# HG changeset patch # User Rob Beezer # Date 1352573429 28800 # Node ID 589ff69f1e2c0aba6c0048434f61bcb9e1823fb4 # Parent bbe500d1d8a42101f2bb48c91e2f35140f0d610b LaTeX/XML formatting in Solution ILT.C40 (Julie Nelson) diff --git a/changes.txt b/changes.txt --- a/changes.txt +++ b/changes.txt @@ -42,6 +42,7 @@ Typo: Exercise PEE.T22 "had" to "has" (Dan Messenger) Typo: Example SAV, misleading misalignment in matrix (Mitch Benning, Davis Schubert) Typo: LaTeX/XML formatting in Exercise, Solution RREF.M40 (Aidan Meacham) +Typo: LaTeX/XML formatting in Solution ILT.C40 (Julie Nelson) MAJOR SOURCE FORMAT CHANGE ~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/src/section-ILT.xml b/src/section-ILT.xml --- a/src/section-ILT.xml +++ b/src/section-ILT.xml @@ -1283,7 +1283,7 @@ - we expect to be nontrivial. Setting $\lt{R}{\begin{bmatrix}a&b\\b&c\end{bmatrix}}$ equal to the zero vector, $\zerovector=0+0x$, and equating coefficients leads to a homogeneous system of equations. Row-reducing the coefficient matrix of this system will allow us to determine the values of $a$, $b$ and $c$ that create elements of the null space of $R$,]]> +Then $\lt{R}{\vect{x}}=9+9x$. Now compute the kernel of $R$, which by we expect to be nontrivial. Setting equal to the zero vector, $\zerovector=0+0x$, and equating coefficients leads to a homogeneous system of equations. Row-reducing the coefficient matrix of this system will allow us to determine the values of $a$, $b$ and $c$ that create elements of the null space of $R$, \begin{bmatrix}