = GetSetProperty(W_NDimArray.descr_get_ndim),
    size = GetSetProperty(W_NDimArray.descr_get_size),
    itemsize = GetSetProperty(W_NDimArray.descr_get_itemsize),
    nbytes = GetSetProperty(W_NDimArray.descr_get_nbytes),

    fill = interp2app(W_NDimArray.descr_fill),
    tostring = interp2app(W_NDimArray.descr_tostring),

    mean = interp2app(W_NDimArray.descr_mean),
    sum = interp2app(W_NDimArray.descr_sum),
    prod = interp2app(W_NDimArray.descr_prod),
    max = interp2app(W_NDimArray.descr_max),
    min = interp2app(W_NDimArray.descr_min),
    argmax = interp2app(W_NDimArray.descr_argmax),
    argmin = interp2app(W_NDimArray.descr_argmin),
    all = interp2app(W_NDimArray.descr_all),
    any = interp2app(W_NDimArray.descr_any),
    dot = interp2app(W_NDimArray.descr_dot),
    var = interp2app(W_NDimArray.descr_var),
    std = interp2app(W_NDimArray.descr_std),

    cumsum = interp2app(W_NDimArray.descr_cumsum),
    cumprod = interp2app(W_NDimArray.descr_cumprod),

    copy = interp2app(W_NDimArray.descr_copy),
    reshape = interp2app(W_NDimArray.descr_reshape),
    T = GetSetProperty(W_NDimArray.descr_get_transpose),
    transpose = interp2app(W_NDimArray.descr_get_transpose),
    tolist = interp2app(W_NDimArray.descr_tolist),
    flatten = interp2app(W_NDimArray.descr_flatten),
    ravel = interp2app(W_NDimArray.descr_ravel),
    take = interp2app(W_NDimArray.descr_take),
    compress = interp2app(W_NDimArray.descr_compress),
    repeat = interp2app(W_NDimArray.descr_repeat),
    swapaxes = interp2app(W_NDimArray.descr_swapaxes),
    flat = GetSetProperty(W_NDimArray.descr_get_flatiter),
    item = interp2app(W_NDimArray.descr_item),
    real = GetSetProperty(W_NDimArray.descr_get_real,
                          W_NDimArray.descr_set_real),
    imag = GetSetProperty(W_NDimArray.descr_get_imag,
                          W_NDimArray.descr_set_imag),
    conj = interp2app(W_NDimArray.descr_conj),

    argsort  = interp2app(W_NDimArray.descr_argsort),
    astype   = interp2app(W_NDimArray.descr_astype),
    base     = GetSetProperty(W_NDimArray.descr_get_base),
    byteswap = interp2app(W_NDimArray.descr_byteswap),
    choose   = interp2app(W_NDimArray.descr_choose),
    clip     = interp2app(W_NDimArray.descr_clip),
    data     = GetSetProperty(W_NDimArray.descr_get_data),
    diagonal = interp2app(W_NDimArray.descr_diagonal),

    ctypes = GetSetProperty(W_NDimArray.descr_get_ctypes), # XXX unimplemented
    __array_interface__ = GetSetProperty(W_NDimArray.descr_array_iface),
    __weakref__ = make_weakref_descr(W_NDimArray),
    _from_shape_and_storage = interp2app(descr__from_shape_and_storage,
                                         as_classmethod=True),
    __pypy_data__ = GetSetProperty(W_NDimArray.fget___pypy_data__,
                                   W_NDimArray.fset___pypy_data__,
                                   W_NDimArray.fdel___pypy_data__),
)

@unwrap_spec(ndmin=int, copy=bool, subok=bool)
def array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False,
          ndmin=0):
    isstr = space.isinstance_w(w_object, space.w_str)
    if not issequence_w(space, w_object) or isstr:
        if space.is_none(w_dtype) or isstr:
            w_dtype = interp_ufuncs.find_dtype_for_scalar(space, w_object)
        dtype = space.interp_w(interp_dtype.W_Dtype,
          space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype))
        return W_NDimArray.new_scalar(space, dtype, w_object)
    if space.is_none(w_order):
        order = 'C'
    else:
        order = space.str_w(w_order)
        if order != 'C':  # or order != 'F':
            raise operationerrfmt(space.w_ValueError, "Unknown order: %s",
                                  order)

    dtype = interp_dtype.decode_w_dtype(space, w_dtype)
    if isinstance(w_object, W_NDimArray):
        if (not space.is_none(w_dtype) and
            w_object.get_dtype() is not dtype):
            raise OperationError(space.w_NotImplementedError, space.wrap(
                                  "copying over different dtypes unsupported"))
        if copy:
            return w_object.descr_copy(space)
        return w_object

    shape, elems_w = find_shape_and_elems(space, w_object, dtype)
    if dtype is None:
        for w_elem in elems_w:
            dtype = interp_ufuncs.find_dtype_for_scalar(space, w_elem,
                                                        dtype)
            #if dtype is interp_dtype.get_dtype_cache(space).w_float64dtype:
            #    break

        if dtype is None:
            dtype = interp_dtype.get_dtype_cache(space).w_float64dtype
    if ndmin > len(shape):
        shape = [1] * (ndmin - len(shape)) + shape
    arr = W_NDimArray.from_shape(shape, dtype, order=order)
    arr_iter = arr.create_iter()
    for w_elem in elems_w:
        arr_iter.setitem(dtype.coerce(space, w_elem))
        arr_iter.next()
    return arr

@unwrap_spec(order=str)
def zeros(space, w_shape, w_dtype=None, order='C'):
    dtype = space.interp_w(interp_dtype.W_Dtype,
        space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype)
    )
    shape = _find_shape(space, w_shape)
    if not shape:
        return W_NDimArray.new_scalar(space, dtype, space.wrap(0))
    return space.wrap(W_NDimArray.from_shape(shape, dtype=dtype, order=order))

@unwrap_spec(order=str)
def ones(space, w_shape, w_dtype=None, order='C'):
    dtype = space.interp_w(interp_dtype.W_Dtype,
        space.call_function(space.gettypefor(interp_dtype.W_Dtype), w_dtype)
    )
    shape = _find_shape(space, w_shape)
    if not shape:
        return W_NDimArray.new_scalar(space, dtype, space.wrap(0))
    arr = W_NDimArray.from_shape(shape, dtype=dtype, order=order)
    one = dtype.box(1)
    arr.fill(one)
    return space.wrap(arr)

W_FlatIterator.typedef = TypeDef(
    'flatiter',
    __iter__ = interp2app(W_FlatIterator.descr_iter),
    __getitem__ = interp2app(W_FlatIterator.descr_getitem),
    __setitem__ = interp2app(W_FlatIterator.descr_setitem),
    __len__ = interp2app(W_FlatIterator.descr_len),

    __eq__ = interp2app(W_FlatIterator.descr_eq),
    __ne__ = interp2app(W_FlatIterator.descr_ne),
    __lt__ = interp2app(W_FlatIterator.descr_lt),
    __le__ = interp2app(W_FlatIterator.descr_le),
    __gt__ = interp2app(W_FlatIterator.descr_gt),
    __ge__ = interp2app(W_FlatIterator.descr_ge),

    next = interp2app(W_FlatIterator.descr_next),
    base = GetSetProperty(W_FlatIterator.descr_base),
    index = GetSetProperty(W_FlatIterator.descr_index),
    coords = GetSetProperty(W_FlatIterator.descr_coords),
)
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.