Source

fcla / src / section-LC.xml

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
<?xml version="1.0" encoding="UTF-8" ?>
<section acro="LC">
<title>Linear Combinations</title>

<!-- %%%%%%%%%% -->
<!-- % -->
<!-- %  Section LC -->
<!-- %  Linear Combinations -->
<!-- % -->
<!-- %%%%%%%%%% -->
<introduction>
<p>In <acroref type="section" acro="VO" /> we defined vector addition and scalar multiplication.  These two operations combine nicely to give us a construction known as a linear combination, a construct that we will work with throughout this course.</p>

</introduction>

<subsection acro="LC">
<title>Linear Combinations</title>

<!--   Any changes here should be carried forward to Definition LC. -->
<definition acro="LCCV" index="linear combination">
<title>Linear Combination of Column Vectors</title>
<p>Given $n$ vectors $\vectorlist{u}{n}$ from $\complex{m}$ and $n$ scalars $\alpha_1,\,\alpha_2,\,\alpha_3,\,\ldots,\,\alpha_n$, their <define>linear combination</define> is the vector
<equation>
\lincombo{\alpha}{u}{n}
</equation>
</p>

</definition>

<p>So this definition takes an equal number of scalars and vectors, combines them using our two new operations (scalar multiplication and vector addition) and creates a single brand-new vector, of the same size as the original vectors.  When a definition or theorem employs a linear combination, think about the nature of the objects that go into its creation (lists of scalars and vectors), and the type of object that results (a single vector).  Computationally, a linear combination is pretty easy.</p>

<example acro="TLC" index="linear combination">
<title>Two linear combinations in $\complex{6}$</title>

<p>Suppose that
<alignmath>
<![CDATA[\alpha_1=1&&\alpha_2=-4&&\alpha_3=2&&\alpha_4=-1]]>
</alignmath>
and
<alignmath>
<![CDATA[\vect{u}_1&=\colvector{2\\4\\-3\\1\\2\\9}&]]>
<![CDATA[\vect{u}_2&=\colvector{6\\3\\0\\-2\\1\\4}&]]>
<![CDATA[\vect{u}_3&=\colvector{-5\\2\\1\\1\\-3\\0}&]]>
<![CDATA[\vect{u}_4&=\colvector{3\\2\\-5\\7\\1\\3}]]>
</alignmath>
then their linear combination is
<alignmath>
<![CDATA[\alpha_1\vect{u_1}+ \alpha_2\vect{u_2}+ \alpha_3\vect{u_3}+ \alpha_4\vect{u_4}&=]]>
(1)\colvector{2\\4\\-3\\1\\2\\9}+
(-4)\colvector{6\\3\\0\\-2\\1\\4}+
(2)\colvector{-5\\2\\1\\1\\-3\\0}+
(-1)\colvector{3\\2\\-5\\7\\1\\3}\\
<![CDATA[&=]]>
\colvector{2\\4\\-3\\1\\2\\9}+
\colvector{-24\\-12\\0\\8\\-4\\-16}+
\colvector{-10\\4\\2\\2\\-6\\0}+
\colvector{-3\\-2\\5\\-7\\-1\\-3}
=\colvector{-35\\-6\\4\\4\\-9\\-10}
</alignmath>
</p>

<p>A different linear combination, of the same set of vectors, can be formed with different scalars. Take
<alignmath>
<![CDATA[\beta_1=3&&\beta_2=0&&\beta_3=5&&\beta_4=-1]]>
</alignmath>
and form the linear combination
<alignmath>
<![CDATA[\beta_1\vect{u_1}+ \beta_2\vect{u_2}+ \beta_3\vect{u_3}+ \beta_4\vect{u_4}&=]]>
(3)\colvector{2\\4\\-3\\1\\2\\9}+
(0)\colvector{6\\3\\0\\-2\\1\\4}+
(5)\colvector{-5\\2\\1\\1\\-3\\0}+
(-1)\colvector{3\\2\\-5\\7\\1\\3}\\
<![CDATA[&=]]>
\colvector{6\\12\\-9\\3\\6\\27}+
\colvector{0\\0\\0\\0\\0\\0}+
\colvector{-25\\10\\5\\5\\-15\\0}+
\colvector{-3\\-2\\5\\-7\\-1\\-3}
=\colvector{-22\\20\\1\\1\\-10\\24}
</alignmath>
</p>

<p>Notice how we could keep our set of vectors fixed, and use different sets of scalars to construct different vectors.  You might build a few new linear combinations of $\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$ right now.  We'll be right here when you get back.  What vectors were you able to create?  Do you think you could create the vector
<!-- % lin combo w/ coefficients 2, 3, 1 -2 -->
<equation>
\vect{w}=\colvector{13\\15\\5\\-17\\2\\25}
</equation>
with a <q>suitable</q> choice of four scalars?  Do you think you could create <em>any</em> possible vector from $\complex{6}$ by choosing the proper scalars?  These last two questions are very fundamental, and time spent considering them <em>now</em> will prove beneficial later.</p>

</example>

<sageadvice acro="LC" index="linear combinations">
<title>Linear Combinations</title>
We can redo <acroref type="example" acro="TLC" /> with Sage.  First we build the relevant vectors and then do the computation.
<sage>
<input>u1 = vector(QQ,  [ 2, 4, -3,  1,  2, 9])
u2 = vector(QQ,  [ 6, 3,  0, -2,  1, 4])
u3 = vector(QQ,  [-5, 2,  1,  1, -3, 0])
u4 = vector(QQ,  [ 3, 2, -5,  7,  1, 3])
1*u1 + (-4)*u2 + 2*u3 +(-1)*u4
</input>
<output>(-35, -6, 4, 4, -9, -10)
</output>
</sage>

With a linear combination combining many vectors, we sometimes will use more compact ways of forming a linear combination.  So we will redo the second linear combination of $\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$ using a list comprehension and the <code>sum()</code> function.
<sage>
<input>vectors = [u1, u2, u3, u4]
scalars = [3, 0, 5, -1]
multiples = [scalars[i]*vectors[i] for i in range(4)]
multiples
</input>
<output>[(6, 12, -9, 3, 6, 27), (0, 0, 0, 0, 0, 0),
 (-25, 10, 5, 5, -15, 0), (-3, -2, 5, -7, -1, -3)]
</output>
</sage>

We have constructed two lists and used a list comprehension to just form the scalar multiple of each vector as part of the list <code>multiples</code>.  Now we use the <code>sum()</code> function to add them all together.
<sage>
<input>sum(multiples)
</input>
<output>(-22, 20, 1, 1, -10, 24)
</output>
</sage>

We can improve on this in two ways.  First, we can determine the number of elements in any list with the <code>len()</code> function.  So we do not have to count up that we have 4 vectors (not that it is very hard to count!).  Second, we can combine this all into one line, once we have defined the list of vectors and the list of scalars.
<sage>
<input>sum([scalars[i]*vectors[i] for i in range(len(vectors))])
</input>
<output>(-22, 20, 1, 1, -10, 24)
</output>
</sage>

The corresponding expression in mathematical notation, after a change of names and with counting starting from 1, would roughly be:
<alignmath>
\sum_{i=1}^4 a_i\vect{u}_i
</alignmath>
Using <code>sum()</code> and a list comprehension might be overkill in this example, but we will find it very useful in just a minute.


</sageadvice>
<p>Our next two examples are key ones, and a discussion about decompositions is timely.  Have a look at <acroref type="technique" acro="DC" /> before studying the next two examples.</p>

<example acro="ABLC" index="linear combination! system of equations">
<title>Archetype B as a linear combination</title>

<indexlocation index="Archetype B!system as linear combination" />
<p>In this example we will rewrite <acroref type="archetype" acro="B" /> in the language of vectors, vector equality and linear combinations.  In <acroref type="example" acro="VESE" /> we wrote the  system of $m=3$ equations as the vector equality
<equation>
\colvector{-7x_1 -6 x_2 - 12x_3\\ 5x_1  + 5x_2 + 7x_3\\ x_1 +4x_3}
=
\colvector{-33\\24\\5}
</equation></p>

<p>Now we will bust up the linear expressions on the left, first using vector addition,
<equation>
\colvector{-7x_1\\ 5x_1\\x_1}+
\colvector{-6 x_2\\5x_2\\0x_2}+
\colvector{-12x_3\\7x_3\\4x_3}
=
\colvector{-33\\24\\5}
</equation></p>

<p>Now we can rewrite each of these $n=3$ vectors as a scalar multiple of a fixed vector, where the scalar is one of the unknown variables, converting the left-hand side into a linear combination
<equation>
x_1\colvector{-7\\5\\1}+
x_2\colvector{-6\\5\\0}+
x_3\colvector{-12\\7\\4}
=
\colvector{-33\\24\\5}
</equation></p>

<p>We can now interpret the problem of solving the system of equations as determining values for the scalar multiples that make the vector equation true.  In the analysis of <acroref type="archetype" acro="B" />, we were able to determine that it had only one solution.  A quick way to see this is to row-reduce the coefficient matrix to the $3\times 3$ identity matrix and apply <acroref type="theorem" acro="NMRRI" /> to determine that the coefficient matrix is nonsingular.  Then <acroref type="theorem" acro="NMUS" /> tells us that the system of equations has a unique solution.  This solution is
<alignmath>
<![CDATA[x_1 = -3&&x_2 = 5&&x_3 = 2]]>
</alignmath></p>

<p>So, in the context of this example, we can express the fact that these values of the variables are a solution by writing the linear combination,
<equation>
(-3)\colvector{-7\\5\\1}+
(5)\colvector{-6\\5\\0}+
(2)\colvector{-12\\7\\4}
=
\colvector{-33\\24\\5}
</equation></p>

<p>Furthermore, these are the only three scalars that will accomplish this equality, since they come from a unique solution.</p>

<p>Notice how the three vectors in this example are the columns of the coefficient matrix of the system of equations.  This is our first hint of the important interplay between the vectors that form the columns of a matrix, and the matrix itself.</p>

</example>

<p>With any discussion of <acroref type="archetype" acro="A" /> or <acroref type="archetype" acro="B" /> we should be sure to contrast with the other.</p>

<example acro="AALC" index="linear combination!system of equations">
<title>Archetype A as a linear combination</title>

<indexlocation index="Archetype A!system as linear combination" />
<p>As a vector equality, <acroref type="archetype" acro="A" /> can be written as
<equation>
\colvector{x_1 -x_2 +2x_3\\2x_1+ x_2 + x_3\\ x_1 + x_2}
=
\colvector{1\\8\\5}
</equation></p>

<p>Now  bust up the linear expressions on the left, first using vector addition,
<equation>
\colvector{x_1\\2x_1\\x_1}+
\colvector{-x_2\\x_2\\x_2}+
\colvector{2x_3\\x_3\\0x_3}
=
\colvector{1\\8\\5}
</equation></p>

<p>Rewrite each of these $n=3$ vectors as a scalar multiple of a fixed vector, where the scalar is one of the unknown variables, converting the left-hand side into a linear combination
<equation>
x_1\colvector{1\\2\\1}+
x_2\colvector{-1\\1\\1}+
x_3\colvector{2\\1\\0}
=
\colvector{1\\8\\5}
</equation></p>

<p>Row-reducing the augmented matrix for <acroref type="archetype" acro="A" /> leads to the conclusion that the system is consistent and has free variables, hence infinitely many solutions.  So for example, the two solutions
<alignmath>
<![CDATA[x_1 = 2&&x_2 = 3&&x_3 = 1\\]]>
<![CDATA[x_1 = 3&&x_2 = 2&&x_3 = 0]]>
</alignmath>
can be used together to say that,
<equation>
(2)\colvector{1\\2\\1}+
(3)\colvector{-1\\1\\1}+
(1)\colvector{2\\1\\0}
=
\colvector{1\\8\\5}
=
(3)\colvector{1\\2\\1}+
(2)\colvector{-1\\1\\1}+
(0)\colvector{2\\1\\0}
</equation>
Ignore the middle of this equation, and move all the terms to the left-hand side,
<equation>
(2)\colvector{1\\2\\1}+
(3)\colvector{-1\\1\\1}+
(1)\colvector{2\\1\\0}+
(-3)\colvector{1\\2\\1}+
(-2)\colvector{-1\\1\\1}+
(-0)\colvector{2\\1\\0}
=
\colvector{0\\0\\0}
</equation>
Regrouping gives
<equation>
(-1)\colvector{1\\2\\1}+
(1)\colvector{-1\\1\\1}+
(1)\colvector{2\\1\\0}
=
\colvector{0\\0\\0}
</equation></p>

<p>Notice that these three vectors are the columns of the coefficient matrix for the system of equations in <acroref type="archetype" acro="A" />.  This equality says there is a linear combination of those columns that equals the vector of all zeros.  Give it some thought, but this says that
<alignmath>
<![CDATA[x_1=-1&&x_2=1&&x_3=1]]>
</alignmath>
is a nontrivial solution to the homogeneous system of equations with the coefficient matrix for the original system in <acroref type="archetype" acro="A" />.  In particular, this demonstrates that this coefficient matrix is singular.
</p>
</example>

<p>There's  a lot going on in the last two examples.  Come back to them in a while and make some connections with the intervening material.
For now, we will summarize and explain some of this behavior with a theorem.</p>

<theorem acro="SLSLC" index="linear combinations!solutions to linear systems">
<title>Solutions to Linear Systems are Linear Combinations</title>
<statement>
<p>Denote the columns of the $m\times n$ matrix $A$ as the vectors $\vectorlist{A}{n}$.  Then
$\vect{x}\in\complexes{n}$ is a solution to the linear system of equations $\linearsystem{A}{\vect{b}}$ if and only if $\vect{b}$ equals the linear combination of the columns of $A$ formed with the entries of $\vect{x}$,
<equation>
\vectorentry{\vect{x}}{1}\vect{A}_1+
\vectorentry{\vect{x}}{2}\vect{A}_2+
\vectorentry{\vect{x}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{x}}{n}\vect{A}_n
=
\vect{b}
</equation></p>

</statement>

<proof>
<p>The proof of this theorem is as much about a change in notation as it is about making logical deductions.    Write the system of equations $\linearsystem{A}{\vect{b}}$ as
<alignmath>
<![CDATA[a_{11}x_1+a_{12}x_2+a_{13}x_3+\dots+a_{1n}x_n&=b_1\\]]>
<![CDATA[a_{21}x_1+a_{22}x_2+a_{23}x_3+\dots+a_{2n}x_n&=b_2\\]]>
<![CDATA[a_{31}x_1+a_{32}x_2+a_{33}x_3+\dots+a_{3n}x_n&=b_3\\]]>
<![CDATA[\vdots&\\]]>
<![CDATA[a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+\dots+a_{mn}x_n&=b_m]]>
</alignmath></p>

<p>Notice then that the entry of the coefficient matrix $A$ in row $i$ and column $j$ has two names:  $a_{ij}$ as the coefficient of $x_j$ in equation $i$ of the system and $\vectorentry{\vect{A}_j}{i}$ as the $i$-th entry of the column vector in column $j$ of the coefficient matrix $A$.  Likewise, entry $i$ of $\vect{b}$ has two names:  $b_i$ from the linear system and $\vectorentry{\vect{b}}{i}$ as an entry of a vector.  Our theorem is an equivalence (<acroref type="technique" acro="E" />) so we need to prove both <q>directions.</q></p>

<p><implyreverse />   Suppose we have the vector equality between $\vect{b}$ and the linear combination of the columns of $A$.  Then for $1\leq i\leq m$,
<alignmath>
b_i
<![CDATA[&=\vectorentry{\vect{b}}{i}&&]]>\text{<acroref type="definition" acro="CV" />}\\
<![CDATA[&=\vectorentry{]]>
\vectorentry{\vect{x}}{1}\vect{A}_1+
\vectorentry{\vect{x}}{2}\vect{A}_2+
\vectorentry{\vect{x}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{x}}{n}\vect{A}_n
<![CDATA[}{i}&&\text{Hypothesis}\\]]>
<![CDATA[&=]]>
\vectorentry{\vectorentry{\vect{x}}{1}\vect{A}_1}{i}+
\vectorentry{\vectorentry{\vect{x}}{2}\vect{A}_2}{i}+
\vectorentry{\vectorentry{\vect{x}}{3}\vect{A}_3}{i}+
\cdots+
\vectorentry{\vectorentry{\vect{x}}{n}\vect{A}_n}{i}
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVA" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{x}}{1}\vectorentry{\vect{A}_1}{i}+
\vectorentry{\vect{x}}{2}\vectorentry{\vect{A}_2}{i}+
\vectorentry{\vect{x}}{3}\vectorentry{\vect{A}_3}{i}+
\cdots+
\vectorentry{\vect{x}}{n}\vectorentry{\vect{A}_n}{i}
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVSM" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{x}}{1}a_{i1}+
\vectorentry{\vect{x}}{2}a_{i2}+
\vectorentry{\vect{x}}{3}a_{i3}+
\cdots+
\vectorentry{\vect{x}}{n}a_{in}
<![CDATA[&&]]>\text{<acroref type="definition" acro="CV" />}\\
<![CDATA[&=]]>
a_{i1}\vectorentry{\vect{x}}{1}+
a_{i2}\vectorentry{\vect{x}}{2}+
a_{i3}\vectorentry{\vect{x}}{3}+
\cdots+
a_{in}\vectorentry{\vect{x}}{n}
<![CDATA[&&]]>\text{<acroref type="property" acro="CMCN" />}
</alignmath></p>

<p>This says that the entries of $\vect{x}$ form a solution to equation $i$ of $\linearsystem{A}{\vect{b}}$ for all $1\leq i\leq m$, in other words, $\vect{x}$ is a solution to $\linearsystem{A}{\vect{b}}$.</p>

<p><implyforward />  Suppose now that $\vect{x}$ is a solution to the linear system $\linearsystem{A}{\vect{b}}$.  Then for all $1\leq i\leq m$,
<alignmath>
\vectorentry{\vect{b}}{i}
<![CDATA[&=b_i&&]]>\text{<acroref type="definition" acro="CV" />}\\
<![CDATA[&=]]>
a_{i1}\vectorentry{\vect{x}}{1}+
a_{i2}\vectorentry{\vect{x}}{2}+
a_{i3}\vectorentry{\vect{x}}{3}+
\cdots+
a_{in}\vectorentry{\vect{x}}{n}
<![CDATA[&&\text{Hypothesis}\\]]>
<![CDATA[&=]]>
\vectorentry{\vect{x}}{1}a_{i1}+
\vectorentry{\vect{x}}{2}a_{i2}+
\vectorentry{\vect{x}}{3}a_{i3}+
\cdots+
\vectorentry{\vect{x}}{n}a_{in}
<![CDATA[&&]]>\text{<acroref type="property" acro="CMCN" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{x}}{1}\vectorentry{\vect{A}_1}{i}+
\vectorentry{\vect{x}}{2}\vectorentry{\vect{A}_2}{i}+
\vectorentry{\vect{x}}{3}\vectorentry{\vect{A}_3}{i}+
\cdots+
\vectorentry{\vect{x}}{n}\vectorentry{\vect{A}_n}{i}
<![CDATA[&&]]>\text{<acroref type="definition" acro="CV" />}\\
<![CDATA[&=]]>
\vectorentry{\vectorentry{\vect{x}}{1}\vect{A}_1}{i}+
\vectorentry{\vectorentry{\vect{x}}{2}\vect{A}_2}{i}+
\vectorentry{\vectorentry{\vect{x}}{3}\vect{A}_3}{i}+
\cdots+
\vectorentry{\vectorentry{\vect{x}}{n}\vect{A}_n}{i}
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVSM" />}\\
<![CDATA[&=]]>\vectorentry{
\vectorentry{\vect{x}}{1}\vect{A}_1+
\vectorentry{\vect{x}}{2}\vect{A}_2+
\vectorentry{\vect{x}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{x}}{n}\vect{A}_n
}{i}<![CDATA[&&]]>\text{<acroref type="definition" acro="CVA" />}
</alignmath>
Since the components of $\vect{b}$ and the linear combination of the columns of $A$ agree for all $1\leq i\leq m$, <acroref type="definition" acro="CVE" /> tells us that the vectors are equal.</p>

</proof>
</theorem>

<p>In other words, this theorem tells us that solutions to systems of equations are linear combinations of the $n$ column vectors of the coefficient matrix ($\vect{A}_j$) which yield the constant vector $\vect{b}$.  Or said another way, a solution to a system of equations $\linearsystem{A}{\vect{b}}$  is an answer to the question <q>How can I form the vector $\vect{b}$ as a linear combination of the columns of $A$?</q>  Look through the archetypes that are systems of equations and examine a few of the advertised solutions.  In each case use the solution to form a linear combination of the columns of the coefficient matrix and verify that the result equals the constant vector (see <acroref type="exercise" acro="LC.C21" />).</p>

<sageadvice acro="SLC" index="solutions, linear combinations">
<title>Solutions and Linear Combinations</title>
We can easily illustrate <acroref type="theorem" acro="SLSLC" /> with Sage.  We will use <acroref type="archetype" acro="F" /> as an example.
<sage>
<input>coeff = matrix(QQ, [[33, -16,  10,-2],
                    [99, -47,  27,-7],
                    [78, -36,  17,-6],
                    [-9,   2,   3, 4]])
const = vector(QQ, [-27, -77, -52, 5])
</input>
</sage>

A solution to this system is $x_1=1,\,x_2=2,\,x_3=-2,\,x_4=4$.  So we will use these four values as scalars in a linear combination of the columns of the coefficient matrix.  However, we do not have to type in the columns individually, we can have Sage extract them all for us into a list with the matrix method <code>.columns()</code>.
<sage>
<input>cols = coeff.columns()
cols
</input>
<output>[(33, 99, 78, -9), (-16, -47, -36, 2),
 (10, 27, 17, 3), (-2, -7, -6, 4)]
</output>
</sage>

With our scalars also in a list, we can compute the linear combination of the columns, like we did in <acroref type="sage" acro="LC" />.
<sage>
<input>soln = [1, 2, -2, 4]
sum([soln[i]*cols[i] for i in range(len(cols))])
</input>
<output>(-27, -77, -52, 5)
</output>
</sage>

So we see that the solution gives us scalars that yield the vector of constants as a linear combination of the columns of the coefficient matrix.  Exactly as predicted by <acroref type="theorem" acro="SLSLC" />.  We can duplicate this observation with just one line:
<sage>
<input>const == sum([soln[i]*cols[i] for i in range(len(cols))])
</input>
<output>True
</output>
</sage>

In a similar fashion we can test other potential solutions.  With theory we will develop later, we will be able to determine that <acroref type="archetype" acro="F" /> has only one solution.  Since <acroref type="theorem" acro="SLSLC" /> is an equivalence (<acroref type="technique" acro="E" />), any other choice for the scalars should not create the vector of constants as a linear combination.
<sage>
<input>alt_soln = [-3, 2, 4, 1]
const == sum([alt_soln[i]*cols[i] for i in range(len(cols))])
</input>
<output>False
</output>
</sage>

Now would be a good time to find another system of equations, perhaps one with infinitely many solutions, and practice the techniques above.


</sageadvice>
</subsection>

<subsection acro="VFSS">
<title>Vector Form of Solution Sets</title>

<p>We have written solutions to systems of equations as column vectors.  For example <acroref type="archetype" acro="B" /> has the solution  $x_1 = -3,\,x_2 = 5,\,x_3 = 2$ which we now write as
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3}=\colvector{-3\\5\\2}
</equation></p>

<p>Now, we will use column vectors and linear combinations to express <em>all</em> of the solutions to a linear system of equations in a compact and understandable way.  First, here's two examples that will motivate our next theorem.  This is a valuable technique, almost the equal of row-reducing a matrix, so be sure you get comfortable with it over the course of this section.</p>

<example acro="VFSAD" index="vector form of solutions!Archetype D">
<title>Vector form of solutions for Archetype D</title>

<indexlocation index="Archetype D!vector form of solutions" />
<p><acroref type="archetype" acro="D" /> is a linear system of 3 equations in 4 variables.  Row-reducing the augmented matrix yields
<equation>
<archetypepart acro="D" part="augmentedreduced" /></equation>
and we see $r=2$ nonzero rows. Also, $D=\set{1,\,2}$ so the dependent variables are then $x_1$ and $x_2$.  $F=\set{3,\,4,\,5}$ so the two free variables are $x_3$ and $x_4$.  We will express a generic solution for the system by two slightly different methods, though both arrive at the same conclusion.</p>

<p>First, we will decompose (<acroref type="technique" acro="DC" />) a solution vector.  Rearranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality,
<alignmath>
<![CDATA[\colvector{x_1\\x_2\\x_3\\x_4}&=]]>
\colvector{4-3x_3+2x_4\\ -x_3+3x_4\\x_3\\x_4}
<intertext>Now we will use the definitions of column vector addition and scalar multiplication to express this vector as a linear combination,</intertext>
<![CDATA[&=\colvector{4\\0\\0\\0}+]]>
\colvector{-3x_3\\-x_3\\x_3\\0}+
<![CDATA[\colvector{2x_4\\3x_4\\0\\x_4}&&]]>\text{<acroref type="definition" acro="CVA" />}\\
<![CDATA[&=\colvector{4\\0\\0\\0}+]]>
x_3\colvector{-3\\-1\\1\\0}+
<![CDATA[x_4\colvector{2\\3\\0\\1}&&]]>\text{<acroref type="definition" acro="CVSM" />}\\
</alignmath></p>

<p>We will develop the same linear combination a bit quicker, using three steps.  While the method above is instructive, the method below will be our preferred approach.</p>

<p>Step 1.  Write the vector of variables as a fixed vector, plus a linear combination of $n-r$ vectors, using the free variables as the scalars.
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{\ \\\ \\\ \\\ }+x_3\colvector{\ \\\ \\\ \\\ }+x_4\colvector{\ \\\ \\\ \\\ }
</equation></p>

<p>Step 2.  Use 0's and 1's to ensure equality for the entries of the vectors with indices in $F$ (corresponding to the free variables).
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{\ \\\ \\0\\0}+x_3\colvector{\ \\\ \\1\\0}+x_4\colvector{\ \\\ \\0\\1}
</equation></p>

<p>Step 3.  For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables.  Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.
<alignmath>
<![CDATA[x_1=4-3x_3+2x_4&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{4\\\ \\0\\0}+x_3\colvector{-3\\\ \\1\\0}+x_4\colvector{2\\\ \\0\\1}\\
<![CDATA[x_2=0-1x_3+3x_4&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{4\\0\\0\\0}+x_3\colvector{-3\\-1\\1\\0}+x_4\colvector{2\\3\\0\\1}
</alignmath></p>

<p>This final <em>form</em> of a typical solution is especially pleasing and useful.  For example, we can build solutions quickly by choosing values for our free variables, and then compute a linear combination.  Such as
<alignmath>
<![CDATA[x_3=2,\,x_4=-5&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{4\\0\\0\\0}+(2)\colvector{-3\\-1\\1\\0}+(-5)\colvector{2\\3\\0\\1}
=\colvector{-12\\-17\\2\\-5}
<intertext>or,</intertext>
<![CDATA[x_3=1,\,x_4=3&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4}=
\colvector{4\\0\\0\\0}+(1)\colvector{-3\\-1\\1\\0}+(3)\colvector{2\\3\\0\\1}
=\colvector{7\\8\\1\\3}
</alignmath>
</p>

<p>You'll find the second solution listed in the write-up for <acroref type="archetype" acro="D" />, and you might check the first solution by substituting it back into the original equations.</p>

<p>While this form is useful for quickly creating solutions, it's even better because it tells us <em>exactly</em> what every solution looks like.  We know the solution set is infinite, which is pretty big, but now we can say that a solution is some multiple of $\colvector{-3\\-1\\1\\0}$ plus a multiple of $\colvector{2\\3\\0\\1}$ plus the fixed vector $\colvector{4\\0\\0\\0}$.  Period.  So it only takes us <em>three</em> vectors to describe the entire infinite solution set, provided we also agree on how to combine the three vectors into a linear combination.</p>

</example>

<p>This is such an important and fundamental technique, we'll do another example.</p>

<example acro="VFS" index="vector form of solutions">
<title>Vector form of solutions</title>

<p>Consider a linear system of $m=5$ equations in $n=7$ variables, having the augmented matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[ 2 & 1 & -1 & -2 & 2 & 1 & 5 & 21 \\]]>
<![CDATA[ 1 & 1 & -3 & 1 & 1 & 1 & 2 & -5 \\]]>
<![CDATA[ 1 & 2 & -8 & 5 & 1 & 1 & -6 & -15 \\]]>
<![CDATA[ 3 & 3 & -9 & 3 & 6 & 5 & 2 & -24 \\]]>
<![CDATA[ -2 & -1 & 1 & 2 & 1 & 1 & -9 & -30]]>
\end{bmatrix}
</equation></p>

<p>Row-reducing we obtain the matrix
<equation>
B=
\begin{bmatrix}
<![CDATA[ \leading{1} & 0 & 2 & -3 & 0 & 0 & 9 &  15 \\]]>
<![CDATA[ 0 & \leading{1} & -5 & 4 & 0 & 0 & -8 &  -10 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & \leading{1} & 0 & -6 &  11 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & 0 & \leading{1} & 7 &  -21 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0]]>
\end{bmatrix}
</equation>
and we see $r=4$ nonzero rows. Also, $D=\set{1,\,2,\,5,\,6}$ so the dependent variables are then $x_1,\,x_2,\,x_5,$ and $x_6$.  $F=\set{3,\,4,\,7,\,8}$ so the $n-r=3$ free variables are $x_3,\,x_4$ and $x_7$.  We will express a generic solution for the system by two different methods: both a decomposition and a construction.</p>

<p>First, we will decompose (<acroref type="technique" acro="DC" />) a solution vector.  Rearranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality,
<alignmath>
<![CDATA[\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}&=]]>
\colvector{
15-2x_3+3x_4-9x_7\\
-10+5x_3-4x_4+8x_7\\
x_3\\
x_4\\
11+6x_7\\
-21-7x_7\\
x_7
}
<intertext>Now we will use the definitions of column vector addition and scalar multiplication to decompose this generic solution vector as a linear combination,</intertext>
<![CDATA[&=]]>
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0 }
+
\colvector{ -2x_3\\ 5x_3\\ x_3\\ 0\\ 0\\ 0\\ 0 }
+
\colvector{ 3x_4\\ -4x_4\\ 0\\ x_4\\ 0\\ 0\\ 0 }
+
\colvector{ -9x_7\\ 8x_7\\ 0\\ 0\\ 6x_7\\ -7x_7\\ x_7 }
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVA" />}\\
<![CDATA[&=]]>
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0 }
+
x_3\colvector{ -2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0 }
+
x_4\colvector{ 3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0 }
+
x_7\colvector{ -9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1 }
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVSM" />}
</alignmath>
We will now develop the same linear combination a bit quicker, using three steps.  While the method above is instructive, the method below will be our preferred approach.</p>

<p>Step 1.  Write the vector of variables as a fixed vector, plus a linear combination of $n-r$ vectors, using the free variables as the scalars.
<equation>
\vect{x}=
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+x_3\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+x_4\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+x_7\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }
</equation></p>

<p>Step 2.  Use 0's and 1's to ensure equality for the entries of the vectors with indices in $F$ (corresponding to the free variables).
<equation>
\vect{x}=
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{\\ \\ 0\\ 0\\ \\ \\ 0}+x_3\colvector{\\ \\ 1\\ 0\\ \\ \\ 0}+x_4\colvector{\\ \\ 0\\ 1\\ \\ \\ 0}+x_7\colvector{\\ \\ 0\\ 0\\ \\ \\ 1}
</equation></p>

<p>Step 3.  For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables.  Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.
<alignmath>
<![CDATA[x_1&=15-2x_3+3x_4-9x_7\ \Rightarrow\\&\vect{x}=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ \\ 0\\ 0\\ \\ \\ 0}+
x_3\colvector{-2\\ \\ 1\\ 0\\ \\ \\ 0}+
x_4\colvector{3\\ \\ 0\\ 1\\ \\ \\ 0}+
x_7\colvector{-9\\ \\ 0\\ 0\\ \\ \\ 1}\\
<![CDATA[x_2&=-10+5x_3-4x_4+8x_7\ \Rightarrow\\&\vect{x}=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ \\ \\ 0}+
x_3\colvector{-2\\ 5\\ 1\\ 0\\ \\ \\ 0}+
x_4\colvector{3\\ -4\\ 0\\ 1\\ \\ \\ 0}+
x_7\colvector{-9\\ 8\\ 0\\ 0\\ \\ \\ 1}\\
<![CDATA[x_5&=11+6x_7\ \Rightarrow\\&\vect{x}=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ \\ 0}+
x_3\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ \\ 0}+
x_4\colvector{3\\ -4\\ 0\\ 1\\ 0\\ \\ 0}+
x_7\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ \\ 1}\\
<![CDATA[x_6&=-21-7x_7\ \Rightarrow\\&\vect{x}=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}+
x_3\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0}+
x_4\colvector{3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0}+
x_7\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1}
</alignmath></p>

<p>This final <em>form</em> of a typical solution is especially pleasing and useful.  For example, we can build solutions quickly by choosing values for our free variables, and then compute a linear combination.  For example
<alignmath>
<![CDATA[x_3&=2,\,]]>
x_4=-4,\,
x_7=3
\quad\quad\Rightarrow\\
<![CDATA[\vect{x}&=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}+
(2)\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0}+
(-4)\colvector{3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0}+
(3)\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1}
=
\colvector{-28\\40\\2\\-4\\29\\-42\\3}
</alignmath>
or perhaps,
<alignmath>
<![CDATA[x_3&=5,\,]]>
x_4=2,\,
x_7=1
\quad\quad\Rightarrow\\
<![CDATA[\vect{x}&=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}+
(5)\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0}+
(2)\colvector{3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0}+
(1)\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1}
=
\colvector{2\\15\\5\\2\\17\\-28\\1}
</alignmath>
or even,
<alignmath>
<![CDATA[x_3&=0,\,]]>
x_4=0,\,
x_7=0
\quad\quad\Rightarrow\\
<![CDATA[\vect{x}&=]]>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}+
(0)\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0}+
(0)\colvector{3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0}+
(0)\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1}
=
\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}
</alignmath></p>

<p>So we can compactly express <em>all</em> of the solutions to this linear system with just 4 fixed vectors, provided we agree how to combine them in a linear combinations to create solution vectors.</p>

<p>Suppose you were told that the vector $\vect{w}$ below was a solution to this system of equations.  Could you turn the problem around and write $\vect{w}$ as a linear combination of the four vectors $\vect{c}$, $\vect{u}_1$, $\vect{u}_2$, $\vect{u}_3$?  (See <acroref type="exercise" acro="LC.M11" />.)
<alignmath>
<![CDATA[\vect{w}&=\colvector{100\\-75\\7\\9\\-37\\35\\-8}]]>
<![CDATA[&]]>
<![CDATA[\vect{c}&=\colvector{15\\ -10\\ 0\\ 0\\ 11\\ -21\\ 0}]]>
<![CDATA[&]]>
<![CDATA[\vect{u}_1&=\colvector{-2\\ 5\\ 1\\ 0\\ 0\\ 0\\ 0}]]>
<![CDATA[&]]>
<![CDATA[\vect{u}_2&=\colvector{3\\ -4\\ 0\\ 1\\ 0\\ 0\\ 0}]]>
<![CDATA[&]]>
<![CDATA[\vect{u}_3&=\colvector{-9\\ 8\\ 0\\ 0\\ 6\\ -7\\ 1}]]>
</alignmath></p>

</example>

<p>Did you think a few weeks ago that you could so quickly and easily list <em>all</em> the solutions to a linear system of 5 equations in 7 variables?</p>

<p>We'll now formalize the last two (important) examples as a theorem.</p>

<theorem acro="VFSLS" index="vector form of solutions">
<title>Vector Form of Solutions to Linear Systems</title>
<statement>
<p>Suppose that $\augmented{A}{\vect{b}}$ is the augmented matrix for a consistent linear system $\linearsystem{A}{\vect{b}}$ of $m$ equations in $n$ variables.
Let $B$ be a row-equivalent $m\times (n+1)$ matrix in reduced row-echelon form. Suppose that $B$ has $r$ nonzero rows,  columns without leading 1's with indices $F=\set{f_1,\,f_2,\,f_3,\,\ldots,\,f_{n-r},\,n+1}$, and columns with leading 1's (pivot columns) having indices $D=\set{d_1,\,d_2,\,d_3,\,\ldots,\,d_r}$.  Define vectors $\vect{c}$, $\vect{u}_j$, $1\leq j\leq n-r$ of size $n$ by
<alignmath>
<![CDATA[\vectorentry{\vect{c}}{i}&=]]>
\begin{cases}
<![CDATA[0&\text{if $i\in F$}\\]]>
<![CDATA[\matrixentry{B}{k,n+1}&\text{if $i\in D$, $i=d_k$}]]>
\end{cases}\\
<![CDATA[\vectorentry{\vect{u}_j}{i}&=]]>
\begin{cases}
<![CDATA[1&\text{if $i\in F$, $i=f_j$}\\]]>
<![CDATA[0&\text{if $i\in F$, $i\neq f_j$}\\]]>
<![CDATA[-\matrixentry{B}{k,f_j}&\text{if $i\in D$, $i=d_k$}]]>
\end{cases}.
</alignmath></p>

<p>Then the set of solutions to the system of equations $\linearsystem{A}{\vect{b}}$ is
<equation>
S=\setparts{
\vect{c}+\alpha_1\vect{u}_1+\alpha_2\vect{u}_2+\alpha_3\vect{u}_3+\cdots+\alpha_{n-r}\vect{u}_{n-r}
}{
\alpha_1,\,\alpha_2,\,\alpha_3,\,\ldots,\,\alpha_{n-r}\in\complex{\null}
}
</equation></p>

</statement>

<proof>
<p>First, $\linearsystem{A}{\vect{b}}$ is equivalent to the linear system of equations that has the matrix $B$ as its augmented matrix (<acroref type="theorem" acro="REMES" />), so we need only show that $S$ is the solution set for the system with $B$ as its augmented matrix.  The conclusion of this theorem is that the solution set is equal to the set $S$, so we will apply <acroref type="definition" acro="SE" />.</p>

<p>We begin by showing that every element of $S$ is indeed a solution to the system.  Let $\alpha_1,\,\alpha_2,\,\alpha_3,\,\ldots,\,\alpha_{n-r}$ be one choice of the scalars used to describe elements of $S$.  So an arbitrary element of $S$, which we will consider as a proposed solution is
<equation>
\vect{x}=
\vect{c}+\alpha_1\vect{u}_1+\alpha_2\vect{u}_2+\alpha_3\vect{u}_3+\cdots+\alpha_{n-r}\vect{u}_{n-r}
</equation></p>

<p>When $r+1\leq\ell\leq m$, row $\ell$ of the matrix $B$ is a zero row, so the equation represented by that row is always true, no matter which solution vector we propose.  So concentrate on rows representing equations $1\leq\ell\leq r$.  We evaluate equation $\ell$ of the system represented by $B$ with the proposed solution vector $\vect{x}$ and refer to the value of the left-hand side of the equation as $\beta_\ell$,
<equation>
\beta_\ell=
\matrixentry{B}{\ell 1}\vectorentry{\vect{x}}{1}+
\matrixentry{B}{\ell 2}\vectorentry{\vect{x}}{2}+
\matrixentry{B}{\ell 3}\vectorentry{\vect{x}}{3}+
\cdots+
\matrixentry{B}{\ell n}\vectorentry{\vect{x}}{n}
</equation></p>

<p>Since $\matrixentry{B}{\ell d_{i}}=0$ for all $1\leq i\leq r$, except that $\matrixentry{B}{\ell d_{\ell}}=1$, we see that $\beta_\ell$ simplifies to
<equation>
\beta_\ell=
\vectorentry{\vect{x}}{d_{\ell}}+
\matrixentry{B}{\ell f_1}\vectorentry{\vect{x}}{f_1}+
\matrixentry{B}{\ell f_2}\vectorentry{\vect{x}}{f_2}+
\matrixentry{B}{\ell f_3}\vectorentry{\vect{x}}{f_3}+
\cdots+
\matrixentry{B}{\ell f_{n-r}}\vectorentry{\vect{x}}{f_{n-r}}
</equation></p>

<p>Notice that for $1\leq i\leq n-r$
<alignmath>
\vectorentry{\vect{x}}{f_i}
<![CDATA[&=]]>
\vectorentry{\vect{c}}{f_i}+
\alpha_1\vectorentry{\vect{u}_1}{f_i}+
\alpha_2\vectorentry{\vect{u}_2}{f_i}+
\cdots+
\alpha_i\vectorentry{\vect{u}_i}{f_i}+
\cdots+
\alpha_{n-r}\vectorentry{\vect{u_{n-r}}}{f_i}\\
<![CDATA[&=]]>
0+
\alpha_1(0)+
\alpha_2(0)+
\cdots+
\alpha_i(1)+
\cdots+
\alpha_{n-r}(0)\\
<![CDATA[&=]]>
\alpha_i
</alignmath></p>

<p>So $\beta_\ell$ simplifies further, and we expand the first term
<alignmath>
\beta_\ell
<![CDATA[&=]]>
\vectorentry{\vect{x}}{d_{\ell}}+
\matrixentry{B}{\ell f_1}\alpha_1+
\matrixentry{B}{\ell f_2}\alpha_2+
\matrixentry{B}{\ell f_3}\alpha_3+
\cdots+
\matrixentry{B}{\ell f_{n-r}}\alpha_{n-r}\\
<![CDATA[&=]]>
\vectorentry{
\vect{c}+
\alpha_1\vect{u}_1+
\alpha_2\vect{u}_2+
\alpha_3\vect{u}_3+
\cdots+
\alpha_{n-r}\vect{u}_{n-r}
}{d_{\ell}}
+\\
<![CDATA[&\quad\quad]]>
\matrixentry{B}{\ell f_1}\alpha_1+
\matrixentry{B}{\ell f_2}\alpha_2+
\matrixentry{B}{\ell f_3}\alpha_3+
\cdots+
\matrixentry{B}{\ell f_{n-r}}\alpha_{n-r}\\
<![CDATA[&=]]>
\vectorentry{\vect{c}}{d_{\ell}}+
\alpha_1\vectorentry{\vect{u}_1}{d_{\ell}}+
\alpha_2\vectorentry{\vect{u}_2}{d_{\ell}}+
\alpha_3\vectorentry{\vect{u}_3}{d_{\ell}}+
\cdots+
\alpha_{n-r}\vectorentry{\vect{u_{n-r}}}{d_{\ell}}
+\\
<![CDATA[&\quad\quad]]>
\matrixentry{B}{\ell f_1}\alpha_1+
\matrixentry{B}{\ell f_2}\alpha_2+
\matrixentry{B}{\ell f_3}\alpha_3+
\cdots+
\matrixentry{B}{\ell f_{n-r}}\alpha_{n-r}\\
<![CDATA[&=]]>
\matrixentry{B}{\ell,{n+1}}+\\
<![CDATA[&\quad\quad]]>
\alpha_1(-\matrixentry{B}{\ell f_1})+
\alpha_2(-\matrixentry{B}{\ell f_2})+
\alpha_3(-\matrixentry{B}{\ell f_3})+
\cdots+
\alpha_{n-r}(-\matrixentry{B}{\ell f_{n-r}})
+\\
<![CDATA[&\quad\quad]]>
\matrixentry{B}{\ell f_1}\alpha_1+
\matrixentry{B}{\ell f_2}\alpha_2+
\matrixentry{B}{\ell f_3}\alpha_3+
\cdots+
\matrixentry{B}{\ell f_{n-r}}\alpha_{n-r}\\
<![CDATA[&=]]>
\matrixentry{B}{\ell,{n+1}}
</alignmath></p>

<p>So $\beta_\ell$ began as the left-hand side of equation $\ell$ of the system represented by $B$ and we now know it equals $\matrixentry{B}{\ell,{n+1}}$, the constant term for equation $\ell$ of this system.  So the arbitrarily chosen vector from $S$ makes every equation of the system true, and therefore is a solution to the system.  So all the elements of $S$ are solutions to the system.</p>

<p>For the second half of the proof, assume that $\vect{x}$ is a solution vector for the system having $B$ as its augmented matrix.  For convenience and clarity, denote the entries of $\vect{x}$ by $x_i$, in other words, $x_i=\vectorentry{\vect{x}}{i}$.  We desire to show that this solution vector is also an element of the set $S$.  Begin with the observation that a solution vector's entries makes equation $\ell$ of the system true for all $1\leq\ell\leq m$,
<equation>
\matrixentry{B}{\ell,1}x_1+
\matrixentry{B}{\ell,2}x_2+
\matrixentry{B}{\ell,3}x_3+
\cdots+
\matrixentry{B}{\ell,n}x_n=
\matrixentry{B}{\ell,n+1}
</equation></p>

<p>When $\ell\leq r$, the pivot columns of $B$ have zero entries in row $\ell$ with the exception of column $d_\ell$, which will contain a $1$.  So for $1\leq\ell\leq r$, equation $\ell$ simplifies to
<equation>
1x_{d_\ell}+
\matrixentry{B}{\ell,f_1}x_{f_1}+
\matrixentry{B}{\ell,f_2}x_{f_2}+
\matrixentry{B}{\ell,f_3}x_{f_3}+
\cdots+
\matrixentry{B}{\ell,f_{n-r}}x_{f_{n-r}}=
\matrixentry{B}{\ell,n+1}
</equation>
</p>

<p>This allows us to write,
<alignmath>
\vectorentry{\vect{x}}{d_\ell}
<![CDATA[&=]]>
x_{d_\ell}\\
<![CDATA[&=]]>
\matrixentry{B}{\ell,n+1}
-\matrixentry{B}{\ell,f_1}x_{f_1}
-\matrixentry{B}{\ell,f_2}x_{f_2}
-\matrixentry{B}{\ell,f_3}x_{f_3}
-\cdots
-\matrixentry{B}{\ell,f_{n-r}}x_{f_{n-r}}\\
<![CDATA[&=]]>
\vectorentry{\vect{c}}{d_\ell}
+x_{f_1}\vectorentry{\vect{u}_1}{d_\ell}
+x_{f_2}\vectorentry{\vect{u}_2}{d_\ell}
+x_{f_3}\vectorentry{\vect{u}_3}{d_\ell}
+\cdots
+x_{f_{n-r}}\vectorentry{\vect{u}_{n-r}}{d_\ell}\\
<![CDATA[&=]]>
\vectorentry{
\vect{c}
+x_{f_1}\vect{u}_1
+x_{f_2}\vect{u}_2
+x_{f_3}\vect{u}_3
+\cdots
+x_{f_{n-r}}\vect{u}_{n-r}
}{d_\ell}
</alignmath></p>

<p>This tells us that the entries of the solution vector $\vect{x}$ corresponding to dependent variables (indices in $D$), are equal to those of a vector in the set $S$.  We still need to check the other entries of the solution vector $\vect{x}$ corresponding to the free variables (indices in $F$) to see if they are equal to the entries of the same vector in the set $S$.  To this end, suppose $i\in F$ and $i=f_j$.  Then
<alignmath>
\vectorentry{\vect{x}}{i}
<![CDATA[&=x_{i}=x_{f_j}\\]]>
<![CDATA[&=]]>
0+
0x_{f_1}+
0x_{f_2}+
0x_{f_3}+
\cdots+
0x_{f_{j-1}}+
1x_{f_j}+
0x_{f_{j+1}}+
\cdots+
0x_{f_{n-r}}\\
<![CDATA[&=]]>
\vectorentry{\vect{c}}{i}+
x_{f_1}\vectorentry{\vect{u}_1}{i}+
x_{f_2}\vectorentry{\vect{u}_2}{i}+
x_{f_3}\vectorentry{\vect{u}_3}{i}+
\cdots+
x_{f_j}\vectorentry{\vect{u}_j}{i}+
\cdots+
x_{f_{n-r}}\vectorentry{\vect{u}_{n-r}}{i}\\
<![CDATA[&=\vectorentry{]]>
\vect{c}
+x_{f_1}\vect{u}_1
+x_{f_2}\vect{u}_2
+\cdots
+x_{f_{n-r}}\vect{u}_{n-r}
}{i}
</alignmath></p>

<p>So entries of
$\vect{x}$ and $\vect{c} +x_{f_1}\vect{u}_1 +x_{f_2}\vect{u}_2 +\cdots +x_{f_{n-r}}\vect{u}_{n-r}$
are equal and therefore by <acroref type="definition" acro="CVE" /> they are equal vectors.  Since $x_{f_1},\,x_{f_2},\,x_{f_3},\,\ldots,\,x_{f_{n-r}}$ are scalars, this shows us that $\vect{x}$ qualifies for membership in $S$. So the set $S$ contains all of the solutions to the system.</p>

</proof>
</theorem>

<p>Note that both halves of the proof of <acroref type="theorem" acro="VFSLS" /> indicate that $\alpha_i=\vectorentry{\vect{x}}{f_i}$.  In other words, the arbitrary scalars, $\alpha_i$, in the description of the set $S$ actually have more meaning <mdash /> they are the values of the free variables $\vectorentry{\vect{x}}{f_i}$, $1\leq i\leq n-r$.  So we will often exploit this observation in our descriptions of solution sets.</p>

<p><acroref type="theorem" acro="VFSLS" /> formalizes what happened in the three steps of <acroref type="example" acro="VFSAD" />.  The theorem will be useful in proving other theorems, and it it is useful since it tells us an exact procedure for simply describing an infinite solution set.  We could program a computer to implement it, once we have the augmented matrix row-reduced and have checked that the system is consistent.  By Knuth's definition, this completes our conversion of linear equation solving from art into science.  Notice that it even applies (but is overkill) in the case of a unique solution.  However, as a practical matter, I prefer the three-step process of <acroref type="example" acro="VFSAD" /> when I need to describe an infinite solution set.  So let's practice some more, but with a bigger example.</p>

<example acro="VFSAI" index="vector form of solutions!Archetype I">
<title>Vector form of solutions for Archetype I</title>

<indexlocation index="Archetype I!vector form of solutions" />
<p><acroref type="archetype" acro="I" /> is a linear system of $m=4$ equations in $n=7$ variables.  Row-reducing the augmented matrix yields
<equation>
<archetypepart acro="I" part="augmentedreduced" /></equation>
and we see $r=3$ nonzero rows.  The columns with leading 1's are $D=\{1,\,3,\,4\}$ so the $r$ dependent variables are $x_1,\,x_3,\,x_4$.  The columns without leading 1's are $F=\{2,\,5,\,6,\,7,\,8\}$, so the $n-r=4$ free variables are $x_2,\,x_5,\,x_6,\,x_7$.</p>

<p>Step 1.  Write the vector of variables ($\vect{x}$) as a fixed vector ($\vect{c}$), plus a linear combination of $n-r=4$ vectors ($\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$), using the free variables as the scalars.
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+
x_2\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+
x_5\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+
x_6\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }+
x_7\colvector{\ \\\ \\\ \\\ \\\ \\\ \\\ }
</equation>
</p>

<p>Step 2.  For each free variable, use 0's and 1's to ensure equality for the corresponding entry of the vectors.  Take note of the pattern of 0's and 1's at this stage, because this is the best look you'll have at it.  We'll state an important theorem in the next section and the proof will essentially rely on this observation.
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=
\colvector{\ \\0\\\ \\\ \\0\\0\\0}+
x_2\colvector{\ \\1\\\ \\\ \\0\\0\\0}+
x_5\colvector{\ \\0\\\ \\\ \\1\\0\\0}+
x_6\colvector{\ \\0\\\ \\\ \\0\\1\\0}+
x_7\colvector{\ \\0\\\ \\\ \\0\\0\\1}
</equation></p>

<p>Step 3.  For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables.  Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.
<alignmath>
<![CDATA[x_1&=4-4x_2-2x_5-1x_6+3x_7\quad\Rightarrow\\]]>
<![CDATA[\vect{x}&=\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=]]>
\colvector{4\\0\\\ \\\ \\0\\0\\0}+
x_2\colvector{-4\\1\\\ \\\ \\0\\0\\0}+
x_5\colvector{-2\\0\\\ \\\ \\1\\0\\0}+
x_6\colvector{-1\\0\\\ \\\ \\0\\1\\0}+
x_7\colvector{3\\0\\\ \\\ \\0\\0\\1}\\[12pt]
<![CDATA[x_3&=2+0x_2-x_5+3x_6-5x_7\quad\Rightarrow\\]]>
<![CDATA[\vect{x}&=\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=]]>
\colvector{4\\0\\2\\\ \\0\\0\\0}+
x_2\colvector{-4\\1\\0\\\ \\0\\0\\0}+
x_5\colvector{-2\\0\\-1\\\ \\1\\0\\0}+
x_6\colvector{-1\\0\\3\\\ \\0\\1\\0}+
x_7\colvector{3\\0\\-5\\\ \\0\\0\\1}\\[12pt]
<![CDATA[x_4&=1+0x_2-2x_5+6x_6-6x_7\quad\Rightarrow\\]]>
<![CDATA[\vect{x}&=\colvector{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7}=]]>
\colvector{4\\0\\2\\1\\0\\0\\0}+
x_2\colvector{-4\\1\\0\\0\\0\\0\\0}+
x_5\colvector{-2\\0\\-1\\-2\\1\\0\\0}+
x_6\colvector{-1\\0\\3\\6\\0\\1\\0}+
x_7\colvector{3\\0\\-5\\-6\\0\\0\\1}\\
</alignmath></p>

<p>We can now use this final expression to quickly build solutions to the system.  You might try to recreate each of the solutions listed in the write-up for <acroref type="archetype" acro="I" />.  (Hint: look at the values of the free variables in each solution, and notice that the vector $\vect{c}$ has 0's in these locations.)</p>

<p>Even better, we have a description of the infinite solution set, based on just 5 vectors, which we combine in linear combinations to produce solutions.</p>

<p>Whenever we discuss <acroref type="archetype" acro="I" /> you know that's your cue to go work through <acroref type="archetype" acro="J" /> by yourself.  Remember to take note of the 0/1 pattern at the conclusion of Step 2.  Have fun <mdash /> we won't go anywhere while you're away.</p>

</example>

<p>This technique is so important, that we'll do one more example.  However, an important distinction will be that this system is homogeneous.</p>

<example acro="VFSAL" index="vector form of solutions!Archetype L">
<title>Vector form of solutions for Archetype L</title>

<indexlocation index="Archetype L!vector form of solutions" />
<p><acroref type="archetype" acro="L" /> is presented simply as the $5\times 5$ matrix
<equation>
L=<archetypepart acro="L" part="matrixdefn" /></equation>
</p>

<p>We'll interpret it here as the coefficient matrix of a homogeneous system and reference this matrix as $L$.  So we are solving the homogeneous system $\linearsystem{L}{\zerovector}$ having $m=5$ equations in $n=5$ variables.  If we built the augmented matrix, we would add a sixth column to $L$ containing all zeros.  As we did row operations, this sixth column would remain all zeros.  So instead we will row-reduce the coefficient matrix, and mentally remember the missing sixth column of zeros.  This row-reduced matrix is
<equation>
<archetypepart acro="L" part="matrixreduced" /></equation>
and we see $r=3$ nonzero rows.  The columns with leading 1's are $D=\{1,\,2,\,3\}$ so the $r$ dependent variables are $x_1,\,x_2,\,x_3$.  The columns without leading 1's are $F=\{4,\,5\}$, so the $n-r=2$ free variables are $x_4,\,x_5$.  Notice that if we had included the all-zero vector of constants to form the augmented matrix for the system, then the index 6 would have appeared in the set $F$, and subsequently would have been ignored when listing the free variables.</p>

<p>Step 1.  Write the vector of variables ($\vect{x}$) as a fixed vector ($\vect{c}$), plus a linear combination of $n-r=2$ vectors ($\vect{u}_1,\,\vect{u}_2$), using the free variables as the scalars.
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\colvector{\ \\\ \\\ \\\ \\\ }+
x_4\colvector{\ \\\ \\\ \\\ \\\ }+
x_5\colvector{\ \\\ \\\ \\\ \\\ }
</equation></p>

<p>Step 2.  For each free variable, use 0's and 1's to ensure equality for the corresponding entry of the vectors.  Take note of the pattern of 0's and 1's at this stage, even if it is not as illuminating as in other examples.
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\colvector{\ \\\ \\\ \\0\\0}+
x_4\colvector{\ \\\ \\\ \\1\\0}+
x_5\colvector{\ \\\ \\\ \\0\\1}
</equation></p>

<p>Step 3.  For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables.  Don't forget about the <q>missing</q> sixth column being full of zeros.  Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.
<alignmath>
<![CDATA[x_1&=0-1x_4+2x_5&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\colvector{0\\\ \\\ \\0\\0}+
x_4\colvector{-1\\\ \\\ \\1\\0}+
x_5\colvector{2\\\ \\\ \\0\\1}\\
<![CDATA[x_2&=0+2x_4-2x_5&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\colvector{0\\0\\\ \\0\\0}+
x_4\colvector{-1\\2\\\ \\1\\0}+
x_5\colvector{2\\-2\\\ \\0\\1}\\
<![CDATA[x_3&=0-2x_4+1x_5&&\Rightarrow&&]]>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\colvector{0\\0\\0\\0\\0}+
x_4\colvector{-1\\2\\-2\\1\\0}+
x_5\colvector{2\\-2\\1\\0\\1}
</alignmath>
The vector $\vect{c}$ will always have 0's in the entries corresponding to free variables.  However, since we are solving a homogeneous system, the row-reduced augmented matrix has zeros in column $n+1=6$, and hence <em>all</em> the entries of $\vect{c}$ are zero.  So we can write
<equation>
\vect{x}=\colvector{x_1\\x_2\\x_3\\x_4\\x_5}=
\zerovector+
x_4\colvector{-1\\2\\-2\\1\\0}+
x_5\colvector{2\\-2\\1\\0\\1}
=
x_4\colvector{-1\\2\\-2\\1\\0}+
x_5\colvector{2\\-2\\1\\0\\1}
</equation></p>

<p>It will always happen that the solutions to a homogeneous system has $\vect{c}=\zerovector$ (even in the case of a unique solution?).  So our expression for the solutions is a bit more pleasing.  In this example it says that the solutions are <em>all possible</em> linear combinations of the two vectors $\vect{u}_1=\colvector{-1\\2\\-2\\1\\0}$ and $\vect{u}_2=\colvector{2\\-2\\1\\0\\1}$, with no mention of any fixed vector entering into the linear combination.</p>

<p>This observation will motivate our next section and the main definition of that section, and after that we will conclude the section by formalizing this situation.</p>

</example>

<sageadvice acro="SS2" index="solving linear systems">
<title>Solving Systems, Part 2</title>
We can now resolve a bit of the mystery around Sage's <code>.solve_right()</code> method.  Recall from <acroref type="sage" acro="SS1" /> that if a linear system has solutions, Sage only provides one solution, even in the case when there are infinitely many solutions.  In our previous discussion, we used the system from <acroref type="example" acro="ISSI" />.
<sage>
<input>coeff = matrix(QQ, [[ 1,  4,  0, -1,  0,   7, -9],
                    [ 2,  8, -1,  3,  9, -13,  7],
                    [ 0,  0,  2, -3, -4,  12, -8],
                    [-1, -4,  2,  4,  8, -31, 37]])
const = vector(QQ, [3, 9, 1, 4])
coeff.solve_right(const)
</input>
<output>(4, 0, 2, 1, 0, 0, 0)
</output>
</sage>

The vector $\vect{c}$ described in the statement of <acroref type="theorem" acro="VFSLS" /> is precisely the solution returned from Sage's <code>.solve_right()</code> method.  This is the solution where we choose the $\alpha_i$, $1\leq i\leq n-r$ to all be zero, in other words, each free variable is set to zero (how convenient!).  Free variables correspond to columns of the row-reduced augmented matrix that are <em>not</em> pivot columns.  So we can profitably employ the <code>.nonpivots()</code> matrix method.  Lets put this all together.
<sage>
<input>aug = coeff.augment(const)
reduced = aug.rref()
reduced
</input>
<output>[ 1  4  0  0  2  1 -3  4]
[ 0  0  1  0  1 -3  5  2]
[ 0  0  0  1  2 -6  6  1]
[ 0  0  0  0  0  0  0  0]
</output>
</sage>

<sage>
<input>aug.nonpivots()
</input>
<output>(1, 4, 5, 6, 7)
</output>
</sage>

Since the eighth column (numbered 7) of the reduced row-echelon form is not a pivot column, we know by <acroref type="theorem" acro="RCLS" /> that the system is consistent.  We can use the indices of the remaining non-pivot columns to place zeros into the vector $\vect{c}$ in those locations.  The remaining entries of $\vect{c}$ are the entries of the reduced row-echelon form in the last column, inserted in that order.  Boom!<br /><br />
So we have three ways to get to the same solution: (a) row-reduce the augmented matrix and set the free variables all to zero, (b) row-reduce the augmented matrix and use the formula from <acroref type="theorem" acro="VFSLS" /> to construct $\vect{c}$, and (c) use Sage's <code>.solve_right()</code> method.<br /><br />
One mystery left to resolve.  How can we get Sage to give us infinitely many solutions in the case of systems with an infinite solution set?  This is best handled in the next section, <acroref type="section" acro="SS" />, specifically in <acroref type="sage" acro="SS3" />.


</sageadvice>
</subsection>

<subsection acro="PSHS">
<title>Particular Solutions, Homogeneous Solutions</title>

<p>The next theorem tells us that in order to find all of the solutions to a linear system of equations, it is sufficient to find just one solution, and then find all of the solutions to the corresponding homogeneous system.  This explains part of our interest in the null space, the set of all solutions to a homogeneous system.</p>

<theorem acro="PSPHS" index="solution set">
<title>Particular Solution Plus Homogeneous Solutions</title>
<statement>
<p>Suppose that $\vect{w}$ is one solution to the linear system of equations $\linearsystem{A}{\vect{b}}$.  Then $\vect{y}$ is a solution to $\linearsystem{A}{\vect{b}}$ if and only if $\vect{y}=\vect{w}+\vect{z}$ for some vector $\vect{z}\in\nsp{A}$.</p>

</statement>

<proof>
<p>Let $\vectorlist{A}{n}$ be the columns of the coefficient matrix $A$.</p>

<p><implyreverse />  Suppose $\vect{y}=\vect{w}+\vect{z}$ and $\vect{z}\in\nsp{A}$. Then
<alignmath>
\vect{b}
<![CDATA[&=]]>
\vectorentry{\vect{w}}{1}\vect{A}_1+
\vectorentry{\vect{w}}{2}\vect{A}_2+
\vectorentry{\vect{w}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{w}}{n}\vect{A}_n
<![CDATA[&&]]>\text{<acroref type="theorem" acro="SLSLC" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{w}}{1}\vect{A}_1+
\vectorentry{\vect{w}}{2}\vect{A}_2+
\vectorentry{\vect{w}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{w}}{n}\vect{A}_n
+\zerovector
<![CDATA[&&]]>\text{<acroref type="property" acro="ZC" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{w}}{1}\vect{A}_1+
\vectorentry{\vect{w}}{2}\vect{A}_2+
\vectorentry{\vect{w}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{w}}{n}\vect{A}_n
<![CDATA[&&]]>\text{<acroref type="theorem" acro="SLSLC" />}\\
<![CDATA[&\quad\quad]]>
+
\vectorentry{\vect{z}}{1}\vect{A}_1+
\vectorentry{\vect{z}}{2}\vect{A}_2+
\vectorentry{\vect{z}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{z}}{n}\vect{A}_n\\
<![CDATA[&=]]>
\left(\vectorentry{\vect{w}}{1}+\vectorentry{\vect{z}}{1}\right)\vect{A}_1+
\left(\vectorentry{\vect{w}}{2}+\vectorentry{\vect{z}}{2}\right)\vect{A}_2
<![CDATA[&&]]>\text{<acroref type="theorem" acro="VSPCV" />}\\
<![CDATA[&\quad\quad]]>
\left(\vectorentry{\vect{w}}{3}+\vectorentry{\vect{z}}{3}\right)\vect{A}_3+
\cdots+
\left(\vectorentry{\vect{w}}{n}+\vectorentry{\vect{z}}{n}\right)\vect{A}_n\\
<![CDATA[&=]]>
+\vectorentry{\vect{w}+\vect{z}}{1}\vect{A}_1+
\vectorentry{\vect{w}+\vect{z}}{2}\vect{A}_2+
\cdots+
\vectorentry{\vect{w}+\vect{z}}{n}\vect{A}_n
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVA" />}\\
<![CDATA[&=]]>
\vectorentry{\vect{y}}{1}\vect{A}_1+
\vectorentry{\vect{y}}{2}\vect{A}_2+
\vectorentry{\vect{y}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{y}}{n}\vect{A}_n
<![CDATA[&&\text{Definition of $\vect{y}$}]]>
</alignmath>
Applying <acroref type="theorem" acro="SLSLC" /> we see that the vector $\vect{y}$ is a solution to $\linearsystem{A}{\vect{b}}$.</p>

<p><implyforward />  Suppose $\vect{y}$ is a solution to $\linearsystem{A}{\vect{b}}$.  Then
<alignmath>
\zerovector
<![CDATA[&=]]>
<![CDATA[\vect{b}-\vect{b}&&\text{}\\]]>
<![CDATA[&=]]>
\vectorentry{\vect{y}}{1}\vect{A}_1+
\vectorentry{\vect{y}}{2}\vect{A}_2+
\vectorentry{\vect{y}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{y}}{n}\vect{A}_n
<![CDATA[&&]]>\text{<acroref type="theorem" acro="SLSLC" />}\\
<![CDATA[&\quad\quad]]>
-
\left(
\vectorentry{\vect{w}}{1}\vect{A}_1+
\vectorentry{\vect{w}}{2}\vect{A}_2+
\vectorentry{\vect{w}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{w}}{n}\vect{A}_n
\right)\\
<![CDATA[&=]]>
\left(\vectorentry{\vect{y}}{1}-\vectorentry{\vect{w}}{1}\right)\vect{A}_1+
\left(\vectorentry{\vect{y}}{2}-\vectorentry{\vect{w}}{2}\right)\vect{A}_2
<![CDATA[&&]]>\text{<acroref type="theorem" acro="VSPCV" />}\\
<![CDATA[&\quad\quad]]>
+
\left(\vectorentry{\vect{y}}{3}-\vectorentry{\vect{w}}{3}\right)\vect{A}_3+
\cdots+
\left(\vectorentry{\vect{y}}{n}-\vectorentry{\vect{w}}{n}\right)\vect{A}_n\\
<![CDATA[&=]]>
\vectorentry{\vect{y}-\vect{w}}{1}\vect{A}_1+
\vectorentry{\vect{y}-\vect{w}}{2}\vect{A}_2
<![CDATA[&&]]>\text{<acroref type="definition" acro="CVA" />}\\
<![CDATA[&\quad\quad]]>
+\vectorentry{\vect{y}-\vect{w}}{3}\vect{A}_3+
\cdots+
\vectorentry{\vect{y}-\vect{w}}{n}\vect{A}_n
</alignmath>
By <acroref type="theorem" acro="SLSLC" /> we see that the vector $\vect{y}-\vect{w}$ is a solution to the homogeneous system $\homosystem{A}$ and by <acroref type="definition" acro="NSM" />, $\vect{y}-\vect{w}\in\nsp{A}$.  In other words, $\vect{y}-\vect{w}=\vect{z}$ for some vector $\vect{z}\in\nsp{A}$.  Rewritten, this is
$\vect{y}=\vect{w}+\vect{z}$, as desired.</p>

</proof>
</theorem>

<p>After proving <acroref type="theorem" acro="NMUS" /> we commented (insufficiently) on the negation of one half of the theorem.  Nonsingular coefficient matrices lead to unique solutions for every choice of the vector of constants.  What does this say about singular matrices?  A singular matrix $A$ has a nontrivial null space (<acroref type="theorem" acro="NMTNS" />).  For a given vector of constants, $\vect{b}$, the system $\linearsystem{A}{\vect{b}}$ could be inconsistent, meaning there are no solutions.  But if there is at least one solution ($\vect{w}$), then <acroref type="theorem" acro="PSPHS" /> tells us there will be infinitely many solutions because of the role of the infinite null space for a singular matrix.  So a system of equations with a singular coefficient matrix <em>never</em> has a unique solution.  Either there are no solutions, or infinitely many solutions, depending on the choice of the vector of constants ($\vect{b}$).</p>

<example acro="PSHS" index="particular solutions">
<title>Particular solutions, homogeneous solutions, Archetype D</title>

<p><acroref type="archetype" acro="D" /> is a consistent system of equations with a nontrivial null space.  Let $A$ denote the coefficient matrix of this system.  The write-up for this system begins with three solutions,
<alignmath>
<![CDATA[\vect{y}_1=\colvector{0\\1\\2\\1}&&]]>
<![CDATA[\vect{y}_2=\colvector{4\\0\\0\\0}&&]]>
\vect{y}_3=\colvector{7\\8\\1\\3}
</alignmath></p>

<p>We will choose to have $\vect{y}_1$ play the role of $\vect{w}$ in the statement of <acroref type="theorem" acro="PSPHS" />, any one of the three vectors listed here (or others) could have been chosen.   To illustrate the theorem, we should be able to write each of these three solutions as the vector $\vect{w}$ plus a solution to the corresponding homogeneous system of equations.  Since $\zerovector$ is always a solution to a homogeneous system we can easily write
<equation>
\vect{y}_1=\vect{w}=\vect{w}+\zerovector.
</equation></p>

<p>The vectors $\vect{y}_2$ and $\vect{y}_3$ will require a bit more effort.  Solutions to the homogeneous system $\homosystem{A}$ are exactly the elements of the null space of the coefficient matrix, which by an application of <acroref type="theorem" acro="VFSLS" /> is
<equation>
\nsp{A}=\setparts{
x_3\colvector{-3\\-1\\1\\0}+x_4\colvector{2\\3\\0\\1}
}{
x_3,\,x_4\in\complex{\null}
}
</equation></p>

<p>Then
<equation>
\vect{y}_2=\colvector{4\\0\\0\\0}
=\colvector{0\\1\\2\\1}+\colvector{4\\-1\\-2\\-1}
=\colvector{0\\1\\2\\1}+\left((-2)\colvector{-3\\-1\\1\\0}+(-1)\colvector{2\\3\\0\\1}\right)
=\vect{w}+\vect{z}_2
</equation>
where
<equation>
\vect{z}_2
=\colvector{4\\-1\\-2\\-1}
=(-2)\colvector{-3\\-1\\1\\0}+(-1)\colvector{2\\3\\0\\1}
</equation>
is obviously a solution of the homogeneous system since it is written as a linear combination of the vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate the equations in the homogeneous system with $\vect{z}_2$).</p>

<p>Again
<equation>
\vect{y}_3=\colvector{7\\8\\1\\3}
=\colvector{0\\1\\2\\1}+\colvector{7\\7\\-1\\2}
=\colvector{0\\1\\2\\1}+\left((-1)\colvector{-3\\-1\\1\\0}+2\colvector{2\\3\\0\\1}\right)
=\vect{w}+\vect{z}_3
</equation>
where
<equation>
\vect{z}_3=\colvector{7\\7\\-1\\2}=
(-1)\colvector{-3\\-1\\1\\0}+2\colvector{2\\3\\0\\1}
</equation>
is obviously a solution of the homogeneous system since it is written as a linear combination of the vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate the equations in the homogeneous system with $\vect{z}_2$).</p>

<p>Here's another view of this theorem, in the context of this example.  Grab two new solutions of the original system of equations, say
<alignmath>
<![CDATA[\vect{y}_4=\colvector{11\\0\\-3\\-1}&&]]>
\vect{y}_5=\colvector{-4\\2\\4\\2}
</alignmath>
and form their difference,
<equation>
\vect{u}=\colvector{11\\0\\-3\\-1}-\colvector{-4\\2\\4\\2}=\colvector{15\\-2\\-7\\-3}.
</equation></p>

<p>It is no accident that $\vect{u}$ is a solution to the homogeneous system (check this!).  In other words, the difference between any two solutions to a linear system of equations is an element of the null space of the coefficient matrix.  This is an equivalent way to state <acroref type="theorem" acro="PSPHS" />.   (See <acroref type="exercise" acro="MM.T50" />).</p>

</example>

<p>The ideas of this subsection will appear again in <acroref type="chapter" acro="LT" /> when we discuss pre-images of linear transformations (<acroref type="definition" acro="PI" />).</p>

<sageadvice acro="PSHS" index="particular solutions, homogeneous solutions">
<title>Particular Solutions, Homogeneous Solutions</title>
Again, Sage is useful for illustrating a theorem, in this case <acroref type="theorem" acro="PSPHS" />.  We will illustrate both <q>directions</q> of this equivalence with the system from <acroref type="example" acro="ISSI" />.
<sage>
<input>coeff = matrix(QQ,[[ 1,  4,  0, -1,  0,   7, -9],
                   [ 2,  8, -1,  3,  9, -13,  7],
                   [ 0,  0,  2, -3, -4,  12, -8],
                   [-1, -4,  2,  4,  8, -31, 37]])
n = coeff.ncols()
const = vector(QQ, [3, 9, 1, 4])
</input>
</sage>

First we will build solutions to this system.  <acroref type="theorem" acro="PSPHS" /> says we need a particular solution, <ie /> one solution to the system, $\vect{w}$.  We can get this from Sage's <code>.solve_right()</code> matrix method.  Then for <em>any</em> vector $\vect{z}$ from the null space of the coefficient matrix, the new vector $\vect{y}=\vect{w}+\vect{z}$ should be a solution.  We walk through this construction in the next few cells, where we have employed a specific element of the null space, <code>z</code>, along with a check that it is really in the null space.
<sage>
<input>w = coeff.solve_right(const)
nsp = coeff.right_kernel(basis='pivot')
z = vector(QQ, [42, 0, 84, 28, -50, -47, -35])
z in nsp
</input>
<output>True
</output>
</sage>

<sage>
<input>y = w + z
y
</input>
<output>(46, 0, 86, 29, -50, -47, -35)
</output>
</sage>

<sage>
<input>const == sum([y[i]*coeff.column(i) for i in range(n)])
</input>
<output>True
</output>
</sage>

You can create solutions repeatedly via the creation of random elements of the null space.  Be sure you have executed the cells above, so that <code>coeff</code>, <code>n</code>, <code>const</code>, <code>nsp</code> and <code>w</code> are all defined.  Try executing the cell below repeatedly to test infinitely many solutions to the system.  You can use the subsequent compute cell to peek at any of the solutions you create.
<sage>
<input>z = nsp.random_element()
y = w + z
const == sum([y[i]*coeff.column(i) for i in range(n)])
</input>
<output>True
</output>
</sage>

<sage>
<input>y     # random
</input>
<output>(-11/2, 0, 45/2, 34, 0, 7/2, -2)
</output>
</sage>

For the other direction, we present (and verify) two solutions to the linear system of equations.  The condition that $\vect{y}=\vect{w}+\vect{z}$ can be rewritten as $\vect{y}-\vect{w}=\vect{z}$, where $\vect{z}$ is in the null space of the coefficient matrix.  which of our two solutions is the <q>particular</q> solution and which is <q>some other</q> solution?  It does not matter, it is all sematics at this point.  What is important is that their <em>difference</em> is an element of the null space (in either order).  So we define the solutions, along with checks that they are really solutions, then examine their difference.
<sage>
<input>soln1 = vector(QQ,[4, 0, -96, 29, 46, 76, 56])
const == sum([soln1[i]*coeff.column(i) for i in range(n)])
</input>
<output>True
</output>
</sage>

<sage>
<input>soln2 = vector(QQ,[-108, -84, 86, 589, 240, 283, 105])
const == sum([soln2[i]*coeff.column(i) for i in range(n)])
</input>
<output>True
</output>
</sage>

<sage>
<input>(soln1 - soln2) in nsp
</input>
<output>True
</output>
</sage>



</sageadvice>
</subsection>

<!--   End  lc.tex -->
<readingquestions>
<ol>
<li>Earlier, a reading question asked you to solve the system of equations
<alignmath>
<![CDATA[2x_1 + 3x_2 - x_3&= 0\\]]>
<![CDATA[x_1 + 2x_2 + x_3&= 3\\]]>
<![CDATA[x_1 + 3x_2 + 3x_3&= 7]]>
</alignmath>
Use a linear combination to rewrite this system of equations as a vector equality.
</li>
<li>Find a linear combination of the vectors
<equation>
S=\set{\colvector{1\\3\\-1},\,\colvector{2\\0\\4},\,\colvector{-1\\3\\-5}}
</equation>
that equals the vector $\colvector{1\\-9\\11}$.
</li>
<li>The matrix below is the augmented matrix of a system of equations, row-reduced to reduced row-echelon form.  Write the vector form of the solutions to the system.
<equation>
\begin{bmatrix}
<![CDATA[ \leading{1}&3&0&6&0&9\\]]>
<![CDATA[ 0&0&\leading{1}&-2&0&-8\\]]>
<![CDATA[ 0&0&0&0&\leading{1}&3]]>
\end{bmatrix}
</equation>
</li></ol>
</readingquestions>

<exercisesubsection>

<exercise type="C" number="21" rough="All archetype solutions to linear combos">
<problem contributor="robertbeezer">Consider each archetype that is a system of equations. For individual solutions listed (both for the original system and the corresponding homogeneous system) express the vector of constants as a linear combination of the columns of the coefficient matrix, as guaranteed by <acroref type="theorem" acro="SLSLC" />.  Verify this equality by computing the linear combination.  For systems with no solutions, recognize that it is then impossible to write the vector of constants as a linear combination of the columns of the coefficient matrix.  Note too, for homogeneous systems, that the solutions give rise to linear combinations that equal the zero vector.<br /><br />
<acroref type="archetype" acro="A" />,
<acroref type="archetype" acro="B" />,
<acroref type="archetype" acro="C" />,
<acroref type="archetype" acro="D" />,
<acroref type="archetype" acro="E" />,
<acroref type="archetype" acro="F" />,
<acroref type="archetype" acro="G" />,
<acroref type="archetype" acro="H" />,
<acroref type="archetype" acro="I" />,
<acroref type="archetype" acro="J" />
</problem>
<solution contributor="robertbeezer">Solutions for <acroref type="archetype" acro="A" /> and <acroref type="archetype" acro="B" /> are described carefully in <acroref type="example" acro="AALC" /> and <acroref type="example" acro="ABLC" />.
</solution>
</exercise>

<exercise type="C" number="22" rough="All archetypes to vector form of solutions">
<problem contributor="robertbeezer">Consider each archetype that is a system of equations. Write elements of the solution set in vector form, as guaranteed by <acroref type="theorem" acro="VFSLS" />.<br /><br />
<acroref type="archetype" acro="A" />,
<acroref type="archetype" acro="B" />,
<acroref type="archetype" acro="C" />,
<acroref type="archetype" acro="D" />,
<acroref type="archetype" acro="E" />,
<acroref type="archetype" acro="F" />,
<acroref type="archetype" acro="G" />,
<acroref type="archetype" acro="H" />,
<acroref type="archetype" acro="I" />,
<acroref type="archetype" acro="J" />
</problem>
<solution contributor="robertbeezer">Solutions for <acroref type="archetype" acro="D" /> and <acroref type="archetype" acro="I" /> are described carefully in <acroref type="example" acro="VFSAD" /> and <acroref type="example" acro="VFSAI" />.  The technique described in these examples is probably more useful than carefully deciphering the notation of <acroref type="theorem" acro="VFSLS" />.  The solution for each archetype is contained in its description.  So now you can check-off the box for that item.
</solution>
</exercise>

<exercise type="C" number="40" rough="Vector form of solutions, 4 eqs, 5 vars">
<problem contributor="robertbeezer">Find the vector form of the solutions to the system of equations below.
<alignmath>
<![CDATA[2x_1-4x_2+3x_3+x_5&=6\\]]>
<![CDATA[x_1-2x_2-2x_3+14x_4-4x_5&=15\\]]>
<![CDATA[x_1-2x_2+x_3+2x_4+x_5&=-1\\]]>
<![CDATA[-2x_1+4x_2-12x_4+x_5&=-7]]>
</alignmath>
</problem>
<solution contributor="robertbeezer">Row-reduce the augmented matrix representing this system, to find
<equation>
\begin{bmatrix}
<![CDATA[\leading{1} & -2 & 0 & 6 & 0 & 1\\]]>
<![CDATA[0 & 0 & \leading{1} & -4 & 0 & 3\\]]>
<![CDATA[0 & 0 & 0 & 0 & \leading{1} & -5\\]]>
<![CDATA[0 & 0 & 0 & 0 & 0 & 0]]>
\end{bmatrix}
</equation>
The system is consistent (no leading one in column 6, <acroref type="theorem" acro="RCLS" />). $x_2$ and $x_4$ are the free variables.  Now apply <acroref type="theorem" acro="VFSLS" /> directly, or follow the three-step process of <acroref type="example" acro="VFS" />, <acroref type="example" acro="VFSAD" />, <acroref type="example" acro="VFSAI" />, or <acroref type="example" acro="VFSAL" /> to obtain
<equation>
\colvector{x_1\\x_2\\x_3\\x_4\\x_5}
=
\colvector{1\\0\\3\\0\\-5}+
x_2\colvector{2\\1\\0\\0\\0}+
x_4\colvector{-6\\0\\4\\1\\0}
</equation>
</solution>
</exercise>

<exercise type="C" number="41" rough="Vector form of solutions, 6 eqs, 9 vars">
<problem contributor="robertbeezer">Find the vector form of the solutions to the system of equations below.
<alignmath>
<![CDATA[ -2 x_1 -1 x_2 -8 x_3+ 8 x_4+ 4 x_5 -9 x_6 -1 x_7 -1 x_8 -18 x_9 &= 3 \\]]>
<![CDATA[ 3 x_1 -2 x_2+ 5 x_3+ 2 x_4 -2 x_5 -5 x_6+ 1 x_7+ 2 x_8+ 15 x_9 &= 10 \\]]>
<![CDATA[ 4 x_1 -2 x_2+ 8 x_3+  2 x_5 -14 x_6 -2 x_8+ 2 x_9 &= 36 \\]]>
<![CDATA[ -1 x_1+ 2 x_2+ 1 x_3 -6 x_4+  7 x_6 -1 x_7 -3 x_9 &= -8 \\]]>
<![CDATA[ 3 x_1+ 2 x_2+ 13 x_3 -14 x_4 -1 x_5+ 5 x_6 -1 x_8+ 12 x_9 &= 15 \\]]>
<![CDATA[ -2 x_1+ 2 x_2 -2 x_3 -4 x_4+ 1 x_5+ 6 x_6 -2 x_7 -2 x_8 -15 x_9 &= -7]]>
</alignmath>
</problem>
<solution contributor="robertbeezer">Row-reduce the augmented matrix representing this system, to find
<equation>
\begin{bmatrix}
<![CDATA[ \leading{1} & 0 & 3 & -2 & 0 & -1 & 0 & 0 & 3 & 6 \\]]>
<![CDATA[ 0 & \leading{1} & 2 & -4 & 0 & 3 & 0 & 0 & 2 & -1 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & \leading{1} & -2 & 0 & 0 & -1 & 3 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & 0 & 0 & \leading{1} & 0 & 4 & 0 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \leading{1} & 2 & -2 \\]]>
<![CDATA[ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0]]>
\end{bmatrix}
</equation>
The system is consistent (no leading one in column 10, <acroref type="theorem" acro="RCLS" />).   $F=\set{3,\,4,\,6,\,9,\,10}$, so the free variables are $x_3,\,x_4,\,x_6$ and $x_9$.  Now apply <acroref type="theorem" acro="VFSLS" /> directly, or follow the three-step process of <acroref type="example" acro="VFS" />, <acroref type="example" acro="VFSAD" />, <acroref type="example" acro="VFSAI" />, or <acroref type="example" acro="VFSAL" /> to obtain the solution set
<equation>
S=\setparts{
\colvector{ 6\\ -1\\ 0\\ 0\\ 3\\ 0\\ 0\\ -2\\0}+
x_3\colvector{ -3\\ -2\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\0}+
x_4\colvector{ 2\\ 4\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\0}+
x_6\colvector{ 1\\ -3\\ 0\\ 0\\ 2\\ 1\\ 0\\ 0\\0}+
x_9\colvector{ -3\\ -2\\ 0\\ 0\\ 1\\ 0\\ -4\\ -2\\1}
}{
x_3,\,x_4,\,x_6,\,x_9\in\complex{\null}
}
</equation>
</solution>
</exercise>

<exercise type="M" number="10" rough="Example TLC and spanning questions">
<problem contributor="robertbeezer"><acroref type="example" acro="TLC" /> asks if the vector
<equation>
\vect{w}=\colvector{13\\15\\5\\-17\\2\\25}
</equation>
can be written as a linear combination of the four vectors
<alignmath>
<![CDATA[\vect{u}_1&=\colvector{2\\4\\-3\\1\\2\\9}&]]>
<![CDATA[\vect{u}_2&=\colvector{6\\3\\0\\-2\\1\\4}&]]>
<![CDATA[\vect{u}_3&=\colvector{-5\\2\\1\\1\\-3\\0}&]]>
<![CDATA[\vect{u}_4&=\colvector{3\\2\\-5\\7\\1\\3}]]>
</alignmath>
Can it?  Can any vector in $\complex{6}$ be written as a linear combination of the four vectors $\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$?
</problem>
<solution contributor="robertbeezer">No, it is not possible to create $\vect{w}$ as a linear combination
of the four vectors $\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$.  By creating the desired linear combination with unknowns as scalars, <acroref type="theorem" acro="SLSLC" /> provides a system of equations that has no solution.  This one computation is enough to show us that it is not possible to create all the vectors of $\complex{6}$ through linear combinations of the four vectors $\vect{u}_1,\,\vect{u}_2,\,\vect{u}_3,\,\vect{u}_4$.
</solution>
</exercise>

<exercise type="M" number="11" rough="Example VFS, solution as lin combo">
<problem contributor="robertbeezer">At the end of <acroref type="example" acro="VFS" />, the vector $\vect{w}$ is claimed to be a solution to the linear system under discussion.  Verify that $\vect{w}$ really is a solution.  Then determine the four scalars that express $\vect{w}$ as a linear combination of $\vect{c}$, $\vect{u}_1$, $\vect{u}_2$, $\vect{u}_3$.
</problem>
<solution contributor="robertbeezer">The coefficient of $\vect{c}$ is 1.  The coefficients of $\vect{u}_1$, $\vect{u}_2$, $\vect{u}_3$ lie in the third, fourth and seventh entries of $\vect{w}$.  Can you see why?  (Hint:  $F=\set{3,\,4,\,7,\,8}$, so the free variables are $x_3,\,x_4$ and $x_7$.)
</solution>
</exercise>

</exercisesubsection>

</section>
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.