|| mpc =

MPCTools Octave/Matlab Cheat Sheet

1 Functions Reference

Here we present some of the most useful functions from MPCTools. These descriptions are not intended to be complete, and
you should consult the complete documentation (documentation.pdf) for more details.

Obtaining MPCTools. The latest files can be found on
<https://bitbucket.org/rawlings-group/octave-mpctools>. You will see
a link on the left to download all of the files in a com-
pressed archive. No specific installation is required beyond
Octave/Matlab and CasADi, but note that CasADi must be
at least Version 3.1.

Getting Started. Functions are stored in a package called
mpctools using Octave/Matlab’s +package system. To access
these functions, you will need to put the folder +mpctools
and the file import_mpctools.m inside a folder that is on
your Octave/Matlab path. For example, if /home/me/octave
is on your Octave/Matlab path, you should put +mpctools
and import_mpctools.m inside /home/me/octave. You can-
not add the +mpctools folder directly to your path.

To use the functions within your code, we provide the
import_mpctools function that returns a “module” struct
that contains handles to all of the functions in the public
API. For example, your script should start with

import_mpctools ();

which will allow you to access each of the function names
with the syntax mpc.getCasadiFunc, mpc.nmpc, etc. If in-
stead you want direct access to the functions, you can use

import_mpctools('x"');

which will instead place all the function handles in the current
workspace.

Function TUsage All of the functions returned by
import_mpctools() allow arguments to be specified positionally,
using keywords via 'keyword', value pairs, or as a structure
whose fields are the keywords and values are values. Consult
documentation.pdf for more details.

Many functions have optional arguments or default values
that aren’t listed below. Consult the complete documentation
in documentation to see what additional keyword options are
available.

Building CasADi Functions. To simplify creation of
CasADi functions, there are a few convenience wrappers.

getCasadiFunc(f,argsizes,argnames)

Takes a function handle and sizes of arguments to build a
CasADi Function object. Note that the original function f
should return a single (column) vector. The input argnames
is optional, but it should be a cell array of strings that give
variable names. This helps make things self-documenting.

Optional arguments are available to return a Runge-Kutta
discretization. For this, you must specify 'rka', true and also

provide arguments Delta with the timestep and M with the
number of steps to take in each interval. Example usage is

shown below.
mpc = import_mpctools ();

% 2 states and 1 control.
function dxdt = ode(x,u)

dxdt = [x(1)"2 + u(1); x(2) - u(1)];
end
ode = mpc.getCasadiFunc(@ode, [2,1], {'x','u'});
Delta = 0.5; 7 Set timestep.
ode_rk4 = mpc.getCasadiFunc(ode, [2,1], {'x','u'},
'rk4', true, 'Delta', Delta, 'M', 1);

getCasadilntegrator (f,Delta,argsizes,argnames)

Returns an Integrator object to integrate the Python
function f from time 0 to Delta. argsizes and argnames
are the same as in getCasadiFunc, but the differential vari-
ables (i.e., z in dx/dt = f(x,y,z)) must come first. These
objects are useful to simulate plants with nonlinear ODEs.
They can also be used as the plant “model” for particularly
challenging ODEs, although they can significantly slow the
optimization.

Solving MPC Problems.
function nmpc should be used.
nmpc (f,1,N,x0)

f and 1 should be individual CasADi functions to describe
state evolution and stage costs. N is a struct that holds all
of the relevant sizes. It must have entries x, u, and t, all
of which are integers. x0 is the starting state. Additional
optional arguments are given below.

e Vf: a single CasADi function of x to use as a terminal

cost.

e 1b, ub, guess: Structs with entries x and/or "u", to de-
fine box constraints or an initial guess for the optimal
values of x and u. Entries for x should be an array of
size N.t+1 by N.x, and for u, entries should be n.t by
N.u. Note that the time dimensions can be omitted if
the bounds are not time-varying.

e uprev: Value of the previous control input. If pro-
vided, variables Au will be added to the control prob-
lem. Bounds for Awu can be specified as du entries in 1b
and ub.

e verbosity: an integer to control how detailed the solver
output is. Lower numbers give less output. Default is 0
(no output).

This function returns a ControlSolver object (see “Re-

peated Optimization” below for more details).

For regulation problems, the

https://bitbucket.org/rawlings-group/octave-mpctools

For continuous-time problems, there are a few options.
To use Runge-Kutta methods, you can convert your function
ahead of time (e.g., with 'rk4', true as above). To use collo-
cation, you can add an entry c to the argument N to specify
the number of collocation points on each time interval. This
also requires specifying the sample time Delta. Note that
if you want a continuous-time objective function (i.e., inte-
gral of £(x(t),u(t)) instead of a sum), then you can specify
'discretel’, false as an argument. Note that this is only sup-
ported with collocation.

State Estimation. For nonlinear state estimation, we pro-
vide a moving-horizon estimation function and an Extended
Kalman Filter function.

nmhe(f,h,u,y,1,N)

Solves a nonlinear MHE problem. As with nmpc, argu-
ments f, h, and 1 should be individual CasADi functions. f
must be f(z,u,w), h must be h(z), and 1 must be (w,v).
u and y must be arrays of past control inputs and measure-
ments. These arrays must have time running along columns
so that y(:,t) gives the value of y at time ¢.

As in nmpc, the input N must be a struct of sizes. This
must have entries t, x, u, and y. Note that n[t] gives the num-
ber of time intervals, which means u should have v.t data
points, while y should have n.t + 1 data points. It may also
have a w entry, but this is set equal to §.x if not supplied. Note
that for feasibility reasons, n.v is always set to N.y regardless
of user input. Additional optional arguments are given below.

e 1x, xObar: arrival cost for initial state. 1x should be a

CasADi function of only x. It is included in the objec-
tive function as £, (zo, Tp).

e 1b, ub, guess: Structs to hold bounds and a guess for

the decision variables. Same as in nmpc.

e verbosity: same as in nmpc.

The return value is the same as in nmpc.

ekf (f,h,x,u,w,y,P,Q,R)

Advances one step using the Extended Kalman Filter. f
and h must be CasADi functions. x, u, w, and y should be the
state estimate &(k|k — 1), the controller move, the state noise
(only its shape is important), and the current measurement.
P should be the prior covariance P(k|k — 1). Q and R should
be the covariances for the state noise and measurement noise.
Returns values

[P(k+ 1|k), &(k + 1|k), P(k|k), &(k|k)].

Steady-State Targets. For steady-state target selection,
we provide a function sstarg as described below.
sstarg(f,h,N)

Solves a nonlinear steady-state target problem. £ must be
f(z,u) and h must be h(xz) As with the other functions, the
input N must be a struct of sizes. This must have entries x, u,
and y. Additional arguments are below.

e phi, funcargs: Objective function for if the solution is

non-unique. phi must be a CasADi function to define

the objective to use in the case of non-unique steady
states.

1b, ub, guess: Structs to hold bounds and a guess
for the decision variables. Each entry must be a col-
umn vector. Note that if you want to force out-
puts y to a specific value, you should set equal
lower and upper bounds for those entries (e.g., via
ControlSolver.fixvar('y', 1, ysp))

e verbosity: same as in nmpc.

Repeated Optimization. If you plan to be solving the
same optimization repeatedly, speed can be improved by us-
ing the ControlSolver class. These objects are the returned
value of nmpc, nmhe, or sstarg. Below we list the useful
methods for this class.

fixvar(var,t,val)

Fixes the variable named var to take on the value val at
time t. This is most useful for changing the initial conditions,
e.g., with

solver.fixvar('x',0,x0)

which allows for easy re-optimization. You can also

specify a fourth argument inds, if you only want
to set a subset of indices for that variable (e.g.,
contvars = [1; 3]; solver.fixvar('y',1,ysp(contvars),contvars)

to only fix the first and third values of y).
solve()

Solves the optimization problem. Some stats (including
solver success or failure) is stored into the solver.stats
dictionary, the status string is stored in solver.status (al-
though it may or may not be correctly defined for solvers
other than IPOPT), and the optimal values of the variables
are in the solver.var struct (e.g., solver.var.x(:,t) gives the
optimal value of z at time t).

saveguess ()

Takes the current solution and stores the values as a guess
to the optimizer. By default, time values are offset by 1. This
is done so that

solver.solve ();

if isequal(solver.status,
solver.saveguess ();
solver.fixvar('x',0,solver.var.x(:,1));

'Solve_Succeeded')

end

prepares the solver for re-optimization at the next time point
by using the final N —1 values of the previous trajectory as a
guess for the first N —1 time periods in the next optimization.

Plotting. For quick plotting, we have the mpcplot func-
tion. Required arguments are x and u, both 2D arrays with
each column giving the value of x or u at a given time point,
and a vector t of time points. Note that t should have as
many entries as x has columns, while u should have one fewer
columuns.

Linear MPC Functions. There are no specific functions
to handle linear problems. However, you can specify the op-
tion 'isQP', true' in each of nmpc, nmhe, and sstarg to let the
solver know that the constraints are linear and the objective
function quadratic, which can potentially speed up solution.

To linearize nonlinear systems, we provide a useful func-
tion.

getLinearizedModel(f, args, names)

Evaluates the derivatives of the CasADi function £ at the
point indicated in args (which should be a cell array of column
vectors) and returns a dictionary. names should be a cell array
of keys to use in the returned dictionary. Optionally, you can
specify a Delta keyword argument to discretize the returned
matrices.

Choosing the Solver. By default, all optimization prob-
lems are solved using the NLP solver IPOPT. To choose a dif-
ferent solver, specify a 'solver', solver option to nmpc, nmhe,
or sstarg. By default, CasADiis bundled with the solvers
IPOPT, qpOASES (for quadratic programs), and BONMIN
(for mixed-integer problems). For each of these, solver
should be a lower-case string, e.g., 'ipopt', 'gpoases', and
If installed on your machine, you may also use
Gurobi (string 'gurobi'). Note however that CasADi does not
(vet) provide full access to solver options for any solver besides
IPOPT, and thus certain options (most notably 'verbosity'
and 'timelimit') may not be respected if solver is not 'ipopt'.

'bonmin'

Function Arguments Generally, the functions used in
MPC-style control problems have standard arguments, for
example f(xz,u), £(x,u) for control, or f(x,u,w), £(w,v) for
estimation. However, if your instance does not follow these
default patterns, you can adjust the number and order of ar-
guments that each function takes by providing the argument
names to getCasadiFunc(). For example, in nmpc(), if your stage
cost function is only a function of and not u, then you would
define

1 = (21, {'='1;

mpctools.getCasadiFunc (@(x) x'*x,

2 Common Mistakes

Below we list some common issues that may cause headaches.

e Poor initial guesses to solvers.

The function nmpc () will then check the argument number and
names.

Note that each name must exactly correspond to the name
of a variable (or parameter; see next section) in the optimiza-
tion problem, e.g., 'x', 'u', etc. If, for some reason, you
cannot define the functions with the correct argument names,
you can also use a 'funcargs' argument as follows:

1 = mpctools.getCasadiFunc(@(x) x'*x, [2], {'not_x'});
funcargs = struct ();

funcargs.l = {'x'};

mpctools.nmpc('1l', 1, 'funcargs', funcargs,

Without funcargs, this code would otherwise lead to an error.

Problem Parameters Often, your problem may have pa-
rameters that you would like to change after each optimiza-
tion, or even parameters that change within the horizon of the
current optimization problem. To support these situations,
nmpc (), nmhe (), and sstarg() all take a 'par' keyword argument
in which you should pass a struct of parameter values. These
parameters can be scalars, vectors, or matrices. To make the
parameters time-varying, time should be running along the
second dimension (third in the case of matrix parameters; see
gainscheduling.m for an example).

To use these parameters in each function, you simply de-
fine the function as taking additional named arguments, for
example

function cost = stagecost(x, u, xsp, usp)

dx = x - Xsp;
du = u - usp;
cost = dx'*xdx + du'*du;

end’function
1 = mpctools.getCasadiFunc (@stagecost, ...
2, 2, 3, 31, ‘usp'});

{IXV, Iul’ IXSP',

To track a time-varying setpoint, you then define par.xsp and
par.usp as matrices with each column giving the setpoint for
that time (see timevaryingmpc.m for an example).

Time-varying parameters are accessed modulo length. For
example, if your parameters have a period of 10 and your pre-
diction horizon is 25, you only need to provide the 10 unique
parameters, and for times 11 and beyond, the appropriate
column will be chosen.

By default, all variables are given guesses of 0. For models in deviation variables, this makes sense, but for general
models, these values can cause problems, e.g., if there are divisions or logarithms any where. Make sure you supply
an initial guess if the optimal variables are expected to be nowhere near 0, and it helps if the guess is consistent with
lower and upper bounds. For difficult problems, it may help to solve a series of small problems to get a feasible starting

guess for the large overall problem.

e Tight state constraints.

Although the solvers allow constraints on all decision variables, tight constraints on the state variables (e.g., that the
system terminate at the origin) can be troublesome for the solver. Consider using a penalty function first to get a
decent guess and then re-solving with hard constraints from there.

3 Disclaimer

Note that since CasADi is in active development, MPCTools will need to be updated to reflect changes in CasADi’s
Octave/Matlab API. Additionally, function internals may change significantly as we identify better or more useful ways
to wrap the relevant CasADi functions. This means function call syntax may change, although we will strive to maintain
compatibility wherever possible.

As mentioned previously, the latest files can always be found on |<nttps://bitbucket.org/rawlings-group/octave-mpctools>h For
questions, comments, or bug reports, please open an issue on Bitbucket or contact us by email.

Michael J. Risbeck James B. Rawlings
<risbeck@wisc.edu> <james.rawlings@wisc.edu>
University of Wisconsin—-Madison

https://bitbucket.org/rawlings-group/octave-mpctools

	Functions Reference
	Common Mistakes
	Disclaimer

