Source

pypy / pypy / objspace / std / complexobject.py

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import math

from rpython.rlib import jit, rcomplex
from rpython.rlib.rarithmetic import intmask, r_ulonglong
from rpython.rlib.rbigint import rbigint
from rpython.rlib.rfloat import (
    DTSF_STR_PRECISION, copysign, formatd, isinf, isnan, string_to_float)
from rpython.rlib.rstring import ParseStringError

from pypy.interpreter.baseobjspace import W_Root
from pypy.interpreter.error import OperationError, oefmt
from pypy.interpreter.gateway import WrappedDefault, interp2app, unwrap_spec
from pypy.interpreter.typedef import GetSetProperty, TypeDef
from pypy.objspace.std import newformat
from pypy.objspace.std.floatobject import _hash_float


def _split_complex(s):
    slen = len(s)
    if slen == 0:
        raise ValueError
    realstart = 0
    realstop = 0
    imagstart = 0
    imagstop = 0
    imagsign = ' '
    i = 0
    # ignore whitespace at beginning and end
    while i < slen and s[i] == ' ':
        i += 1
    while slen > 0 and s[slen-1] == ' ':
        slen -= 1

    if s[i] == '(' and s[slen-1] == ')':
        i += 1
        slen -= 1
        # ignore whitespace after bracket
        while i < slen and s[i] == ' ':
            i += 1
        while slen > 0 and s[slen-1] == ' ':
            slen -= 1

    # extract first number
    realstart = i
    pc = s[i]
    while i < slen and s[i] != ' ':
        if s[i] in ('+', '-') and pc not in ('e', 'E') and i != realstart:
            break
        pc = s[i]
        i += 1

    realstop = i

    # return appropriate strings is only one number is there
    if i >= slen:
        newstop = realstop - 1
        if newstop < 0:
            raise ValueError
        if s[newstop] in ('j', 'J'):
            if realstart == newstop:
                imagpart = '1.0'
            elif realstart == newstop-1 and s[realstart] == '+':
                imagpart = '1.0'
            elif realstart == newstop-1 and s[realstart] == '-':
                imagpart = '-1.0'
            else:
                imagpart = s[realstart:newstop]
            return '0.0', imagpart
        else:
            return s[realstart:realstop], '0.0'

    # find sign for imaginary part
    if s[i] == '-' or s[i] == '+':
        imagsign = s[i]
    else:
        raise ValueError

    i += 1
    if i >= slen:
        raise ValueError

    imagstart = i
    pc = s[i]
    while i < slen and s[i] != ' ':
        if s[i] in ('+', '-') and pc not in ('e', 'E'):
            break
        pc = s[i]
        i += 1

    imagstop = i - 1
    if imagstop < 0:
        raise ValueError
    if s[imagstop] not in ('j', 'J'):
        raise ValueError
    if imagstop < imagstart:
        raise ValueError

    if i < slen:
        raise ValueError

    realpart = s[realstart:realstop]
    if imagstart == imagstop:
        imagpart = '1.0'
    else:
        imagpart = s[imagstart:imagstop]
    if imagsign == '-':
        imagpart = imagsign + imagpart

    return realpart, imagpart


def format_float(x, code, precision):
    # like float2string, except that the ".0" is not necessary
    if isinf(x):
        if x > 0.0:
            return "inf"
        else:
            return "-inf"
    elif isnan(x):
        return "nan"
    else:
        return formatd(x, code, precision)

def repr_format(x):
    return format_float(x, 'r', 0)

def str_format(x):
    return format_float(x, 'g', DTSF_STR_PRECISION)


def unpackcomplex(space, w_complex, strict_typing=True):
    """
    convert w_complex into a complex and return the unwrapped (real, imag)
    tuple. If strict_typing==True, we also typecheck the value returned by
    __complex__ to actually be a complex (and not e.g. a float).
    See test___complex___returning_non_complex.
    """
    if type(w_complex) is W_ComplexObject:
        return (w_complex.realval, w_complex.imagval)
    #
    # test for a '__complex__' method, and call it if found.
    # special case old-style instances, like CPython does.
    w_z = None
    if space.is_oldstyle_instance(w_complex):
        try:
            w_method = space.getattr(w_complex, space.wrap('__complex__'))
        except OperationError, e:
            if not e.match(space, space.w_AttributeError):
                raise
        else:
            w_z = space.call_function(w_method)
    else:
        w_method = space.lookup(w_complex, '__complex__')
        if w_method is not None:
            w_z = space.get_and_call_function(w_method, w_complex)
    #
    if w_z is not None:
        # __complex__() must return a complex or (float,int,long) object
        # (XXX should not use isinstance here)
        if not strict_typing and (space.isinstance_w(w_z, space.w_int) or
                                  space.isinstance_w(w_z, space.w_long) or
                                  space.isinstance_w(w_z, space.w_float)):
            return (space.float_w(w_z), 0.0)
        elif isinstance(w_z, W_ComplexObject):
            return (w_z.realval, w_z.imagval)
        raise oefmt(space.w_TypeError,
                    "__complex__() must return a complex number")

    #
    # no '__complex__' method, so we assume it is a float,
    # unless it is an instance of some subclass of complex.
    if space.isinstance_w(w_complex, space.gettypefor(W_ComplexObject)):
        real = space.float(space.getattr(w_complex, space.wrap("real")))
        imag = space.float(space.getattr(w_complex, space.wrap("imag")))
        return (space.float_w(real), space.float_w(imag))
    #
    # Check that it is not a string (on which space.float() would succeed).
    if (space.isinstance_w(w_complex, space.w_str) or
        space.isinstance_w(w_complex, space.w_unicode)):
        raise oefmt(space.w_TypeError,
                    "complex number expected, got '%T'", w_complex)
    #
    return (space.float_w(space.float(w_complex)), 0.0)


class W_ComplexObject(W_Root):
    _immutable_fields_ = ['realval', 'imagval']

    def __init__(self, realval=0.0, imgval=0.0):
        self.realval = float(realval)
        self.imagval = float(imgval)

    def unwrap(self, space):   # for tests only
        return complex(self.realval, self.imagval)

    def __repr__(self):
        """ representation for debugging purposes """
        return "<W_ComplexObject(%f, %f)>" % (self.realval, self.imagval)

    def as_tuple(self):
        return (self.realval, self.imagval)

    def sub(self, other):
        return W_ComplexObject(self.realval - other.realval,
                               self.imagval - other.imagval)

    def mul(self, other):
        r = self.realval * other.realval - self.imagval * other.imagval
        i = self.realval * other.imagval + self.imagval * other.realval
        return W_ComplexObject(r, i)

    def div(self, other):
        rr, ir = rcomplex.c_div(self.as_tuple(), other.as_tuple())
        return W_ComplexObject(rr, ir)

    def divmod(self, space, other):
        space.warn(space.wrap("complex divmod(), // and % are deprecated"),
                   space.w_DeprecationWarning)
        w_div = self.div(other)
        div = math.floor(w_div.realval)
        w_mod = self.sub(
            W_ComplexObject(other.realval * div, other.imagval * div))
        return (W_ComplexObject(div, 0), w_mod)

    def pow(self, other):
        rr, ir = rcomplex.c_pow(self.as_tuple(), other.as_tuple())
        return W_ComplexObject(rr, ir)

    def pow_small_int(self, n):
        if n >= 0:
            if jit.isconstant(n) and n == 2:
                return self.mul(self)
            return self.pow_positive_int(n)
        else:
            return w_one.div(self.pow_positive_int(-n))

    def pow_positive_int(self, n):
        mask = 1
        w_result = w_one
        while mask > 0 and n >= mask:
            if n & mask:
                w_result = w_result.mul(self)
            mask <<= 1
            self = self.mul(self)

        return w_result

    def is_w(self, space, w_other):
        from rpython.rlib.longlong2float import float2longlong
        if not isinstance(w_other, W_ComplexObject):
            return False
        if self.user_overridden_class or w_other.user_overridden_class:
            return self is w_other
        real1 = space.float_w(space.getattr(self, space.wrap("real")))
        real2 = space.float_w(space.getattr(w_other, space.wrap("real")))
        imag1 = space.float_w(space.getattr(self, space.wrap("imag")))
        imag2 = space.float_w(space.getattr(w_other, space.wrap("imag")))
        real1 = float2longlong(real1)
        real2 = float2longlong(real2)
        imag1 = float2longlong(imag1)
        imag2 = float2longlong(imag2)
        return real1 == real2 and imag1 == imag2

    def immutable_unique_id(self, space):
        if self.user_overridden_class:
            return None
        from rpython.rlib.longlong2float import float2longlong
        from pypy.objspace.std.util import IDTAG_COMPLEX as tag
        real = space.float_w(space.getattr(self, space.wrap("real")))
        imag = space.float_w(space.getattr(self, space.wrap("imag")))
        real_b = rbigint.fromrarith_int(float2longlong(real))
        imag_b = rbigint.fromrarith_int(r_ulonglong(float2longlong(imag)))
        val = real_b.lshift(64).or_(imag_b).lshift(3).or_(rbigint.fromint(tag))
        return space.newlong_from_rbigint(val)

    def int(self, space):
        raise oefmt(space.w_TypeError, "can't convert complex to int")

    def _to_complex(self, space, w_obj):
        if isinstance(w_obj, W_ComplexObject):
            return w_obj
        if space.isinstance_w(w_obj, space.w_int):
            return W_ComplexObject(float(space.int_w(w_obj)), 0.0)
        if space.isinstance_w(w_obj, space.w_long):
            return W_ComplexObject(space.float_w(w_obj), 0.0)
        if space.isinstance_w(w_obj, space.w_float):
            return W_ComplexObject(space.float_w(w_obj), 0.0)

    @staticmethod
    @unwrap_spec(w_real=WrappedDefault(0.0))
    def descr__new__(space, w_complextype, w_real, w_imag=None):
        # if w_real is already a complex number and there is no second
        # argument, return it.  Note that we cannot return w_real if
        # it is an instance of a *subclass* of complex, or if w_complextype
        # is itself a subclass of complex.
        noarg2 = w_imag is None
        if (noarg2 and space.is_w(w_complextype, space.w_complex)
            and space.is_w(space.type(w_real), space.w_complex)):
            return w_real

        if space.isinstance_w(w_real, space.w_str) or \
                space.isinstance_w(w_real, space.w_unicode):
            # a string argument
            if not noarg2:
                raise oefmt(space.w_TypeError, "complex() can't take second"
                                               " arg if first is a string")
            try:
                realstr, imagstr = _split_complex(space.str_w(w_real))
            except ValueError:
                raise oefmt(space.w_ValueError,
                            "complex() arg is a malformed string")
            try:
                realval = string_to_float(realstr)
                imagval = string_to_float(imagstr)
            except ParseStringError:
                raise oefmt(space.w_ValueError,
                            "complex() arg is a malformed string")

        else:
            # non-string arguments
            realval, imagval = unpackcomplex(space, w_real,
                                             strict_typing=False)

            # now take w_imag into account
            if not noarg2:
                # complex(x, y) == x+y*j, even if 'y' is already a complex.
                realval2, imagval2 = unpackcomplex(space, w_imag,
                                                   strict_typing=False)

                # try to preserve the signs of zeroes of realval and realval2
                if imagval2 != 0.0:
                    realval -= imagval2

                if imagval != 0.0:
                    imagval += realval2
                else:
                    imagval = realval2
        # done
        w_obj = space.allocate_instance(W_ComplexObject, w_complextype)
        W_ComplexObject.__init__(w_obj, realval, imagval)
        return w_obj

    def descr___getnewargs__(self, space):
        return space.newtuple([space.newfloat(self.realval),
                               space.newfloat(self.imagval)])

    def descr_repr(self, space):
        if self.realval == 0 and copysign(1., self.realval) == 1.:
            return space.wrap(repr_format(self.imagval) + 'j')
        sign = (copysign(1., self.imagval) == 1. or
                isnan(self.imagval)) and '+' or ''
        return space.wrap('(' + repr_format(self.realval)
                          + sign + repr_format(self.imagval) + 'j)')

    def descr_str(self, space):
        if self.realval == 0 and copysign(1., self.realval) == 1.:
            return space.wrap(str_format(self.imagval) + 'j')
        sign = (copysign(1., self.imagval) == 1. or
                isnan(self.imagval)) and '+' or ''
        return space.wrap('(' + str_format(self.realval)
                          + sign + str_format(self.imagval) + 'j)')

    def descr_hash(self, space):
        hashreal = _hash_float(space, self.realval)
        hashimg = _hash_float(space, self.imagval)
        combined = intmask(hashreal + 1000003 * hashimg)
        return space.newint(combined)

    def descr_coerce(self, space, w_other):
        w_other = self._to_complex(space, w_other)
        if w_other is None:
            return space.w_NotImplemented
        return space.newtuple([self, w_other])

    def descr_format(self, space, w_format_spec):
        return newformat.run_formatter(space, w_format_spec, "format_complex",
                                       self)

    def descr_nonzero(self, space):
        return space.newbool((self.realval != 0.0) or (self.imagval != 0.0))

    def descr_float(self, space):
        raise oefmt(space.w_TypeError, "can't convert complex to float")

    def descr_neg(self, space):
        return W_ComplexObject(-self.realval, -self.imagval)

    def descr_pos(self, space):
        return W_ComplexObject(self.realval, self.imagval)

    def descr_abs(self, space):
        try:
            return space.newfloat(math.hypot(self.realval, self.imagval))
        except OverflowError, e:
            raise OperationError(space.w_OverflowError, space.wrap(str(e)))

    def descr_eq(self, space, w_other):
        if isinstance(w_other, W_ComplexObject):
            return space.newbool((self.realval == w_other.realval) and
                                 (self.imagval == w_other.imagval))
        if (space.isinstance_w(w_other, space.w_int) or
            space.isinstance_w(w_other, space.w_long) or
            space.isinstance_w(w_other, space.w_float)):
            if self.imagval:
                return space.w_False
            return space.eq(space.newfloat(self.realval), w_other)
        return space.w_NotImplemented

    def descr_ne(self, space, w_other):
        if isinstance(w_other, W_ComplexObject):
            return space.newbool((self.realval != w_other.realval) or
                                 (self.imagval != w_other.imagval))
        if (space.isinstance_w(w_other, space.w_int) or
            space.isinstance_w(w_other, space.w_long) or
            space.isinstance_w(w_other, space.w_float)):
            if self.imagval:
                return space.w_True
            return space.ne(space.newfloat(self.realval), w_other)
        return space.w_NotImplemented

    def _fail_cmp(self, space, w_other):
        if (isinstance(w_other, W_ComplexObject) or
            space.isinstance_w(w_other, space.w_int) or
            space.isinstance_w(w_other, space.w_long) or
            space.isinstance_w(w_other, space.w_float)):
            raise oefmt(space.w_TypeError,
                        "no ordering relation is defined for complex numbers")
        return space.w_NotImplemented

    def descr_add(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        return W_ComplexObject(self.realval + w_rhs.realval,
                               self.imagval + w_rhs.imagval)

    def descr_radd(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        return W_ComplexObject(w_lhs.realval + self.realval,
                               w_lhs.imagval + self.imagval)

    def descr_sub(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        return W_ComplexObject(self.realval - w_rhs.realval,
                               self.imagval - w_rhs.imagval)

    def descr_rsub(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        return W_ComplexObject(w_lhs.realval - self.realval,
                               w_lhs.imagval - self.imagval)

    def descr_mul(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        return self.mul(w_rhs)

    def descr_rmul(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        return w_lhs.mul(self)

    def descr_truediv(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        try:
            return self.div(w_rhs)
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_rtruediv(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        try:
            return w_lhs.div(self)
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_floordiv(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        # don't care about the slight slowdown you get from using divmod
        try:
            return self.divmod(space, w_rhs)[0]
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_rfloordiv(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        # don't care about the slight slowdown you get from using divmod
        try:
            return w_lhs.divmod(space, self)[0]
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_mod(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        try:
            return self.divmod(space, w_rhs)[1]
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_rmod(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        try:
            return w_lhs.divmod(space, self)[1]
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))

    def descr_divmod(self, space, w_rhs):
        w_rhs = self._to_complex(space, w_rhs)
        if w_rhs is None:
            return space.w_NotImplemented
        try:
            div, mod = self.divmod(space, w_rhs)
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))
        return space.newtuple([div, mod])

    def descr_rdivmod(self, space, w_lhs):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        try:
            div, mod = w_lhs.divmod(space, self)
        except ZeroDivisionError, e:
            raise OperationError(space.w_ZeroDivisionError, space.wrap(str(e)))
        return space.newtuple([div, mod])

    @unwrap_spec(w_third_arg=WrappedDefault(None))
    def descr_pow(self, space, w_exponent, w_third_arg):
        w_exponent = self._to_complex(space, w_exponent)
        if w_exponent is None:
            return space.w_NotImplemented
        if not space.is_w(w_third_arg, space.w_None):
            raise oefmt(space.w_ValueError, 'complex modulo')
        try:
            r = w_exponent.realval
            if (w_exponent.imagval == 0.0 and -100.0 <= r <= 100.0 and
                r == int(r)):
                w_p = self.pow_small_int(int(r))
            else:
                w_p = self.pow(w_exponent)
        except ZeroDivisionError:
            raise oefmt(space.w_ZeroDivisionError,
                        "0.0 to a negative or complex power")
        except OverflowError:
            raise oefmt(space.w_OverflowError, "complex exponentiation")
        return w_p

    @unwrap_spec(w_third_arg=WrappedDefault(None))
    def descr_rpow(self, space, w_lhs, w_third_arg):
        w_lhs = self._to_complex(space, w_lhs)
        if w_lhs is None:
            return space.w_NotImplemented
        return w_lhs.descr_pow(space, self, w_third_arg)

    def descr_conjugate(self, space):
        """(A+Bj).conjugate() -> A-Bj"""
        return space.newcomplex(self.realval, -self.imagval)


w_one = W_ComplexObject(1, 0)


def complexwprop(name):
    def fget(space, w_obj):
        if not isinstance(w_obj, W_ComplexObject):
            raise oefmt(space.w_TypeError, "descriptor is for 'complex'")
        return space.newfloat(getattr(w_obj, name))
    return GetSetProperty(fget)

W_ComplexObject.typedef = TypeDef("complex",
    __doc__ = """complex(real[, imag]) -> complex number

Create a complex number from a real part and an optional imaginary part.
This is equivalent to (real + imag*1j) where imag defaults to 0.""",
    __new__ = interp2app(W_ComplexObject.descr__new__),
    __getnewargs__ = interp2app(W_ComplexObject.descr___getnewargs__),
    real = complexwprop('realval'),
    imag = complexwprop('imagval'),
    __repr__ = interp2app(W_ComplexObject.descr_repr),
    __str__ = interp2app(W_ComplexObject.descr_str),
    __hash__ = interp2app(W_ComplexObject.descr_hash),
    __coerce__ = interp2app(W_ComplexObject.descr_coerce),
    __format__ = interp2app(W_ComplexObject.descr_format),
    __nonzero__ = interp2app(W_ComplexObject.descr_nonzero),
    __int__ = interp2app(W_ComplexObject.int),
    __float__ = interp2app(W_ComplexObject.descr_float),
    __neg__ = interp2app(W_ComplexObject.descr_neg),
    __pos__ = interp2app(W_ComplexObject.descr_pos),
    __abs__ = interp2app(W_ComplexObject.descr_abs),

    __eq__ = interp2app(W_ComplexObject.descr_eq),
    __ne__ = interp2app(W_ComplexObject.descr_ne),
    __lt__ = interp2app(W_ComplexObject._fail_cmp),
    __le__ = interp2app(W_ComplexObject._fail_cmp),
    __gt__ = interp2app(W_ComplexObject._fail_cmp),
    __ge__ = interp2app(W_ComplexObject._fail_cmp),

    __add__ = interp2app(W_ComplexObject.descr_add),
    __radd__ = interp2app(W_ComplexObject.descr_radd),
    __sub__ = interp2app(W_ComplexObject.descr_sub),
    __rsub__ = interp2app(W_ComplexObject.descr_rsub),
    __mul__ = interp2app(W_ComplexObject.descr_mul),
    __rmul__ = interp2app(W_ComplexObject.descr_rmul),
    __div__ = interp2app(W_ComplexObject.descr_truediv),
    __rdiv__ = interp2app(W_ComplexObject.descr_rtruediv),
    __truediv__ = interp2app(W_ComplexObject.descr_truediv),
    __rtruediv__ = interp2app(W_ComplexObject.descr_rtruediv),
    __floordiv__ = interp2app(W_ComplexObject.descr_floordiv),
    __rfloordiv__ = interp2app(W_ComplexObject.descr_rfloordiv),
    __mod__ = interp2app(W_ComplexObject.descr_mod),
    __rmod__ = interp2app(W_ComplexObject.descr_rmod),
    __divmod__ = interp2app(W_ComplexObject.descr_divmod),
    __rdivmod__ = interp2app(W_ComplexObject.descr_rdivmod),
    __pow__ = interp2app(W_ComplexObject.descr_pow),
    __rpow__ = interp2app(W_ComplexObject.descr_rpow),

    conjugate = interp2app(W_ComplexObject.descr_conjugate),
)