MPCTools

Nonlinear MPC using CasADi

Michael Risbeck

April 5th, 2017

April 5th, 2017

Nonlinear MPC

By now, you're (hopefully) familiar with the standard nonlinear MPC setup

N—1
min Z U(x(k), u(k)) Stage Costs
R R VA Terminal Cost
st. x(k+1) = f(x(k), u(k)) Model
(x(k),u(k)) e Z State/input Constraints
x(N) e X¢ Terminal Set
x(0) = x Initial Condition

To solve example problems, we want fast algorithmic differentiation
attached to powerful NLP solvers.

@ CasADi provides both of these via Octave (and Matlab)

@ Let's see an example

Michael Risbeck MPCTools April 5th, 2017 2/18

CasADi Basics

Consider the simple example of a hanging spring.
0

% Example use of CasADi
k = 10; LO = 1; g = 9.8; m = 1;

x = casadi.SX.sym('x', 2);

k(¢ — fo)

[z}
[

k*(norm(x) - LO)"2
+ m*g*x(Q);

nlp = struct('x', x, 'f', E);
mg solver =
casadi.nlpsol('springsolver',

Total energy is minimized at ipopt', nlp);

equilibrium: solution = solver('x0', [2; -11);
E=k((/—¢ 2 meh % Equilibrium position:
(0) + mg disp(solution.x);
= k(|| x| _g0)2 + mgxo % >> DM([6.49685e-12, -1.49])

Michael Risbeck MPCTools April 5th, 2017 3/18

What's in CasADi?

CasADi = Computer algebra system + Algorithmic Differentiation
@ Symbolic algebraic expression core

o Can construct algebraic expressions and perform some simplification
o Not a general-purpose computer algebra system

o State-of-the-art ODE and DAE integrators (e.g., CVODES, IDAS)
o Can take derivatives of these objects!

@ Links to state-of-the-art solvers (e.g., IPOPT, qpOASES)

o Provides exact first and second derivatives
o Initial support for discrete variables

@ C code generation

See <casadi.org> for more information.

To paraphrase Spiderman:
With great power comes great possibility for people to write un-
readable and unmaintainable code!

Michael Risbeck MPCTools April 5th, 2017 4/18

From official CasADi Examples

for j=1:d+1
% Construct Lagrange polynomials to get the
% polynomial basis at the collocation point

coeff = 1;
for r=1:d+1
if r oT=
coeff = conv(coeff, [1, -tau_root(r)l);
coeff = coeff / (tau_root(j)-tau_root(r));
end
end Things can escalate

% Evaluate the polynomial at the final time to get
% the coefficients of the continuity equation
D(j) = polyval(coeff, 1.0);

pretty quickly.

'
% Evaluate the time derivative of the polynomial We don t Want

% at all collocation points to get the coefficients I H
; searion point £ everyone writing this
% of the continuity equation

pder = polyder (coeff); themselvesl

for r=1:d+1

C(j,r) = polyval(pder, tau_root(r));
end

% Evaluate the integral of the polynomial to get the
% coefficients of the quadrature function
pint = polyint (coeff);
B(j) = polyval(pint, 1.0);
end

Michael Risbeck MP April , 2017

What do we want?

We want to solve nonlinear MPC problems.
CasADi is more robust than our in-house software
However, setting up an MPC problem in CasADi takes a lot of code

Everyone copy/pasting their own code is bad

A simpler interface means we can save a lot of time

Michael Risbeck MPCTools April 5th, 2017 6/18

Enter MPCTools

An Octave package (usually Matlab-compatible)
@ Download from <https://bitbucket.org/rawlings-group/octave-mpctools>

@ Put the mpctools folder somewhere and add it to Octave's path

@ Running mpc = import_mpctools() gives access to functions via mpc.*
e Can also call functions via mpctools.* without import

Comes with cheatsheet and full documentation (in the doc folder).
@ Should get you started writing your own code.
Also includes a bunch of example files, e.g.,
@ cstr.m: Example 1.11 using CasADi integrators and linearization

@ vdposcillator.m: Example of linear vs. nonlinear MPC.
@ cstr_startup.m: Nonlinear startup for Example 1.11 system.

Michael Risbeck MPCTools April 5th, 2017 7/18

https://bitbucket.org/rawlings-group/octave-mpctools

System Model

Start by defining the system model as an Octave function.

function rhs = cstrode(x, u, p, pars)
% Nonlinear ODE model for reactor.
c=x(1); T =x(2); h = x(3) + eps();

Tc u(l); F = u(2);

FO = p(1);

k = pars.kO*xexp(-pars.E/T);
rate = k*c;

dcdt = FO*(pars.cO - c)/(pars.A*h) - rate;
dTdt = FOx(pars.TO - T)/(pars.Axh)

- pars.DeltaH/pars.rhoCp*rate

+ 2*pars.U/(pars.r*pars.rhoCp)*(Tc - T);
dhdt = (FO - F)/pars.A;

rhs = [dcdt; dTdt; dhdt];
end’function

Michael Risbeck MPCTools April 5th, 2017 8/18

System Simulation

The nonlinear system can be simulated using CasADi integrator objects,
created via a convenient wrapper.

% Turn into casadi function and simulator.
ode = @(x, u, p) cstrode(x, u, p, pars);
ode_casadi = mpc.getCasadiFunc(ode, [Nx, Nu, Npl, ...
{'x', 'u', 'p'}, {'ode'});
cstrsim = mpc.getCasadilntegrator (ode, Delta, [Nx, Nu, Npl,
{'x', 'u', 'p'}, {'cstr'});

% Simulate with nonlinear model.
x(:,t+1) = full(cstr(x(:,t), ul:,t), d(:,t)));

Note that cstr returns CasADi o objects
e "“Double Matrix", CasADi's internal (numeric) Matrix type

o Call to fu110 converts to native Octave matrix

Michael Risbeck MPCTools April 5th, 2017 9/18

Linear Unconstrained Control

Set up linear controller and
estimator.

% Get linearized model.

model = mpc.getLinearizedModel(
ode_casadi, {xs, us, ps},
{'A', 'B', 'Bp'}, Delta);
A = model.A;
B = model.B;
% Find LQR.
[K, Pi]l = dlqr(A, B, Q, R);
K = -K; % Note sign convention.
% Find Kalman Filter.
kf = mpc.KalmanFilter('A', A,
‘', B, 'C', C, 'Bd', Bd,
‘cd', cd, 'Qu', Qw,
'Rv', Rv, 'contvars', [1, 31);

Michael Risbeck

Simulate closed-loop.

for

end

MPCTools

1:(Nsim + 1)
% Take measurement .
y(:,i) = C*x(:,i) + v(:,1i);

i =

% Advance state measurement.
[xhat (:,i), dhat(:,i)] =
kf.filter(y(:,i), xhatm(:,i),
dhatm(:,i));

% Use steady-state target
[xtarg(:,i), utarg(:,i)] =
kf.target (ysp(:,i));

% Apply control law.
K*(xhat (:,1)
+ utarg(:,i);

u(:,i) = - xtarg(:,i

% Evolve plant.
x(:,1i + 1) = full(cstrsim(x(:,1),
u(:,i), pC:,i)));

% Advance state estimates
[xhatm(:,i + 1), dhatm(:,i + 1)]
kf.predict (u(:,i), xhat(:,i),
dhat (:,1i));

April 5th, 2017

selector.

)

c (mol/L)

0.000
0.5
4 <
—0.005 = 0.0 4
T T T T F
0 10 20 30 40 50
—05 -
Q 1 T T T T
~ 0 10 20 30 40 50
~
0 0.015 +
T T T T
0 10 20 30 40 50 &
‘e 0.010 A
£
-
_ 0.05 1 =
£ w 0.005 A
<
0.00 0.000 +
: T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Time (min) Time (min)
Michael Risbeck MPCTools April 5th, 2017 11/18

What can we do with MPCTools?

Discrete-time linear MPC

Discrete-time nonlinear MPC
Explicit models

o Runge-Kutta discretization
o Collocation

o DAE systems

@ Discrete-time nonlinear MHE

o Explicit models
o Runge-Kutta discretization
e Collocation

Steady-state target calculation

Basic plotting

Michael Risbeck MPCTools April 5th, 2017 12/18

Example: Van der Pol Oscillato

% Define nonlinear and linearized models.
ode = @(x, u) [(1 - x(2).72)*x(1) - x(2) + u(1); x(1)];
vdp = mpctools.getCasadilntegrator (ode, Delta, [Nx, Nul, {'x', 'u'}, {'vdp'});

fnonlin = mpctools.getCasadiFunc (ode, [Nx, Nul, {'x', 'u'}, {'vdprk4'},
'rk4', true(), 'Delta', Delta);
linmodel = mpctools.getLinearizedModel (ode, {zeros(Nx, 1), zeros(Nu, 1)},
{'A", 'B'}, Delta);
Flin = mpctools.getCasadiFunc(@(x, u) linmodel.A*x + linmodel.B*u, [Nx, Nul,

{'x", 'u'}, {'vdplin'});

% Define objective functions.

stagecost = @(x, u) x'*x + u'*u;
1 = mpctools.getCasadiFunc(stagecost, [Nx, Nul, {'x', 'u'}, {'1'});
termcost = Q@(x) 10%x'*xx;
Vf = mpctools.getCasadiFunc (termcost, [Nx], .
Ty, CvErn; System Model:
% Set bounds. dX 1— x 2X — X u
1b = struct('u', -0.75%ones(Nu, Nt)); _— = (2) 1 2 +
ub = struct('u', ones(Nu, Nt)); dt X1

% Build solvers.

N = struct('x', Nx, 'u', Nu, 't', Nt);

kwargs = struct('l', 1, 'vf', V£, 'N', N, 'lb', 1b, 'ub', ub);
solvers = struct();

solvers.LMPC = mpctools.nmpc('f', Flin,'**', kwargs);
solvers.NMPC = mpctools.nmpc('f', fnonlin, '**', kwargs);

Michael Risbeck MP

ols April 5th, 2017 13/18

Simulation Results

For this problem, nonlinear MPC performs slightly better.
@ The computation isn't much more time-consuming because of the
power of CasADi.
@ The problem isn't difficult to set up because of MPCTools.

—— Setpoint —— LMPC —— NMPC
1_
X1 \
0 N —
1
X2
0 T T T T
1_
u 0 __==—
J
0 2 4 6 8 10
Time

Michael Risbeck MPCTools April 5th, 2017 14 /18

More Complicated Example

Using MPCTools, we can replace the LQR and KF from Example 1.11
with nonlinear MPC and MHE.

@ cstr_startup.m shows basic structure and a setpoint change.
@ cstr_nmpc_nmhe.m shows steady-state target finding and NMHE.

@ See the cheatsheet for important functions and syntax.

Michael Risbeck MPCTools April 5th, 2017 15/18

cstr_startup.m

Here, nonlinear MPC knows to be less aggressive.

5 C v p
° 0.5 - 310 A
S —
< < 300
0.0 1 T T T T =
0 20 40 60 80 100
290 A
500 A
N 1
% 400 A ! D !! 0
= 300 A
0 20 40 60 80 100 = 0117
0.75 1~ : €010
€ =7 - X
£ i w
< 0.50 0.09 A
0 20 40 60 80 100 0
Time (min)
MPCTools

Michael Risbeck

Time (min)

April 5th, 2017

16 /18

What can't we do?

@ True continuous-time formulation
o Continuous-time models with explicit time dependence are not
supported
e Quadrature for continuous-time objective function is available via
collocation or RK4
@ Quality guess generation
e Solve sequence of smaller problems
o Use as initial guess for large problem
e Must do by hand
@ Stochastic MPC
@ Robust MPC

Michael Risbeck MPCTools April 5th, 2017 17 /18

That's all, folks!

@ For questions, comments, etc., email <risbeckewisc.edu>
@ For bugs or feature requests, open an issue on Bitbucket

@ <https://bitbucket.org/rawlings-group/octave-mpctools>

207 0.8
0.7 A
1.5
5 061
X210 g 0.5
o
§ 0.4'\~_‘/
051 0.3 |
0.2 1
0.0 i T T T T
0.0 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8
X1 ca (mol/L)

Michael Risbeck MPCTools April 5th, 2017 18/18

https://bitbucket.org/rawlings-group/octave-mpctools

