Source

rbdl / src / SimpleMath / SimpleMathDynamic.h

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/**
 * This is a highly inefficient math library. It was conceived by Martin
 * Felis <martin.felis@iwr.uni-heidelberg.de> while he was compiling code
 * that uses a highly efficient math library.
 *
 * It is intended to be used as a fast compiling substitute for the
 * blazingly fast Eigen3 library and tries to mimic its API to a certain
 * extend.
 *
 * Feel free to use it wherever you like. However, no guarantees are given
 * that this code does what it says it would.
 */

#ifndef SIMPLEMATHDYNAMIC_H
#define SIMPLEMATHDYNAMIC_H

#include <sstream>
#include <cstdlib>
#include <assert.h>

#include "compileassert.h"
#include "SimpleMathBlock.h"

/** \brief Namespace for a highly inefficient math library
 *
 */
namespace SimpleMath {

namespace Fixed {
	template <typename val_type, unsigned int ncols, unsigned int nrows> class Matrix;
}

/** \brief Namespace for elements of varying size.
 */
namespace Dynamic {

// forward declaration
template <typename val_type>
class Matrix;

/** \brief Class for both matrices and vectors.
 */
template <typename val_type>
class Matrix {
	public:
		typedef Matrix<val_type> matrix_type;
		typedef val_type value_type;

		Matrix() :
			nrows (0),
			ncols (0),
			mapped_data (false),
			mData (NULL) {};
		Matrix(unsigned int rows) :
			nrows (rows),
			ncols (1),
			mapped_data (false) {
				mData = new val_type[rows];
			}
		Matrix(unsigned int rows, unsigned int cols) :
			nrows (rows),
			ncols (cols),
			mapped_data (false) {
				mData = new val_type[rows * cols];
			}
		Matrix(unsigned int rows, unsigned int cols, val_type *data_ptr) :
			nrows (rows),
			ncols (cols),
			mapped_data (true) {
				mData = data_ptr;
			}
	
		unsigned int rows() const {
			return nrows;
		}

		unsigned int cols() const {
			return ncols;
		}

		unsigned int size() const {
			return nrows * ncols;
		}
		void resize (unsigned int rows, unsigned int cols=1) {
			if (nrows * ncols > 0 && mData != NULL && mapped_data == false) {
				delete[] mData;
			}

			nrows = rows;
			ncols = cols;

			mData = new val_type[nrows * ncols];
		}

		void conservativeResize (unsigned int rows, unsigned int cols = 1) {
			Matrix <val_type> result = Matrix<val_type>::Zero(rows, cols);

			unsigned int arows = std::min (rows, nrows);
			unsigned int acols = std::min (cols, ncols);

			for (unsigned int i = 0; i < arows; i++) {
				for (unsigned int j = 0; j < acols; j++) {
					result(i,j) = (*this)(i,j);
				}
			}

			*this = result;	
		}

		Matrix(const Matrix &matrix) :
			nrows (matrix.nrows),
			ncols (matrix.ncols),
			mapped_data (false) {
			unsigned int i;
		
			mData = new val_type[nrows * ncols];

			for (i = 0; i < nrows * ncols; i++)
				mData[i] = matrix.mData[i];
		}
		Matrix& operator=(const Matrix &matrix) {
			if (this != &matrix) {
				if (!mapped_data) {
					delete[] mData;

					nrows = matrix.nrows;
					ncols = matrix.ncols;
					mapped_data = false;

					mData = new val_type[nrows * ncols];

					unsigned int i;
					for (i = 0; i < nrows * ncols; i++)
						mData[i] = matrix.mData[i];
				} else {
					// we overwrite any existing data
					nrows = matrix.nrows;
					ncols = matrix.ncols;
					mapped_data = true;

					unsigned int i;
					for (i = 0; i < nrows * ncols; i++)
						mData[i] = matrix.mData[i];
				}
			}
			return *this;
		}

		// conversion different val_types
		template <typename other_type>
		Matrix (const Matrix<other_type> &matrix) :
			nrows (matrix.rows()),
			ncols (matrix.cols()),
			mapped_data(false) {

			mData = new val_type[nrows * ncols];

			for (unsigned int i = 0; i < nrows; i++) {
				for (unsigned int j = 0; j < ncols; j++) {
					(*this)(i,j) = static_cast<val_type>(matrix(i,j));
				}
			}
		}

		// conversion from a fixed size matrix
		template <typename other_type, unsigned int fnrows, unsigned int fncols>
		Matrix (const Fixed::Matrix<other_type, fnrows, fncols> &fixed_matrix) :
			nrows (fnrows),
			ncols (fncols),
			mapped_data (false),
			mData (NULL) {
				mData = new val_type[nrows * ncols];

				for (unsigned int i = 0; i < nrows; i++) {
					for (unsigned int j = 0; j < ncols; j++) {
						(*this)(i,j) = static_cast<val_type>(fixed_matrix(i,j));
					}
				}
			}

		Matrix (const Block<matrix_type, value_type> &block) :
			nrows(block.rows()),
			ncols(block.cols()),
			mapped_data (false) {
				mData = new val_type[nrows * ncols];

				for (unsigned int i = 0; i < nrows; i++) {
					for (unsigned int j = 0; j < ncols; j++) {
						(*this)(i,j) = static_cast<val_type>(block(i,j));
					}
				}

			}

		~Matrix() {
			if (nrows * ncols > 0 && mData != NULL && mapped_data == false) {
				delete[] mData;
				mData = NULL;
			}

			nrows = 0;
			ncols = 0;
		};

		// comparison
		bool operator==(const Matrix &matrix) const {
			if (nrows != matrix.nrows || ncols != matrix.ncols)
				return false;

			for (unsigned int i = 0; i < nrows * ncols; i++) {
				if (mData[i] != matrix.mData[i])
					return false;
			}
			return true;
		}
		bool operator!=(const Matrix &matrix) const {
			if (nrows != matrix.nrows || ncols != matrix.ncols)
				return true;

			for (unsigned int i = 0; i < nrows * ncols; i++) {
				if (mData[i] != matrix.mData[i])
					return true;
			}
			return false;
		}

		// access operators
		const val_type& operator[](const unsigned int &index) const {
			assert (index	>= 0);
			assert (index < nrows * ncols);
			return mData[index];
		};
		val_type& operator[](const unsigned int &index) {
			assert (index	>= 0 && index < nrows * ncols);
			return mData[index];
		}

		const val_type& operator()(const unsigned int &row, const unsigned int &col) const {
			if (!(row	>= 0 && row < nrows && col >= 0 && col < ncols)) {
				std::cout << "row = " << row << " col = " << col << std::endl;
				std::cout << "nrows = " << nrows << " ncols = " << ncols << std::endl;
				std::cout << "invalid read = " << mData[100000] << std::endl;
			}
			assert (row	>= 0 && row < nrows && col >= 0 && col < ncols);
			return mData[row*ncols + col];
		};
		val_type& operator()(const unsigned int &row, const unsigned int &col) {
			assert (row	>= 0 && row < nrows && col >= 0 && col < ncols);
			return mData[row*ncols + col];
		};
		
		void zero() {
			for (unsigned int i = 0; i < ncols * nrows; i++)
				mData[i] = 0.;
		}
		void setZero() {
			zero();
		}

		val_type norm() {
			return sqrt(this->squaredNorm());
		}

		void normalize() {
			val_type length = this->norm();

			for (unsigned int i = 0; i < ncols * nrows; i++)
				mData[i] /= length;
		}

		Matrix<val_type> cross(const Matrix<val_type> &other_vector) {
			assert (nrows * ncols == 3);
			assert (other_vector.nrows * other_vector.ncols == 3);

			Matrix<val_type> result (3, 1);
			result[0] = mData[1] * other_vector[2] - mData[2] * other_vector[1];
			result[1] = mData[2] * other_vector[0] - mData[0] * other_vector[2];
			result[2] = mData[0] * other_vector[1] - mData[1] * other_vector[0];

			return result;
		}

		static matrix_type Zero() {
			matrix_type result;
			result.setZero();
			return result;
		}

		static matrix_type Zero(int rows, int cols = 1) {
			matrix_type result (rows, cols);
			result.setZero();
			return result;
		}

		static matrix_type Constant (int rows, val_type value) {
			matrix_type result (rows, 1);
			unsigned int i;
			for (i = 0; i < result.size(); i++)
				result[i] = value;
			
			return result;
		}

		static matrix_type Constant (int rows, int cols, val_type value) {
			matrix_type result (rows, cols);
			unsigned int i;
			for (i = 0; i < result.size(); i++)
				result[i] = value;
			
			return result;
		}

		static matrix_type Identity (int rows, int cols = 1) {
			assert (rows == cols);

			matrix_type result (rows, cols);
			result.identity();

			return result;
		}

		void identity() {
			assert (nrows == ncols);

			setZero();
			for (unsigned int i = 0; i < ncols; i++)
				mData[i * ncols + i] = 1.;
		}

		void random() {
			for (unsigned int i = 0; i < nrows * ncols; i++) 
				mData[i] = static_cast<val_type> (rand()) / static_cast<val_type> (RAND_MAX);
		}

		val_type squaredNorm() const {
			assert (ncols == 1 || nrows == 1);
			val_type result = 0;

			for (unsigned int i = 0; i < nrows * ncols; i++)
				result += mData[i] * mData[i];

			return result;
		}

		val_type dot(const matrix_type &matrix) const {
			assert (ncols == 1 || nrows == 1);
			val_type result = 0;

			for (unsigned int i = 0; i < nrows * ncols; i++)
				result += mData[i] * matrix[i];

			return result;
		}

		// Blocks
		Block<matrix_type, val_type>
			block (unsigned int row_start, unsigned int col_start, unsigned int row_count, unsigned int col_count) {
				return Block<matrix_type, val_type>(*this, row_start, col_start, row_count, col_count);
			}

		template <unsigned int row_count, unsigned int col_count>
		Block<matrix_type, val_type>
			block (unsigned int row_start, unsigned int col_start) {
				return Block<matrix_type, val_type>(*this, row_start, col_start, row_count, col_count);
			}

		// Operators with scalars
		void operator*=(const val_type &scalar) {
			for (unsigned int i = 0; i < nrows * ncols; i++)
				mData[i] *= scalar;
		};
		void operator/=(const val_type &scalar) {
			for (unsigned int i = 0; i < nrows * ncols; i++)
				mData[i] /= scalar;
		}
		Matrix operator/(const val_type& scalar) const {
			matrix_type result (*this);

			for (unsigned int i = 0; i < nrows * ncols; i++)
				result[i] /= scalar;

			return result;
		}

		// Operators with other matrices
		Matrix operator+(const Matrix &matrix) const {
			matrix_type result (*this);

			for (unsigned int i = 0; i < nrows * ncols; i++)
				result[i] += matrix[i];

			return result;
		}
		void operator+=(const matrix_type &matrix) {
			for (unsigned int i = 0; i < nrows * ncols; i++)
				mData[i] += matrix.mData[i];
		}
		Matrix operator-(const Matrix &matrix) const {
			matrix_type result (*this);

			for (unsigned int i = 0; i < nrows * ncols; i++)
				result[i] -= matrix[i];

			return result;
		}
		void operator-=(const Matrix &matrix) {
			for (unsigned int i = 0; i < nrows * ncols; i++)
				mData[i] -= matrix.mData[i];
		}

		Matrix<val_type> operator*(const Matrix<val_type> &other_matrix) const {
			assert (ncols == other_matrix.nrows);

			Matrix<val_type> result(nrows, other_matrix.ncols);
			
			result.setZero();

			unsigned int i,j, k;
			for (i = 0; i < nrows; i++) {
				for (j = 0; j < other_matrix.cols(); j++) {
					for (k = 0; k < other_matrix.rows(); k++) {
						result(i,j) += mData[i * ncols + k] * other_matrix(k,j);
					}
				}
			}
			
			return result;
		}

		void operator*=(const Matrix &matrix) {
			matrix_type temp (*this);
			*this = temp * matrix;
		}

		// Special operators
		val_type *data(){
			return mData;
		}

		// regular transpose of a 6 dimensional matrix
		Matrix<val_type> transpose() const {
			Matrix<val_type> result(ncols, nrows);
	
			for (unsigned int i = 0; i < nrows; i++) {
				for (unsigned int j = 0; j < ncols; j++) {
					result(j,i) = mData[i * ncols + j];
				}
			}

			return result;
		}

		operator val_type() {
			assert (nrows == 1);
			assert (nrows == 1);

			return mData[0];
		}

//		const HouseholderQR<matrix_type> colPivHouseholderQR() const {
//			return HouseholderQR<matrix_type>(*this);
//		}

	private:
		unsigned int nrows;
		unsigned int ncols;
		bool mapped_data;

		val_type* mData;
};

template <typename val_type>
inline Matrix<val_type> operator*(val_type scalar, const Matrix<val_type> &matrix) {
	Matrix<val_type> result (matrix);

	for (unsigned int i = 0; i < matrix.rows() * matrix.cols(); i++)
		result.data()[i] *= scalar;

	return result;
}

template <typename val_type, typename other_type>
inline Matrix<val_type> operator*(const Matrix<val_type> &matrix, other_type scalar) {
	Matrix<val_type> result (matrix);

	for (unsigned int i = 0; i < matrix.rows() * matrix.cols(); i++)
		result.data()[i] *= static_cast<val_type>(scalar);

	return result;
}

template <typename val_type>
inline std::ostream& operator<<(std::ostream& output, const Matrix<val_type> &matrix) {
	for (unsigned int i = 0; i < matrix.rows(); i++) {
		output << "[ ";
		for (unsigned int j = 0; j < matrix.cols(); j++) {
			output << matrix(i,j);

			if (j < matrix.cols() - 1)
				output << ", ";
		}
		output << " ]";

		if (matrix.rows() > 1 && i < matrix.rows() - 1)
			output << std::endl;
	}
	return output;
}

}

}

#endif /* SIMPLEMATHDYNAMIC_H */