MPCTools Documentation

1 Introduction

MPCTools is a model predictive control (MPC) oriented interface to CasADi for Octave and Matlab. It is intended to
be a replacement for the legacy mpc-tools developed by the Rawlings group from 2000 to 2010. Here we document the
Octave/Matlab interface, which is available as of CasADi v3.1.

Current development sources can be found at https://bitbucket.org/rawlings-group/octave-mpctools,

2 General Function Usage

Each of these functions can take arguments positionally and as keyword, value pairs (with keywords given as strings). Just
as in Python, there can be a sequence of positional arguments followed by a sequence of (keyword, value) arguments. Note
that allowing both types of arguments creates an ambiguity for positional arguments that are also strings. Thus, to pass a
string positional argument, you must wrap the string in a cell array. Note that structs can also be used using a keyword of
x (similar to Python’s # operator). For arguments that are not supplied, the default value (if any) will be used. Passing
an empty matrix [] for any argument also specifies that the default is requested (similar to passing None in Python).

As an example, consider a function func that takes two numeric arguments “x” (no default value) and “y” (with default value
1), as well as a string argument “name” (default value >func’). Each of the following function calls is equivalent:

e func(0) (Positional arguments with implied defaults)
e func(0, [1, [1) (Positional arguments with explicit defaults)
e func(0, 1, \{'name'\}, 'func') (Positional string argument)
e func(0, 'y', 1, 'name', 'func') (Mix of positional and keyword arguments)
e func('x', 0, 'y', 1) (Keyword arguments with implied defaults)
e func('x', 0, 'name', 'func') (Keyword string argument)
e func(0, 's*'struct('y', 1, 'mame', 'func')) (Struct with some keyword arguments)
e func('*x', struct('x', 0, 'y', 1)) (Struct of all keyword arguments)
® func(0, 'y', 1, 's*', struct('name', 'func')) (All three input types)
For readability, it is best to use all keyword arguments for functions with more than roughly 4 arguments.

Note that as features are added to MPCTools, additional keyword arguments may be added to functions. In general, these
arguments will be added at the end of the argument list. However, from time to time, an argument will be added earlier in
the list, thus shifting the position of all arguments that follow. Thus, to avoid compatibility issues with future versions of
MPCTools, you should only use positional arguments for the arguments that are listed in the function signature (i.e., given
in the first line of the documentation string before .. .). For all arguments not listed in the function signature, you should
use keyword, value pairs.

Documentation for specific functions is given below.

3 Optimization Variables and Parameters

Within each optimization, symbols x are used for states, u for controls, y for measured outputs, w for estimated state
disturbances, and v for estimated measurement noise. These are considered the “standard” variables, as they are present
in many control, MHE, and steady-state target problems. By default, the call signature for each function used within the
optimization problem is taken from the variable names of the corresponding CasADi function. For example, to use the
standard f(z,u), you should define the CasADi function t as

f = mpctools.getCasadiFunc(@f, [Nx, Nul, {'x', 'u'})

https://bitbucket.org/rawlings-group/octave-mpctools

with the third argument to getCasadiFunc() giving the variable identifiers as strings. If you do not provide these names, or if
you need to override them, you can use the 'funcargs' keyword to nmpc, nmhe, and sstarg (see full function documentation in

Section [f)).

For control problems, setpoints are denoted xg, and ug, (written 'xsp' and 'usp' as string identifiers). To use these setpoints
in the stage cost, use arguments 'xsp' and 'usp' in its definition. For example, using the standard quadratic stage cost
Uzyu,t) = (& — 25p(8) Q(x — 2sp(t)) + (v — usp(t)) R(u — usp(t)), you should define

function cost = stagecost(x, u, xsp, usp)
Q=1
R = 1;
dx = x - Xsp;
du = u - usp;
cost = dx'*Qx*xdx + du'*Rx*xdu;
end
1 = mpctools.getCasadiFunc(@stagecost, [Nx, Nu, Nx, Nul, {'x', 'u', 'xsp', 'usp'})

Note that the (time-varying) values of x4, and usp are stored in ControlSolver.par.xsp and ControlSolver.par.usp. See example
script timevaryingmpc.m for complete example usage.

Changes in outputs are denoted Aw (string pu). These can be used in nmpc in one of two ways: first, if there is a pu field in
any of the '1b', 'ub', or 'guess' arguments; and second, if there is a 'Du' argument in any of the functions £, 1, or e.

To facilitate one-norm or other linear objectives, we also provide the special variables 'absx', 'absu', and 'absdu'. These are
meant to be surrogates for |z|, |u|, and |Au| in the sense that they are defined as

absr > x

absy > —x

with similar expressions for v and Au. Thus, they will be exactly equal to the corresponding absolute value as long as they
are included in a convex positive-definite penalty term in the objective.

For parameters besides xs, and ugp, we use the special identifier p for time-varying vector-valued parameters. Any user-
defined parameters can be given arbitrary variable names (provided they do not clash with the reserved names discussed
in this section) and passed in the 'par' argument to nmpc, nmhe, and sstarg. Note that these parameters can be vectors or
matrices, but they must be constant-in-time. They can be used as function arguments as with =, and usp.

4 Solver Options

To facilitate setting solver options, the ControlSolver class takes keyword arguments verbosity, timelimit, etc., to set
common solver options. These values will be translated into the solver-specific option names and applied to the solver object.
Note that these values can also be passed as keyword arguments to nmpc (), nmhe (), and sstarg(). See Section [6] for more
details.

To set solver-specific options that do not have a common name, you should use ControlSolver.init (). This method takes
a set of key’, value pairs. For example, IPOPT has a tol parameter that controls the relative convergence tolerance. To
set this value, you would use, e.g.,

controller = mpctools.nmpc(..., 'solver', 'ipopt');
controller.init('tol', 1e-10);

To see what options are available for your particular solver, use ControlSolver.getoptions() (not available for some
solvers) or consult the CasADi documentation.

5 Public API Documentation

Below, we document all functions in the MPCTools public API. Function arguments are generally listed as
e argname : Argument Type [default value (if any)|

This information can also be accessed in Octave/Matlab using the typical nelp function with an 'mpctools' prefix, e.g.,
help('mpctools.getCasadiFunc').

5.1 getCasadiFunc

[fcasadi, qcasadi] = getCasadiFunc(f, varsizes, [varnames], [funcname='f'], ...)
Returns a Casadi function using the function handle f.
Inputs are as follows:
e f: Function Handle
Handle to function that is being transformed.
e varsizes: Row Vector
Gives the number of elements in each input argument (all must be vectors).
e varnames: Cell Array
List of strings for variable names. Defaults to generic names x_1, x_2, etc.
e funcname: String
Name to use for function.

e rk4: Logical [false]

Whether the function should be discretized with an explicit RK4 method. Note that the first argument of f

is assumed to be the differential state.
e Delta: Scalar
Timestep to use if rk4 is true.

e M: Integer

Number of iterations of RK4 to perform. Note that the total timestep is always equal to Delta, so the stepsize

for each iteration is Delta/M.

e quad : Function Handle

Handle to function that should be integrated over the interval. Note that quad must accept the same

arguments (in the same order) as f. If provided, rk4 must be true.
e quadname : String
Name to use for quadrature function. Default is ['Q', funcname].

e casaditype : String ['SX'|

String 'SX' or 'MX' to decide which type of CasADi symbolic variables to use. In general 'SX' should be
used for primitive algebraic operations (e.g., ODE right-hand sides), and 'MX' should be used for higher-level
constructs. Consult the CasADi User Guide for more details.

Note that previous versions allowed the use of a logical keyword argument scalar, with scalar=true indi-
cating 'SX' and scalar=false indicating 'MX'. This option has been removed and should be replaced by

casaditype.

The outputs are casadi Function objects. Note that qcasadi is only defined if a quad argument was passed.

5.2 getCasadilntegrator

integrator = getCasadilntegrator(f, Delta, argsizes, argnames, ...)
Returns a Casadi Integrator object.

Arguments are as follows:

e f : Function

Function that defines the ODE right-hand side. Note that the first argument of £ must be the differential

variables x.

e Delta : Positive Scalar
Integration timestep.
e argsizes : Cell or Vector
Gives the size of each argument to f
e argnames : Cell of Strings
Gives names for each argument.
e funcname : String
Name for the Integrator object. Must be a valid variable identifier.
e wrap : Logical [true]

Whether to wrap the Integrator object so that it can be called via f(x,u,p,...). If false, it must be called
as £('x0', x, 'p', vertcat(u, p, ...)), so you will typically always want wrap to be true.

e Nt : Integer [1]

Number of time points to include. If Nt is larger than 1, all of the arguments of £ must be vectors. The
returned function will then take a vector for x and matrices for all other parameters (with time along the
second dimension), and will return a matrix of the next Nt states.

Note that if wrap is false, this argument has no effect.
e options : Struct

Struct of options to send to cvodes.
e solver : String ['cvodes'|

Which solver to use for integration. Typical options are 'cvodes', 'idas', 'rk', and 'collocation'.
Consult the CasADi documentation for more information about these options.

e casaditype : String ['SX']

String 'SX' or 'MX' to decide which type of CasADi symbolic variables to use in the ODE expression. Consult
the CasADi User Guide for more details.

Note that previous versions allowed the use of a logical keyword argument scalar, with scalar=true indi-
cating 'SX' and scalar=false indicating 'MX'. This option has been removed and should be replaced by
casaditype.

5.3 getLinearizedModel

model = getLinearizedModel(f, args, names, [Deltal], [deal=false])
Linearizes the model

d

S =f(z,u,..)

the point {xss, uss, ...} given in args. names should be a cell array to define the fields into which each matrix should
go. For example, to linearize the model

f(z,u) ~ Az + Bu
you should use names = {'A', 'B'}, and model will be a struct with fields “A” and “B”.
f should be either a casadi.Function object or a native function handle.
If Delta is given, the model is also discretized with that timestep.

By default, the return value model is a struct whose fields are the strings in names. However, if deal is set to true, the
function will return the individual matrices as multiple outputs, e.g.

[A, B] = getLineraizedModel(f, {xss, uss}, {'A', 'B'}, 'deal', true())

Sometimes, this syntax is more convenient.

5.4 nmpc
solver = nmpc(f, 1, N, x0, 1lb, ub, guess, ...)
Returns ControlSolver object for solving MPC control problems.
Inputs are as follows:
e f: Casadi Function

Gives model for evolution of the system. By default, f is assumed to be in discrete-time, but continuous-time
f can be used with collocation (see argument N).

1: Casadi Function

Gives the stage cost for the system. To include (possibly time-varying) setpoints for 2 and wu, define 1 to take
additional arguments called “xsp” and “usp”, and provide the values for these setpoints in the par argument.
To penalize rates of change, you may also use “Du” as an argument.

N: Struct of Integers

Contains fields “x”, “u”, and “t” to specify the dimension of z and u, as well as say how many time points
to use. Optionally, it can contain a “c” entry to say how many (interior) collocation points to use (for a
continuous-time model f).

x0: Vector

Gives the initial condition for the system. If not provided, no initial condition is used.

1b: Struct

ub: Struct

guess: Struct

Give the bounds and initial guess for the system variables. Each entry of these structs should have the time
dimension last (e.g., field “x” should be of size [N.x, N.t + 1], and “u” should be [N.u, N.t]). Any fields
that aren’t given default to 400, —oo, and 0 respectively.

These structs can also contain “Du” and “Dx” fields to specify rate-of-change bounds for the system.

When using collocation, if these structs contain “x” entries and not “xc” entries, then values for “xc” will be
inferred using linear interpolation. If you do not want this behavior, you need to explicitly provide the “xc”
entry.

e Vf: Casadi Function

Gives the terminal cost for the system (zero if not given).
e Delta : Scalar

Defines the timestep. Must be provided to use collocation.
e par : Struct

Defines values of fixed parameters. Special entries “xsp” and “usp” define time-varying setpoint values (and
must be sizes [N.x, N.t + 1] and [N.u, N.t] respectively.

Parameters can be vectors (including scalars) or matrices, and the values can be time-varying constants. For
time-varying vector (or scalar) parameters, pass values as a matrix with each slice p(:,t) (i.e., each column)
giving the value at the corresponding time point. For time-varying matrices, use a 3D array, with each slice
p(:,:,t) giving the value at each time. Note that access is modulo length, so if a parameter p is passed as
a 1 by 3 matrix, then its value will repeat every three time points regardless of the horizon N.t.

e funcargs : Struct

Contains cell arrays for each function that define the sequence of arguments for the given function.

By default, function argument names are read directly from the corresponding Casadi function. Thus, you
only need to use funcargs if you created the Casadi function without names, or if you used names that are
different from the names in the optimization problem.

periodic : Logical [false]
Determines whether or not to add a periodicity constraint to the problem.
e : Casadi Function

Function that defines path constraints e(x,u) < 0. Note that the arguments can be modified using funcargs.e.
One constraint is written for each time point.

To soften these constraints, include an “s” entry in N to give the number of slacks you need. Note that if
funcargs.e does not contain “s”, then the constraints are written as e(z,u) < s, which means N.s must
correspond to the number of components of e. Otherwise, you may use “s” as an explicit argument to e (e.g.,
if you want to only soften certain constraints).

ef : Casadi Function
Defines the terminal constraint e¢(z(N)) < 0.
udiscrete : Logical Vector

Vector of true and false to say whether components of u should be discretely (i.e., integer) valued. Note
that to actually enforce this restriction in the optimization problem, you will need to choose a solver that
supports discrete variables (e.g., bonmin).

uprev : Column Vector
Gives the previous value of u to calculate the first rate of change.
discretel : Logical [true]

Indicates whether the objective function should be a discrete sum of stage costs (true) or a collocation-based
quadrature (false). Note that the latter requires N.c > 0.

casaditype : String ['SX']

Chooses which Casadi type to use for the NLP. If the functions are all matrix-based or more complicated
(e.g., Casadi integrators), or if the NLP is very large then 'MX' is usually best. If the functions are fairly
simple (e.g., a sequence of scalar operations) and if the NLP is small to medium size, then 'SX' is typically
better. Default is 'SX'.

xf : Column Vector

Gives the terminal value for x. If provided, a terminal equality constraint is added. You may consider using
a large terminal penalty instead if you encounter solver issues.

singleshooting : Logical [false]

Specifies whether to use single shooting to remove the system model from the NLP, which trades problem
size for sparsity. Note that single shooting cannot be used with collocation.

h : Casadi Function

If supplied, y variables are added to the formulation with the constraint y = h(x). y can then be used like
any other variable (e.g., supplying bounds, using it in 1, etc).

Note that if h is specified, you also must specify N.y in N.
finaly : Logical [true]

Decides whether to include y at the final time point or not. Default is true, which means it is included and
can be used in a terminal constraint. Note that if h takes u as an argument, then the first u will be used,
and so unexpected behavior may result.

g : Casadi Function

If supplied, indicates that the model is a DAE system of the form x"+ = f(x,z,u), g(x,z) = 0 with
differential states x and algebraic states z.

As with any other function, you can define g to take any set of arguments. Note that if g takes u as an
argument, then the constraint at time N.t is written using u(N.t - 1).

e customvar : Cell array of strings

List of custom variables to add to the problem. Note that each variable must have been used in one of the
functions so that sizes can be inferred. Custom variables are also time-invariant, i.e., there is only one copy
that is used everywhere.

Bounds on custom variables can be included in 1b and ub. Otherwise, variables are unbounded.

The output is a ControlSolver object.

5.5 nmhe

solver = nmhe(f, h, u, y, 1, N, 1lx, xObar, lb, ub, guess, ...)

Returns ControlSolver object for solving MPC control problems.

Inputs are as follows:

e f: Casadi Function

Gives model for evolution of the system. By default, f is assumed to be in discrete-time, but continuous-time
f can be used with collocation (see argument N).

h : Casadi Function

Gives measurement function.

u : Matrix
y : Matrix

Give the known values for v and y. Should be sized [N.u, N.t] and [N.y, N.t + 1] respectively. Both can
also be given in the par struct, but values given as arguments override those in par.

Note that u is only needed if the model has inputs, while y must always be given (either as an argument or in

1: Casadi Function

Gives the stage cost for the system error.

N: Struct of Integers

Contains fields “x”, “u”, “y” and “t” to specify the dimension of z, u, and y, as well as say how many time
points to use. Optionally, it can contain a “c” entry to say how many (interior) collocation points to use (for
a continuous-time model f). It can also contain a “d” entry to give the number of disturbance model states,
which allows d to be used as an argument in £, h, and 1 (the change in d, Dd can also be used in 1).

1x: Casadi Function

Gives the arrival cost for x0 (zero if not given). Note that if priorupdate (see below) is anything other than
‘none’, then this argument cannot be specified, as the default quadratic prior is used.

x0bar: Vector

Gives the prior value to use for Zy in 1x. Can also be given in par.

1b: Struct
ub: Struct

guess: Struct

Give the bounds and intial guess for the system variables. Each entry of these structs should have the time
dimension last (e.g., field “x” should be of size [N.x, N.t + 1], and “u” should be [N.u, N.t]). Any fields
that aren’t given default to 400, —oo, and 0 respectively.

When using collocation, if these structs contain “x” entries and not “xc” entries, then values for “xc” will be
inferred using linear interpolation. If you do not want this behavior, you need to explicitly provide the “xc”
entry.

Delta : Scalar
Defines the timestep. Must be provided to use collocation.
par : Struct

Defines values of fixed parameters. Special entries “xsp” and “usp” define time-varying setpoint values (and
must be sizes [N.x, N.t + 1] and [N.u, N.t] respectively.

Parameters can be vectors (including scalars) or matrices, and the values can be time-varying constants. For
time-varying vector (or scalar) parameters, pass values as a matrix with each slice p(:,t) (i.e., each column)
giving the value at the corresponding time point. For time-varying matrices, use a 3D array, with each slice
p(:,:,t) giving the value at each time. Note that access is modulo length, so if a parameter p is passed as
a 1 by 3 matrix, then its value will repeat every three time points regardless of the horizon N.t.

funcargs : Struct
Contains cell arrays for each function that define the sequence of arguments for the given function.

By default, function argument names are read directly from the corresponding Casadi function. Thus, you
only need to use funcargs if you created the Casadi function without names, or if you used names that are
different from the names in the optimization problem.

wadditive : Logical [false]

Decides whether w is an additive disturbance, i.e., x* = f(z,u) + w or is explicitly included in the model,
ie., ot = f(x,u,w).

When collocation is used, this choice means that w is the difference between the state at the right collocation
endpoint and the state at the next time point. In terms of the problem variables, interval k’s collocation
points are given by

[x(:,k), xc(i,i,k), xCik + 1) - w(:, k)]
and the value of w is the instantaneous jump at the very end of the interval.
penalizevN : Logical [true]

Decides whether the final measurement error v(V) should be penalized. If true, an extra [(0,v(N)) term is
added to the objective function (i.e., I(w,v) with w = 0. Note that if you have custom arguments for I, only
w is set to zero.

casaditype : String ['SX'|

Chooses which Casadi type to use for the NLP. If the functions are all matrix-based or more complicated
(e.g., Casadi integrators), or if the NLP is very large then 'MX' is usually best. If the functions are fairly
simple (e.g., a sequence of scalar operations) and if the NLP is small to medium size, then 'SX' is typically
better. Default is 'SX'.

g : Casadi Function

If supplied, indicates that the model is a DAE system of the form ™ = f(z, z,u), g(z, z) = 0 with differential
states x and algebraic states z.

As with any other function, you can define g to take any set of arguments. Note that if g takes u as an
argument, you should supply an extra value of u (i.e., give N.t + 1 values of u) to use for the final constraint.
Otherwise, the constraint at time N.t is written using u(N.t - 1).

e : Casadi Function

Function that defines path constraints e(z, u) < 0. Note that the arguments can be modified using funcargs.e.
One constraint is written for each time point.

To soften these constraints, include an “s” entry in N to give the number of slacks you need. Note that if
funcargs.e does not contain “s”, then the constraints are written as e(z,u) < s, which means N.s must

(39}

correspond to the number of components of e. Otherwise, you may use “s” as an explicit argument to e (e.g.,
if you want to only soften certain constraints).

e singleshooting : Logical [false]

Specifies whether to use single shooting to remove the system model from the NLP, which trades problem
size for sparsity. Note that single shooting cannot be used with collocation.

e priorupdate : String ['none']

Specifies the prior update to use. Available options are as follows (with k referring to the initial time of the
MHE problem):

— 'none' : No automatic updates to prior parameters.

— 'filtering' : Updates prior parameters using an EKF step applied to #(k — N|k — N).

— 'smoothing' : Updates prior parameters using &(k — N|k—1). Note that a correction is added to prevent
“double-counting” of the data y(k — N) through y(k).

— 'hybrid' : Identical to ‘filtering’ except that Z(k — N|k — 1) is used instead of &(k — N|k — N).

For any choice besides 'none', the arrival cost is of the form ¢,(z) = (v — Zo)P~'(x — Zy) with parame-
ter Pinv giving the quadratic weight P~!, and parameter xObar giving the the minimum value Z,. This
function is supplied automatically, which means the 1x argument should not be specified. Initial values
for xObar and Pinv must both be specified in the par struct. These parameters are then updated when
MHESolver.saveestimate () is called.

Note that prior updates are not supported for DAE models.

For a linear system with uncorrelated w and v, the 'filtering' and 'smoothing' updates are equivalent
to the (time-varying) Kalman Filter. 'hybrid' is not equivalent to the Kalman Filter but is faster and can
give better results for nonlinear systems.

e customvar : Cell array of strings

List of custom variables to add to the problem. Note that each variable must have been used in one of the
functions so that sizes can be inferred. Custom variables are also time-invariant, i.e., there is only one copy
that is used everywhere.

Bounds on custom variables can be included in 1b and ub. Otherwise, variables are unbounded.

The output is an MHESolver object (subclass of ControlSolver with some extra methods specific to MHE problems).

5.6 sstarg
solver = sstarg(f, h, 1, N, 1b, ub, guess, ...)
Returns ControlSolver object for solving MPC control problems.
Inputs are as follows:

e f: Casadi Function

Gives model for evolution of the system. By default, f is assumed to be in discrete-time, but continuous-time
f can be used with collocation (see argument N).

e h : Casadi Function
Gives measurement function. If not given, the variable y is not included in the optimization problem.
e 1: Casadi Function

Gives the objective function for the system. If included, 1 must have been defined with names, or funcargs.l
must also be provided.

If not given, a dummy objective is used so that any feasible solution is also optimal.

N: Struct of Integers

Contains fields “x”, “u”, “y” and “t” to specify the dimension of z, u, and y, as well as say how many time
points to use. Optionally, it can contain a “c” entry to say how many (interior) collocation points to use (for
a continuous-time model f).

1b: Struct

ub: Struct

guess: Struct

par :

Give the bounds and initial guess for the system variables. Each entry of these structs should have the time
dimension last (e.g., field “x” should be of size [N.x, N.t + 1], and “u” should be [N.u, N.t]). Any fields
that aren’t given default to 400, —oo, and 0 respectively.

These structs can also contain “Du” fields to specify rate-of-change bounds for the system.
Struct

Defines values of fixed parameters. Special entries “xsp” and “usp” define time-varying setpoint values (and
must be sizes [N.x, N.t + 1] and [N.u, N.t] respectively.

Parameters can be vectors (including scalars) or matrices, and the values can be time-varying constants. For
time-varying vector (or scalar) parameters, pass values as a matrix with each slice p(:,t) (i.e., each column)
giving the value at the corresponding time point. For time-varying matrices, use a 3D array, with each slice
p(:,:,t) giving the value at each time. Note that access is modulo length, so if a parameter p is passed as
a 1 by 3 matrix, then its value will repeat every three time points regardless of the horizon N.t.

e funcargs : Struct

Contains cell arrays for each function that define the sequence of arguments for the given function.

By default, function argument names are read directly from the corresponding Casadi function. Thus, you
only need to use funcargs if you created the Casadi function without names, or if you used names that are
different from the names in the optimization problem.

e ¢ : Casadi Function

Function that defines constraints for the system. If given, either e must have been defined with names, or
funcargs.e must be provided.

To soften these constraints, include an “s” entry in N to give the number of slacks you need. Note that if
funcargs.e does not contain “s”, then the constraints are written as e(z,u) < s, which means N.s must

correspond to the number of components of e. Otherwise, you may use “s” as an explicit argument to e (e.g.,
if you want to only soften certain constraints).

discretef : Logical [true]

If true, the model f is assumed to be in discrete time, and the constraint is written as f(z) = x. If false,
f is assumed to be continuous time, and the constraint is f(z) = 0.

udiscrete : Logical Vector

Vector of true and false to say whether components of u should be discretely (i.e., integer) valued. Note
that to actually enforce this restriction in the optimization problem, you will need to choose a solver that
supports discrete variables (e.g., bonmin).

casaditype : String ['SX']

Chooses which Casadi type to use for the NLP. Since sstarg problems are typically quite small, 'SX' is almost
always the best choice. However, if the model £ includes any nonscalar operations (e.g., Casadi Integrator
calls), then you will need to us 'MX'.

g : Casadi Function

10

If supplied, indicates that the model is a DAE system of the form x"+ = f(x,z,u), g(x,z) = 0 with
differential states x and algebraic states z.

customvar : Cell array of strings

List of custom variables to add to the problem. Note that each variable must have been used in one of the
functions so that sizes can be inferred. Custom variables are also time-invariant, i.e., there is only one copy
that is used everywhere.

Bounds on custom variables can be included in 1b and ub. Otherwise, variables are unbounded.

The output is a ControlSolver object.

5.7

mpcplot

[vals, xax, uax] = mpcplot(x, u, [t], [xspl, [xcl, [tcl, ...)

Makes a plot of the given MPC solution.

Arguments are as follows:

X : Array
Array of size [Nx, Nt + 1] that gives the values of the states at the discrete time points. Plotted normally.
u: Array

Array of size [Nu, Nt] that gives the values of the controls during the discrete time windows. Plotted using
zero-order hold (stairstep). If omitted, only x is plotted.

Alternatively, can be size [Nu, Nt + 1], which will lead to a first- order hold plot.
t : Vector [0:Nt]

Vector giving the time values at each of the discrete time points.
xsp : Array

If given, defines the setpoints for the state. If size [Nx, Nt], it is plotted using a zero-order hold (stairstep).
Otherwise, it must be size [Nx, Nt + 1], and it is plotted using a first-order hold (normal).

xc : Array
Array of states at (interior) collocation points. Must be size [Nx, Nc, Nt]. Used to interpolate the plot of
x.

tc : Array
Array of time points for the (interior) collocation points. Must be size [Nc, Nt]. If not given, it is assumed
that the collocation times are roots of Legendre polynomials.

usp : Array
Similar to xsp, but for u.

plot : Logical [true]

Whether or not to actually perform the plotting. If false, this function will simply return a struct with all
the (properly sized) values that would have been plotted.

marker : String ['']
xmarker : String
umarker : String

Plot markers to use. The value of marker sets the marker to use for both and u. To set them individually,
provide xmarker and/or umarker, which overrides marker for each variable.

Pass the empty string ('') to not use any marker.

collocmarker : String ['']

11

Marker to use for collocation points (if provided). Default is to use no marker.
o fig : Figure Handle

Figure handle to use for plotting. Default is to make a new figure. This is useful if you wish to plot multiple
datasets on the same figure.

e title: String ['']
e timelabel : String ['Time']
Strings to use for the window title and bottom x-axis (time-axis) label.
e legend : String ['']
String to use as a legend entry. If nonempty, will add a legend to the figure.
e legendloc : String ['North']

String that specifies where legend should be. Should be in the format of Octave/Matlab legend locations
(e.g., 'West', 'NorthEast', etc.).

e color : String or RGB array
e spcolor : String or RGB array
Colors to use for data (i.e., z and u) and setpoint respectively. Both default to black.
e xnames : Function or Cell Array of Strings
e unames : Function or Cell Array of Strings
Defines labels for the states and controls respectively. Used as y-axis labels on each subplot.

If a function, for each label, the function is called with a single argument of the integer index of the variable.
If a cell array of strings, the strings are used directly.

e labelrot : Integer

Sets the rotation for y-axis labels (in degrees). By default, 0 rotation if all labels are short (five characters
or fewer), otherwise 90.

e linestyle : String ['-']
e splinestyle : String [':"']
Chooses which type of line to use for the plots. (splinestyle is line style for setpoint xsp if given).

A4

The output vals is a struct with fields “x”, “u”, “t”, etc. that have all data properly resized to have Nt + 1 time points. It is
useful if you want to make your own plots but don’t want to have to reshape everything yourself.

Other outputs xax and uax are vectors of axes handles for x and u respectively. Note that they will be empty if plot is
false.

5.8 spdinv
[Ainv, Achol] = spdinv(A)

Computes inverse of symmetric positive-definite matrix A via (upper-triangular) Cholesky factorization. A must be given as
a single positional argument.

Also returns the Cholesky factor Achol (with Achol'*Achol == A).

Note that A can be a 3D array, at which point a 3D array of inverses is returned assuming each each A(:,:,1i) slice is a
matrix.

12

5.9 rk4
x = rk4(f, x0, [par={}], [Delta=1], [M=1])
[q, x] = rk4(..., 'quad', Q)
Does M steps of explicit rk4 integration with a total time of Delta.
e f : Function
ODE right-hand side function.
x0 : Vector

Initial condition.
e par : Cell Array
Parameters (extra arguments) to f (called as £ (x0, par{:})).

Delta : Positive Scalar

Timestep to use for integration.

M : Positive Integer

Number of steps to take. Note that the total time is always Delta, and so the duration of each step is A/M.

quad : Function

Quadrature function. If provided, must take the same arguments as f. Note that this makes the first return
value equal to the quadrature rather than the state at the next time point.

Returned values are x, the approximate value of x after Delta time units; and q, the approximate integral of Q(x, ...)
over the timestep.

5.10 ekf
[Pm, xhatm, P, xhat] = ekf(f, h, x, u, w, y, Pm, Q, R, [projectionfunc])
Updates the prior distribution P~ using the Extended Kalman filter.

f and h should be Casadi functions. £ must be discrete-time. P, Q, and R are the prior, state disturbance, and measurement
noise covariances (in particular, the input Pm refers to P(k|k — 1)).

Note that £ must be f(z,u,w) and h must be h(x).

The value of x that should be fed is Z(k|k — 1), and the value of P should be P(k | k-1). xhat will be updated to xhat(k | k)
and then advanced to &(k 4 1|k), while P will be updated to P(k|k) and then advanced to P(k + 1|k). The return values are
a list as follows

[P(k +1]k), 2(k + 1|k), P(k|k), Z(k| k)]
Depending on your specific application, you will only be interested in some of these values.

The optimal argument projectionfunc is a function handle that is called to project x back into the feasible space after the
correction step. It should take x as its only argument and return the projected version of . For example, if x is nonnegative,
using

projectionfunc = @(x) max(x, 0)

would project x back into the nonnegative orthant before advancing.

5.11 c2d
[...] = c2d(Delta, a, b, [q, r], [m], [g, hl, [quad], [Nquad], [return])
Discretization with continuous objective.

Converts from continuous-time objective

13

l(x,u) = fOA 'qr + 2x'mu + u'ru+ g’z + hu dt dx/dt = ax + bu
to the equivalent (assuming u is constant on [0, A]).

L(z,u) =2'Qr + 22’ Mu+ v Qu+ G'z+ H'u zt = Az + Bu
in discrete time.
Note that q can be given if and only if r is given (similarly g and h).

Optional argument quad decides whether to use approximate quadrature to compute the Q, R, and M matrices (default
false). Nquad is the number of steps to use in the quadrature (default 100). Quadrature may be necessary when Delta*a
has eigenvalues with real part less than —25 or greater than 25.

Argument return decides what is returned. The default value is ‘struct’, which returns a struct with fields “A” and “B”, as
well as fields “Q”, “R”, and “M” if arguments q and r were given. return can also be a string consisting of “ABQRMGH?”, at
which point, the individual matrices given in the string will be returned.

Reference: C. Van Loan, 1978, “Computing integrals involving the matrix exponential”.

5.12 nlfilter
[xhat, status] = nlfilter(h, xhatm, y, Rinv, Pinv, [x1b], [xubl)
Solves the nonlinear filtering problem
ming(z —27) P Yz —27) + (y — h(z)) R~ (y — h(z))

This is essentially a zero-step MHE problem with quadratic prior and cost.
Arguments are as follows:

e h: Casadi Function

Measurement function giving y = h(x).
e xhatm : Column Vector

Numerical estimate for 27, i.e., Z(k|k — 1).

y : Column Vector
Numerical value for the current measurement y(k).

Rinv : Matrix

Pinv : Matrix

Penalty matrices R~! and P~'. Note that they should already be inverted when they are passed as arguments.

x1b : Column Vector

xub : Column Vector

Bounds to enforce on « in the optimization problem. Useful if A is undefined for certain values of and you
need to restrict the domain.

The two outputs are the column vector xhat, which is the optimal estimate Z(k|k) and a string status that gives the status
of the optimization problem.

5.13 collocweights
[r, a, b, q] = collocweights(N, ['left'], ['right'])
Returns collocation weights based on roots of Legendre polynomials.

The first argument N gives the number of interior collocation points. The second and third arguments can be the strings ‘left’
or ‘right’ to add additional collocation points on the boundary.

Note that all arguments must be passed as positional arguments.

14

In Octave, simply calls builtin colloc. In Matlab, uses m-file implementation.

Reference: J. Villadsen, M. L. Michelsen, “Solution of Differential Equation Models by Polynomial Approximation”.

5.14 getCasadiDAE
[dae, argorder] = getCasadiDAE(Delta, f, [g]l, ...)
Arguments are as follows:
e Delta : Positive Scalar
Integration timestep.
e f : Casadi Function

Function that defines the ODE right-hand side.

g : Casadi Function

Function that defines the algebraic constraints for the system. Note that when there is overlap between
arguments of £ and g, the sizes must be consistent.

If g is not given, then the integrator is just a normal ODE.
e funcname : String ['dae’]

Name for the Integrator object. Must be a valid variable identifier.

diffstate : Integer or String [1]

algstate : Integer or String [2]

Integer giving the position of or string giving the name of the variables that define the differential variables
x and algebraic variables z.

optioms : Struct
Struct of options to send to the solver.
e solver : String ['idas']

Which solver to use for integration. Typical options are 'idas' and 'collocation'. Consult the CasADi
documentation for more information about these options. Note that not all integrators support DAEs.

The returned value dae is a CasADi Integrator object that returns the values of x and z after Delta time units. Arguments
are passed in the order given in argorder, which is arguments of f in order followed by arguments unique to g.

5.15 version
version()
Returns the version of MPCTools as a string.

The second output argument returns the HG changeset ID (as a hexidecimal string), which is more granular than the version
number.

6 ControlSolver Documentation

Below, we document all public attributes and member functions to the ControlSolver class. Note that, in contrast to the
functions in the previous section, these member functions accept only positional arguments.

15

6.1 ControlSolver

Class for holding an NLP solver for optimal control problems. Note that the user should not create instances of this class
directly (i.e., using the constructor), but should instead use the problem-specific interfaces nmpc, nmhe, and sstarg (all of
which return ControlSolver objects).

Public attributes are as follows:

e par

e 1b

e ub

® guess

e conlb

e conub

e discreteness

Structs that hold current values of parameters, bounds, etc. All time-varying entries have time along the
final dimension.

Since values can be changed directly by users, care should be taken to avoid changing the size of any fields,
or else there will be odd error messages on the next call to solve().

Entries in discreteness should all either be true or false to say whether the particular variable is discrete-
valued or not. Note that not all solvers support discrete variables.

e var
Read-only struct that holds the most recent optimal solution. Before solve () is called, this field is empty.
e stats

A struct that contains information about the most recent call to solve(). Note that for solvers other than
IPOPT, this struct may be empty (due to the Casadi interface not populating these values).

e status

A string containing the solver’s most recent return status. When using IPOPT, success is indicated by
'Solve_Succeeded'. For other solvers, it may not have a meaningful value.

e obj
Objective value of most recent optimization.
e verbosity : Integer Between 0 and 12 [0]
e timelimit : Positive Scalar (in seconds) [60]
e maxiter : Positive Integer [oo]
e isQP : Logical [false]

Solver-generic options that can be changed using set_* () functions. These are intended so that the user does
not need to remember the solver- specific names for common options. However, not all solvers may provide
access to all of these options. For example, due to CasADi limitations, when using the solver Bonmin, setting
verbosity=0 does not hide all output.

Note that all of these values can be passed as keyword arguments to nmpc, nmhe, and sstarg to avoid having
to call the set_*() methods after the object has been built.

To change any other solver options, you will need to use the init () function and the solver-specific option
names (see also getoptions()). Note that CasADi does not provide access to all solver-specific options.

16

6.2 ControlSolver.copy
solver = self.copy()

Returns a copy of the ControlSolver object in its current state.

6.3 ControlSolver.init

self.init(options) self.init('keyl', valuel, ['key2', value2], ...)

Initializes solver object using the provided options struct or using multiple 'key', value pairs. See Casadi user guide for
more information about available options.

Note that calling init () saves the current state of the object as the default state (i.e., the state that gets restored by calling
reset()).

6.4 ControlSolver.solve
self.solve()

Solves the current optimization problem.

6.5 ControlSolver.import _solution
self.import_solution(var, [stats], [sol])

Imports a solution into the current object. This is useful, e.g., if you want to solve the optimization problem using a solver
outside of CasADi.

var should be either the struct solution (i.e., in the format of self.var) or a single long vector of variables.

stats should be struct giving solution statistics. In particular, it should contain a “return status” field. sol should be a
struct giving extra solution information, e.g., dual multipliers, etc., in the form of self.sol. Note that both of these two
arguments are optional.

6.6 ControlSolver.saveguess
self.saveguess([newguess], [toffset])
Stores a guess from a given struct or from the current solution.

If newguess is provided, all of its fields are copied to the current guess (toffset defaults to 0). If not, the current optimal
solution is used (toffset defaults to 1). Note that any extra fields in the given guess are silently ignored. Also, any entries
of newguess that are NaN will not be used.

toffset can be manually specified to explicitly say give the time offset to use. Note that only the overlapping time points
are actually changed.

6.7 ControlSolver.fixvar
self.fixvar(var, t, val, [inds])
Sets guess, Ib, and ub for variable var at time t to val.

If the variable is a vector, you can use inds to set only some of the components.

6.8 ControlSolver.truncatehorizon
self.truncatehorizon(newhorizon)
Truncates the horizon of the optimization problem by removing constraints and fixing variables to zero.

Note that if there are terminal costs or constraints, these are not shifted. Thus, if you really need the true shorter horizon
problem, you will need to call the original function again with the appropriate horizon from the beginning.

17

6.9 ControlSolver.getQP
problem = getQP(self, [solver='gurobi'l], [point])
Returns a struct of standard-form parameters to solve a quadratic approximation of the current NLP.

The solver argument chooses the output format. The default is 'gurobi', which returns a struct with Gurobi-compatible
fieldnames. Also available are 'quadprog', which returns a struct for use with Matlab’s quadprog, and gp, which returns a
cell array of arguments that can be given to Octave’s gp function. Note that only Gurobi supports discrete decision variables.

If given, point is a struct that defines the point to use for linearization. If not supplied, self.guess is used.

Note that the objective function is the nominal objective function, not the Lagrangian.

6.10 ControlSolver.getoptions
self.getoptions()

Returns the options available for the current solver as a string.

6.11 ControlSolver.xvec2struct
s = self.xvec2struct(v)

Reshapes the long vector v into a struct of named variables s.

6.12 ControlSolver.gvec2struct
s = self.gvectostruct(v)

Reshapes the long vector v into a struct of named constraints s. Useful for multipliers on constraints.

6.13 ControlSolver.set solver
self.set_solver([solvername])
Sets the solver to use for optimization.

Note that setting the solver will reset any solver-specific options that have been set via init().

6.14 ControlSolver.reset
Resets the object back to its default state.

6.15 ControlSolver.cyclepar
self.cyclepar('parl', newl, ['par2, 'new2', ...])

Cycles one or more time-varying parameters. For each parameter given, the oldest value is removed, everything is shifted
forward by one spot, and the new value is inserted.

E.g., for parameter xsp, the call
self.cyclepar('xsp', xspnew)
is equivalent to
self .par.xsp = [self.par.xsp(:,2:end), xspnew]

This function works for time-varying scalars, vectors, and matrices. Note that it assumes that the horizon is full (i.e.,
self .horizon == self .maxhorizon).

7 MHESolver Documentation

Below, we document the public attributes and member functions of the MHESolver class. Note that MHESolver is a subclass
of ControlSolver, and thus includes all of its methods as well. These functions take only positional arguments.

18

7.1 MHESolver

Class for holding an NLP solver for MHE problems. Note that the user should not create instances of this class directly (i.e.,
using the constructor), but should instead use the nmhe function.

In addition to all the properties from the ControlSolver class, this object also contains the following extra fields:
e history

Array struct that holds a history of estimates for x, w, and v, as well as values of y and u. self.history(t) gives
the estimate from t time periods ago. The current solution is stored to the history whenever self .saveestimate ()
is called.

Keyword argument ‘Nhistory’ controls the number of past estimates to include in history. The default value is
one more than the horizon of the MHE problem.

e priorupdate : String
String indicating which type of prior update (if any) is being used. See documentation of nmhe () for more details.
e fix_truncated_x : Logical [false]

Whether to fix the x variables that are outside of the current horizon. Usually this is unnecessary, but it can help
with "Restoration_Failed" issues when the horizon is truncated. Note that you may need to provide a feasible
guess for x if fix_truncated_x is true.

7.2 MHESolver.newmeasurement
self .newmeasurement(y, [u], [xObar])

Shifts par.y to include the new measurement y at the current time. Also shifts par.u if u is given. If xObar is given, its
value is simply overwritten.

In contrast to cyclepar (), this function accounts for a shortened horizon, and it only removes old data if the horizon is full.

7.3 MHESolver.saveestimate
self.saveestimate([updateguess=true])
Saves the current estimates to the history struct. Also updates the prior weight if self.priorupdate has been specified.

If updateguess is true and the horizon is full, then the solver’s guess is also updated.

7.4 MHESolver.reset
self.reset()

Resets the object to its initial state.

8 KalmanFilter Documentation

Below, we document all public attributes and member functions to the KalmanFilter class. The class constructor accepts
both positional and keyword arguments, while the other member functions take only positional arguments.

8.1 KalmanFilter
Class for (offset-free) Kalman Filter.
Public attributes are as follows:
o N
struct of system sizes. Fields are x, u, y, 4, w, and v.

o A
e B

19

C

D

Ad
Bd
Cd
Gx
Gd
Qw
Rv

Matrices that define the system and disturbance model.

e xhat
e dhat

Current estimates of state and integrating disturbances after the current measurement has been considered. These
are updated via calls to filter().

e xhatm
e dhatm

Current estimates of state and integrating disturbances before the current measurement has been considered.
These are updated via calls to predict ().

o Lx
e Id

Kalman Filter gains for the states and integrating disturbances.

Txd
Txy
Tud
Tuy

Matrices for the steady-state target calculation. Multiply either d or ysp and return either xtarg or utarg.

8.2 KalmanFilter.filter
[xhat, dhat] = self.filter(y, [xhatm], [dhatm], [u])
Performs the Kalman Filter update using the current measurement y. New values are stored to self.xhat and self.dhat.

If not given, xhatm and dhatm are taken from the current values of the object. u is handled similarly, but it only matters if
self.D is nonzero.

8.3 KalmanFilter.predict
[xhatm, dhatm] = self.predict(u, [xhat], [dhat])

Performs the Kalman Filter prediction using the current control action u. New values are stored to self.xhatm and
self.dhatm.

If not given, xhat and dhat are taken from the current values of the object.

8.4 KalmanFilter.target
[xtarg, utarg] = self.target(ysp, [dhat], [rspl)

Calculates the steady-state target values of x and u using the given value of ysp or rsp.

If rsp is given, it is used directly. Otherwise, it is calculated as rsp = self .Hx(ysp - self.ys).

20

	Introduction
	General Function Usage
	Optimization Variables and Parameters
	Solver Options
	Public API Documentation
	getCasadiFunc
	getCasadiIntegrator
	getLinearizedModel
	nmpc
	nmhe
	sstarg
	mpcplot
	spdinv
	rk4
	ekf
	c2d
	nlfilter
	collocweights
	getCasadiDAE
	version

	ControlSolver Documentation
	ControlSolver
	ControlSolver.copy
	ControlSolver.init
	ControlSolver.solve
	ControlSolver.import_solution
	ControlSolver.saveguess
	ControlSolver.fixvar
	ControlSolver.truncatehorizon
	ControlSolver.getQP
	ControlSolver.getoptions
	ControlSolver.xvec2struct
	ControlSolver.gvec2struct
	ControlSolver.set_solver
	ControlSolver.reset
	ControlSolver.cyclepar

	MHESolver Documentation
	MHESolver
	MHESolver.newmeasurement
	MHESolver.saveestimate
	MHESolver.reset

	KalmanFilter Documentation
	KalmanFilter
	KalmanFilter.filter
	KalmanFilter.predict
	KalmanFilter.target

