fcla / src / section-DM.xml

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
<?xml version="1.0" encoding="UTF-8" ?>
<section acro="DM">
<title>Determinant of a Matrix</title>

<!-- %%%%%%%%%% -->
<!-- % -->
<!-- %  Section DM -->
<!-- %  Determinants of Matrices -->
<!-- % -->
<!-- %%%%%%%%%% -->
<introduction>
<p>Before we define the determinant of a matrix, we take a slight detour to introduce elementary matrices.  These will bring us back to the beginning of the course and our old friend, row operations.</p>

</introduction>

<subsection acro="EM">
<title>Elementary Matrices</title>

<p>Elementary matrices are very simple, as you might have suspected from their name.  Their purpose is to effect row operations (<acroref type="definition" acro="RO" />) on a matrix through matrix multiplication (<acroref type="definition" acro="MM" />).  Their definitions look much more complicated than they really are, so be sure to skip over them on your first reading and head right for the explanation that follows and the first example.</p>

<definition acro="ELEM" index="elementary matrices">
<title>Elementary Matrices</title>
<p>
<ol><li>For $i\neq j$, $\elemswap{i}{j}$ is the square matrix of size $n$ with
<equation>
\matrixentry{\elemswap{i}{j}}{k\ell}=
\begin{cases}
<![CDATA[0 & k\neq i, k\neq j, \ell\neq k\\]]>
<![CDATA[1 & k\neq i, k\neq j, \ell=k\\]]>
<![CDATA[0 & k=i, \ell\neq j\\]]>
<![CDATA[1 & k=i, \ell=j\\]]>
<![CDATA[0 & k=j, \ell\neq i\\]]>
<![CDATA[1 & k=j, \ell=i]]>
\end{cases}
</equation>
</li><li>For $\alpha\neq 0$, $\elemmult{\alpha}{i}$ is the square matrix of size $n$ with
<equation>
\matrixentry{\elemmult{\alpha}{i}}{k\ell}=
\begin{cases}
<![CDATA[0        & k\neq i, \ell\neq k\\]]>
<![CDATA[1        & k\neq i, \ell=k\\]]>
<![CDATA[\alpha & k=i, \ell=i]]>
\end{cases}
</equation>
</li><li>For $i\neq j$, $\elemadd{\alpha}{i}{j}$ is the square matrix of size $n$ with
<equation>
\matrixentry{\elemadd{\alpha}{i}{j}}{k\ell}=
\begin{cases}
<![CDATA[0 & k\neq j, \ell\neq k\\]]>
<![CDATA[1 & k\neq j, \ell=k\\]]>
<![CDATA[0 & k=j, \ell\neq i, \ell\neq j\\]]>
<![CDATA[1 & k=j, \ell=j\\]]>
<![CDATA[\alpha & k=j, \ell=i\\]]>
\end{cases}
</equation>
</li></ol>
</p>

<notation acro="ELEMS" index="elementary matrix!swap">
<title>Elementary Matrix, Swap</title>
<usage>$\elemswap{i}{j}$</usage>
</notation>
<notation acro="ELEMM" index="elementary matrix!multiply">
<title>Elementary Matrix, Multiply</title>
<usage>$\elemmult{\alpha}{i}$</usage>
</notation>
<notation acro="ELEMA" index="elementary matrix!add">
<title>Elementary Matrix, Add</title>
<usage>$\elemadd{\alpha}{i}{j}$</usage>
</notation>
</definition>

<p>Again, these matrices are not as complicated as their definitions suggest, since they are just small perturbations of the $n\times n$ identity matrix (<acroref type="definition" acro="IM" />).  $\elemswap{i}{j}$ is the identity matrix with rows (or columns) $i$ and $j$ trading places, $\elemmult{\alpha}{i}$ is the identity matrix where the diagonal entry in row $i$ and column $i$ has been replaced by $\alpha$, and $\elemadd{\alpha}{i}{j}$ is the identity matrix where the entry in row $j$ and column $i$ has been replaced by $\alpha$. (Yes, those subscripts look backwards in the description of $\elemadd{\alpha}{i}{j}$).  Notice that our notation makes no reference to the size of the elementary matrix, since this will always be apparent from the context, or unimportant.</p>

<p>The <i>raison d'etre</i> for elementary matrices is to <q>do</q> row operations on matrices with matrix multiplication.  So here is an example where we will both see some elementary matrices and see how they accomplish row operations when used with matrix multiplication.</p>

<example acro="EMRO" index="elementary matrices!row operations">
<title>Elementary matrices and row operations</title>

<indexlocation index="row operations!elementary matrices" />
<p>We will perform a sequence of row operations (<acroref type="definition" acro="RO" />) on the $3\times 4$ matrix $A$, while also multiplying the matrix on the left by the appropriate $3\times 3$ elementary matrix.
<equation>
A=
\begin{bmatrix}
<![CDATA[2 & 1 & 3 & 1\\]]>
<![CDATA[1 & 3 & 2 & 4\\]]>
<![CDATA[5 & 0 & 3 & 1]]>
\end{bmatrix}
</equation>
<alignmath>
<![CDATA[\rowopswap{1}{3}:\ &]]>
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[1 & 3 & 2 & 4\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
<![CDATA[&]]>
<![CDATA[\elemswap{1}{3}:\ &]]>
\begin{bmatrix}
<![CDATA[0 & 0 & 1\\]]>
<![CDATA[0 & 1 & 0\\]]>
<![CDATA[1 & 0 & 0]]>
\end{bmatrix}
\begin{bmatrix}
<![CDATA[2 & 1 & 3 & 1\\]]>
<![CDATA[1 & 3 & 2 & 4\\]]>
<![CDATA[5 & 0 & 3 & 1]]>
\end{bmatrix}
=
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[1 & 3 & 2 & 4\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}\\
<![CDATA[\rowopmult{2}{2}:\ &]]>
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[2 & 6 & 4 & 8\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
<![CDATA[&]]>
<![CDATA[\elemmult{2}{2}:\ &]]>
\begin{bmatrix}
<![CDATA[1 & 0 & 0\\]]>
<![CDATA[0 & 2 & 0\\]]>
<![CDATA[0 & 0 & 1]]>
\end{bmatrix}
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[1 & 3 & 2 & 4\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
=
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[2 & 6 & 4 & 8\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}\\
<![CDATA[\rowopadd{2}{3}{1}:\ &]]>
\begin{bmatrix}
<![CDATA[9 & 2 & 9 & 3\\]]>
<![CDATA[2 & 6 & 4 & 8\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
<![CDATA[&]]>
<![CDATA[\elemadd{2}{3}{1}:\ &]]>
\begin{bmatrix}
<![CDATA[1 & 0 & 2\\]]>
<![CDATA[0 & 1 & 0\\]]>
<![CDATA[0 & 0 & 1]]>
\end{bmatrix}
\begin{bmatrix}
<![CDATA[5 & 0 & 3 & 1\\]]>
<![CDATA[2 & 6 & 4 & 8\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
=
\begin{bmatrix}
<![CDATA[9 & 2 & 9 & 3\\]]>
<![CDATA[2 & 6 & 4 & 8\\]]>
<![CDATA[2 & 1 & 3 & 1]]>
\end{bmatrix}
</alignmath>
</p>

</example>

<p>The next three theorems establish that each elementary matrix effects a row operation via matrix multiplication.</p>

<theorem acro="EMDRO" index="elementary matrices!row operations">
<title>Elementary Matrices Do Row Operations</title>
<statement>
<indexlocation index="row operations!elementary matrices" />
<p>Suppose that $A$ is an $m\times n$ matrix, and $B$ is a matrix of the same size that is obtained from $A$ by a single row operation (<acroref type="definition" acro="RO" />).  Then there is an elementary matrix of size $m$ that will convert $A$ to $B$ via matrix multiplication on the left.  More precisely,
<ol><li>If the row operation swaps rows $i$ and $j$,
then $B=\elemswap{i}{j}A$.
</li><li>If the row operation multiplies row $i$ by $\alpha$,
then $B=\elemmult{\alpha}{i}A$.
</li><li>If the row operation multiplies row $i$ by $\alpha$ and adds the result to row $j$,
then $B=\elemadd{\alpha}{i}{j}A$.
</li></ol>
</p>

</statement>

<proof>
<p>In each of the three conclusions, performing the row operation on $A$ will create the matrix $B$ where only one or two rows will have changed.  So we will establish the equality of the matrix entries row by row, first for the unchanged rows, then for the changed rows, showing in each case that the result of the matrix product is the same as the result of the row operation.  Here we go.</p>

<p>Row $k$ of the product $\elemswap{i}{j}A$, where $k\neq i$, $k\neq j$, is unchanged from $A$,
<alignmath>
\matrixentry{\elemswap{i}{j}A}{k\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemswap{i}{j}}{kp}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemswap{i}{j}}{kk}\matrixentry{A}{k\ell}+]]>
\sum_{\substack{p=1\\p\neq k}}^{n}\matrixentry{\elemswap{i}{j}}{kp}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{k\ell}+]]>
\sum_{\substack{p=1\\p\neq k}}^{n}0\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{k\ell}]]>
</alignmath>
</p>

<p>Row $i$ of the product $\elemswap{i}{j}A$ is row $j$ of $A$,
<alignmath>
\matrixentry{\elemswap{i}{j}A}{i\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemswap{i}{j}}{ip}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemswap{i}{j}}{ij}\matrixentry{A}{j\ell}+]]>
\sum_{\substack{p=1\\p\neq j}}^{n}\matrixentry{\elemswap{i}{j}}{ip}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{j\ell}+]]>
\sum_{\substack{p=1\\p\neq j}}^{n}0\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{j\ell}]]>
</alignmath>
</p>

<p>Row $j$ of the product  $\elemswap{i}{j}A$ is row $i$ of $A$,
<alignmath>
\matrixentry{\elemswap{i}{j}A}{j\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemswap{i}{j}}{jp}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemswap{i}{j}}{ji}\matrixentry{A}{i\ell}+]]>
\sum_{\substack{p=1\\p\neq i}}^{n}\matrixentry{\elemswap{i}{j}}{jp}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{i\ell}+\sum_{\substack{p=1\\p\neq i}}^{n}0\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{i\ell}]]>
</alignmath>
</p>

<p>So the matrix product $\elemswap{i}{j}A$ is the same as the row operation that swaps rows $i$ and $j$.</p>

<p>Row $k$ of the product $\elemmult{\alpha}{i}A$, where $k\neq i$, is unchanged from $A$,
<alignmath>
\matrixentry{\elemmult{\alpha}{i}A}{k\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemmult{\alpha}{i}}{kp}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemmult{\alpha}{i}}{kk}\matrixentry{A}{k\ell}+]]>
\sum_{\substack{p=1\\p\neq k}}^{n}\matrixentry{\elemmult{\alpha}{i}}{kp}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{k\ell}+\sum_{\substack{p=1\\p\neq k}}^{n}0\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{k\ell}]]>
</alignmath>
</p>

<p>Row $i$ of the product  $\elemmult{\alpha}{i}A$ is $\alpha$ times row $i$ of $A$,
<alignmath>
\matrixentry{\elemmult{\alpha}{i}A}{i\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemmult{\alpha}{i}}{ip}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemmult{\alpha}{i}}{ii}\matrixentry{A}{i\ell}+]]>
\sum_{\substack{p=1\\p\neq i}}^{n}\matrixentry{\elemmult{\alpha}{i}}{ip}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=\alpha\matrixentry{A}{i\ell}+\sum_{\substack{p=1\\p\neq i}}^{n}0\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\alpha\matrixentry{A}{i\ell}]]>
</alignmath>
</p>

<p>So the matrix product $\elemmult{\alpha}{i}A$ is the same as the row operation that swaps multiplies row $i$ by $\alpha$.</p>

<p>Row $k$ of the product $\elemadd{\alpha}{i}{j}A$, where $k\neq j$, is unchanged from $A$,
<alignmath>
\matrixentry{\elemadd{\alpha}{i}{j}A}{k\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemadd{\alpha}{i}{j}}{kp}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemadd{\alpha}{i}{j}}{kk}\matrixentry{A}{k\ell}+]]>
\sum_{\substack{p=1\\p\neq k}}^{n}\matrixentry{\elemadd{\alpha}{i}{j}}{kp}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{k\ell}+\sum_{\substack{p=1\\p\neq k}}^{n}0\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{k\ell}]]>
</alignmath>
</p>

<p>Row $j$ of the product $\elemadd{\alpha}{i}{j}A$, is $\alpha$ times row $i$ of $A$ and then added to row $j$ of $A$,
<alignmath>
\matrixentry{\elemadd{\alpha}{i}{j}A}{j\ell}
<![CDATA[&=\sum_{p=1}^{n}\matrixentry{\elemadd{\alpha}{i}{j}}{jp}\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="theorem" acro="EMP" />}\\
<![CDATA[&=\matrixentry{\elemadd{\alpha}{i}{j}}{jj}\matrixentry{A}{j\ell}+\\]]>
<![CDATA[&\quad\quad\matrixentry{\elemadd{\alpha}{i}{j}}{ji}\matrixentry{A}{i\ell}+]]>
\sum_{\substack{p=1\\p\neq j,i}}^{n}\matrixentry{\elemadd{\alpha}{i}{j}}{jp}\matrixentry{A}{p\ell}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=1\matrixentry{A}{j\ell}+\alpha\matrixentry{A}{i\ell}+\sum_{\substack{p=1\\p\neq j,i}}^{n}0\matrixentry{A}{p\ell}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="ELEM" />}\\
<![CDATA[&=\matrixentry{A}{j\ell}+\alpha\matrixentry{A}{i\ell}]]>
</alignmath>
</p>

<p>So the matrix product $\elemadd{\alpha}{i}{j}A$ is the same as the row operation that multiplies row $i$ by $\alpha$ and adds the result to row $j$.</p>

</proof>
</theorem>

<p>Later in this section we will need two facts about elementary matrices.</p>

<theorem acro="EMN" index="elementary matrices!nonsingular">
<title>Elementary Matrices are Nonsingular</title>
<statement>
<p>If $E$ is an elementary matrix, then $E$ is nonsingular.</p>

</statement>

<proof>
<p>We show that we can row-reduce each elementary matrix to the identity matrix.  Given an elementary matrix of the form $\elemswap{i}{j}$, perform the row operation that swaps row $j$ with row $i$.  Given an elementary matrix of the form $\elemmult{\alpha}{i}$, with $\alpha\neq 0$, perform the row operation that multiplies row $i$ by $1/\alpha$.  Given an elementary matrix of the form $\elemadd{\alpha}{i}{j}$, with $\alpha\neq 0$, perform the row operation that multiplies row $i$ by $-\alpha$ and adds it to row $j$.  In each case, the result of the single row operation is the identity matrix.  So each elementary matrix is row-equivalent to the identity matrix, and by <acroref type="theorem" acro="NMRRI" /> is nonsingular.</p>

</proof>
</theorem>

<p>Notice that we have now made use of the nonzero restriction on $\alpha$ in the definition of $\elemmult{\alpha}{i}$.  One more key property of elementary matrices.</p>

<theorem acro="NMPEM" index="nonsingular matrix!elementary matrices">
<title>Nonsingular Matrices are Products of Elementary Matrices</title>
<statement>
<p>Suppose that $A$ is a nonsingular matrix.  Then there exists elementary matrices $E_1,\,E_2,\,E_3,\,\dots,\,E_t$ so that $A=E_1 E_2 E_3\dots E_t$.</p>

</statement>

<proof>
<p>Since $A$ is nonsingular, it is row-equivalent to the identity matrix by <acroref type="theorem" acro="NMRRI" />, so there is a sequence of $t$ row operations that converts $I$ to $A$.  For each of these row operations, form the associated elementary matrix from <acroref type="theorem" acro="EMDRO" /> and denote these matrices by $E_1,\,E_2,\,E_3,\,\dots,\,E_t$.  Applying the first row operation to $I$ yields the matrix $E_1I$.  The second row operation yields $E_2(E_1I)$, and the third row operation creates $E_3E_2E_1I$.  The result of the full sequence of $t$ row operations will yield $A$, so
<equation>
A=  E_t\dots E_3E_2E_1I= E_t\dots E_3E_2E_1
</equation>
</p>

<p>Other than the cosmetic matter of re-indexing these elementary matrices in the opposite order, this is the desired result.</p>

</proof>
</theorem>

<sageadvice acro="EM" index="elementary matrices">
<title>Elementary Matrices</title>
Each of the three types of elementary matrices can be constructed easily, with syntax similar to methods for performing row operations on matrices.  Here we have three $4\times 4$ elementary matrices, in order: $\elemswap{1}{3}$, $\elemmult{7}{2}$, $\elemadd{9}{2}{4}$.  Notice the change in numbering on the rows, and the order of the parameters.
<sage>
<input>A = elementary_matrix(QQ, 4, row1=0, row2=2); A
</input>
<output>[0 0 1 0]
[0 1 0 0]
[1 0 0 0]
[0 0 0 1]
</output>
</sage>

<sage>
<input>A = elementary_matrix(QQ, 4, row1=1, scale=7); A
</input>
<output>[1 0 0 0]
[0 7 0 0]
[0 0 1 0]
[0 0 0 1]
</output>
</sage>

<sage>
<input>A = elementary_matrix(QQ, 4, row1=3, row2=1, scale=9); A
</input>
<output>[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 9 0 1]
</output>
</sage>

Notice that <code>row1</code> is always the row that is being changed.  The keywords can be removed, but the <code>scale</code> keyword must be used to create the second type of elementary matrix, to avoid confusion with the first type.<br /><br />
We can illustrate some of the results of this section with two examples.  First, we convert a matrix into a second matrix which is row-equivalent, and then accomplish the same thing with matrix multiplication and a product of elementary matrices.
<sage>
<input>A = matrix(QQ, [[6, -2, 3, -2],
                [3,  3, 1,  8],
                [4,  0, 5,  4]])
B = copy(A)
B.swap_rows(0,2)
E1 = elementary_matrix(QQ, 3, row1=0, row2=2)
B.rescale_row(1, 5)
E2 = elementary_matrix(QQ, 3, row1=1, scale=5)
B.add_multiple_of_row(1, 0, -3)
E3 = elementary_matrix(QQ, 3, row1=1, row2=0, scale=-3)
B
</input>
<output>[  4   0   5   4]
[  3  15 -10  28]
[  6  -2   3  -2]
</output>
</sage>

<sage>
<input>E3*E2*E1*A
</input>
<output>[  4   0   5   4]
[  3  15 -10  28]
[  6  -2   3  -2]
</output>
</sage>

<sage>
<input>B == E3*E2*E1*A
</input>
<output>True
</output>
</sage>

<sage>
<input>R = E3*E2*E1
R.is_singular()
</input>
<output>False
</output>
</sage>

<sage>
<input>R
</input>
<output>[ 0  0  1]
[ 0  5 -3]
[ 1  0  0]
</output>
</sage>

The matrix <code>R</code>, the product of three elementary matrices, can be construed as the collective effect of the three row operations employed.  With more row operations, <code>R</code> might look even less like an identity matrix.  As the product of nonsingular matrices (<acroref type="theorem" acro="EMN" />), <code>R</code> is nonsingular (<acroref type="theorem" acro="NPNT" />).<br /><br />
The matrix <code>B</code> above is not in reduced row-echelon form (it was just row-equivalent to <code>A</code>).  What if we were to begin with a matrix and track all of the row operations required to bring the matrix to reduced row-echelon form?  As above, we could form the associated elementary matrices and form their product, creating a single matrix <code>R</code> that captures all of the row operations.<br /><br />
It turns out we have already done this.  Extended echelon form is the subject of <acroref type="theorem" acro="PEEF" />, whose second conclusion says that $B=JA$, where $A$ is the original matrix, and $B$ is the row-equivalent matrix in reduced row-echelon form.  Then $J$ is a square nonsingular matrix that is the product of the sequence of elementary matrices associated with the sequence of row operations converting $A$ into $B$.  There may be many, many different sequences of row operations that convert $A$ to $B$, but the requirement that extended echelon form be in reduced row-echelon form guarantees that $J$ is unique.


</sageadvice>
</subsection>

<subsection acro="DD">
<title>Definition of the Determinant</title>

<p>We'll now turn to the definition of a determinant and do some sample computations.  The definition of the determinant function is <define>recursive</define>, that is, the determinant of a large matrix is defined in terms of the determinant of smaller matrices.  To this end, we will make a few definitions.</p>

<definition acro="SM" index="matrix!submatrix">
<title>SubMatrix</title>
<p>Suppose that $A$ is an $m\times n$ matrix.  Then the <define>submatrix</define> $\submatrix{A}{i}{j}$ is the $(m-1)\times (n-1)$ matrix obtained from $A$ by removing row $i$ and column $j$.</p>

<notation acro="SM" index="submatrix">
<title>SubMatrix</title>
<usage>$\submatrix{A}{i}{j}$</usage>
</notation>
</definition>

<example acro="SS" index="matrix!submatrices">
<title>Some submatrices</title>

<p>For the matrix
<equation>
A=
\begin{bmatrix}
<![CDATA[1 & -2 & 3 & 9\\]]>
<![CDATA[4 & -2 & 0 & 1\\]]>
<![CDATA[3 & 5 & 2 & 1]]>
\end{bmatrix}
</equation>
we have the submatrices
<alignmath>
\submatrix{A}{2}{3}
=
\begin{bmatrix}
<![CDATA[1 & -2 & 9\\]]>
<![CDATA[3 & 5 & 1]]>
\end{bmatrix}
<![CDATA[&&]]>
\submatrix{A}{3}{1}
=
\begin{bmatrix}
<![CDATA[-2 & 3 & 9\\]]>
<![CDATA[-2 & 0 & 1]]>
\end{bmatrix}
</alignmath>
</p>

</example>

<definition acro="DM" index="determinant">
<title>Determinant of a Matrix</title>
<p>Suppose $A$ is a square matrix.  Then its <define>determinant</define>, $\detname{A}=\detbars{A}$, is an element of $\complex{\null}$ defined recursively by:
<ol><li>If $A$ is a $1\times 1$ matrix, then $\detname{A}=\matrixentry{A}{11}$.
</li><li>If $A$ is a matrix of size $n$ with $n\geq 2$, then
<alignmath>
<![CDATA[\detname{A}&=]]>
\matrixentry{A}{11}\detname{\submatrix{A}{1}{1}}
-\matrixentry{A}{12}\detname{\submatrix{A}{1}{2}}
+\matrixentry{A}{13}\detname{\submatrix{A}{1}{3}}-\\
<![CDATA[&\quad \matrixentry{A}{14}\detname{\submatrix{A}{1}{4}}]]>
+\cdots
+(-1)^{n+1}\matrixentry{A}{1n}\detname{\submatrix{A}{1}{n}}
</alignmath>
</li></ol>
</p>

<notation acro="DMB" index="determinant!bars">
<title>Determinant of a Matrix, Bars</title>
<usage>$\detbars{A}$</usage>
</notation>
<notation acro="DMF" index="determinant!functional">
<title>Determinant of a Matrix, Functional</title>
<usage>$\detname{A}$</usage>
</notation>
</definition>

<p>So to compute the determinant of a $5\times 5$ matrix we must build 5 submatrices, each of size $4$.  To compute the determinants of each the $4\times 4$ matrices we need to create 4 submatrices each, these now of size $3$ and so on.  To compute the determinant of a $10\times 10$ matrix would require computing the determinant of $10!=10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2=3,628,800$
$1\times 1$ matrices.  Fortunately there are better ways.  However this does suggest an excellent computer programming exercise to write a recursive procedure to compute a determinant.</p>

<p>Let's compute the determinant of a reasonably sized matrix by hand.</p>

<example acro="D33M" index="determinant!size 3 matrix">
<title>Determinant of a $3\times 3$ matrix</title>

<p>Suppose that we have the $3\times 3$ matrix
<equation>
A=
\begin{bmatrix}
<![CDATA[3 & 2 & -1\\]]>
<![CDATA[4 & 1 & 6\\]]>
<![CDATA[-3 & -1 & 2]]>
\end{bmatrix}
</equation>
</p>

<p>Then
<alignmath>
\detname{A}=\detbars{A}
<![CDATA[&=\begin{vmatrix}]]>
<![CDATA[3 & 2 & -1\\]]>
<![CDATA[4 & 1 & 6\\]]>
<![CDATA[-3 & -1 & 2]]>
\end{vmatrix}\\
<![CDATA[&=]]>
3
\begin{vmatrix}
<![CDATA[1 & 6\\]]>
<![CDATA[-1 & 2]]>
\end{vmatrix}
-2
\begin{vmatrix}
<![CDATA[4 & 6\\]]>
<![CDATA[-3 & 2]]>
\end{vmatrix}
+(-1)
\begin{vmatrix}
<![CDATA[4 & 1\\]]>
<![CDATA[-3 & -1]]>
\end{vmatrix}\\
<![CDATA[&=]]>
3\left(
1\begin{vmatrix}
2\\
\end{vmatrix}
-6\begin{vmatrix}
-1
\end{vmatrix}\right)
-2\left(
4\begin{vmatrix}
2
\end{vmatrix}
-6\begin{vmatrix}
-3
\end{vmatrix}\right)
-\left(
4\begin{vmatrix}
-1
\end{vmatrix}
-1\begin{vmatrix}
-3
\end{vmatrix}\right)\\
<![CDATA[&=]]>
3\left(1(2)-6(-1)\right)
-2\left(4(2)-6(-3)\right)
-\left(4(-1)-1(-3)\right)\\
<![CDATA[&=24-52+1\\]]>
<![CDATA[&=-27]]>
</alignmath>
</p>

</example>

<p>In practice it is a bit silly to decompose a $2\times 2$ matrix down into a couple of $1\times 1$ matrices and then compute the exceedingly easy determinant of these puny matrices.  So here is a simple theorem.</p>

<theorem acro="DMST" index="determinant!size 2 matrix">
<title>Determinant of Matrices of Size Two</title>
<statement>
<p>Suppose that
<![CDATA[$A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$.]]>
Then $\detname{A}=ad-bc$.</p>

</statement>

<proof>
<p>Applying <acroref type="definition" acro="DM" />,
<equation>
\begin{vmatrix}
<![CDATA[a&b\\c&d]]>
\end{vmatrix}=
a\begin{vmatrix}d\end{vmatrix}-b\begin{vmatrix}c\end{vmatrix}=ad-bc
</equation>
</p>

</proof>
</theorem>

<p>Do you recall seeing the expression $ad-bc$ before?  (Hint:  <acroref type="theorem" acro="TTMI" />)</p>

</subsection>

<subsection acro="CD">
<title>Computing Determinants</title>

<p>There are a variety of ways to compute the determinant.  We will establish first that we can choose to mimic our definition of the determinant, but by using matrix entries and submatrices based on a row other than the first one.</p>

<theorem acro="DER" index="determinant!expansion, rows">
<title>Determinant Expansion about Rows</title>
<statement>
<p>Suppose that $A$ is a square matrix of size $n$.  Then for $1\leq i\leq n$
<alignmath>
<![CDATA[\detname{A}&=]]>
(-1)^{i+1}\matrixentry{A}{i1}\detname{\submatrix{A}{i}{1}}+
(-1)^{i+2}\matrixentry{A}{i2}\detname{\submatrix{A}{i}{2}}\\
<![CDATA[&\quad+(-1)^{i+3}\matrixentry{A}{i3}\detname{\submatrix{A}{i}{3}}+]]>
\cdots+
(-1)^{i+n}\matrixentry{A}{in}\detname{\submatrix{A}{i}{n}}
</alignmath>
which is known as <define>expansion</define> about row $i$.</p>

</statement>

<proof>
<p>First, the statement of the theorem coincides with <acroref type="definition" acro="DM" /> when $i=1$, so throughout, we need only consider $i>1$.</p>

<p>Given the recursive definition of the determinant, it should be no surprise that we will use induction for this proof (<acroref type="technique" acro="I" />).  When $n=1$, there is nothing to prove since there is but one row.  When $n=2$, we just examine expansion about the second row,
<alignmath>
<![CDATA[(-1)^{2+1}\matrixentry{A}{21}&\detname{\submatrix{A}{2}{1}}+]]>
(-1)^{2+2}\matrixentry{A}{22}\detname{\submatrix{A}{2}{2}}\\
<![CDATA[&=-\matrixentry{A}{21}\matrixentry{A}{12}+\matrixentry{A}{22}\matrixentry{A}{11}]]>
<![CDATA[&&]]>\text{<acroref type="definition" acro="DM" />}\\
<![CDATA[&=\matrixentry{A}{11}\matrixentry{A}{22}-\matrixentry{A}{12}\matrixentry{A}{21}\\]]>
<![CDATA[&=]]>
<![CDATA[\detname{A}&&]]>\text{<acroref type="theorem" acro="DMST" />}\\
</alignmath>
</p>

<p>So the theorem is true for matrices of size $n=1$ and $n=2$.  Now assume the result is true for all matrices of size $n-1$ as we derive an expression for expansion about row $i$ for a matrix of size $n$.  We will abuse our notation for a submatrix slightly, so $\submatrix{A}{i_1,i_2}{j_1,j_2}$ will denote the matrix formed by removing rows $i_1$ and $i_2$, along with removing columns $j_1$ and $j_2$.  Also, as we take a determinant of a submatrix, we will need to <q>jump up</q> the index of summation partway through as we <q>skip over</q> a missing column.  To do this smoothly we will set
<equation>
\epsilon_{\ell j}=
\begin{cases}
<![CDATA[0 & \ell<j\\]]>
<![CDATA[1 & \ell>j]]>
\end{cases}
</equation>
</p>

<p>Now,
<alignmath>
<![CDATA[&\detname{A}\\]]>
<![CDATA[&\quad=]]>
\sum_{j=1}^{n}(-1)^{1+j}\matrixentry{A}{1j}\detname{\submatrix{A}{1}{j}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="DM" />}\\
<![CDATA[&\quad=]]>
\sum_{j=1}^{n}(-1)^{1+j}\matrixentry{A}{1j}
\sum_{\substack{1\leq\ell\leq n\\\ell\neq j}}
(-1)^{i-1+\ell-\epsilon_{\ell j}}\matrixentry{A}{i\ell}\detname{\submatrix{A}{1,i}{j,\ell}}
<![CDATA[&&\text{Induction}\\]]>
<![CDATA[&\quad=]]>
\sum_{j=1}^{n}\sum_{\substack{1\leq\ell\leq n\\\ell\neq j}}
(-1)^{j+i+\ell-\epsilon_{\ell j}}
\matrixentry{A}{1j}\matrixentry{A}{i\ell}\detname{\submatrix{A}{1,i}{j,\ell}}
<![CDATA[&&]]>\text{<acroref type="property" acro="DCN" />}\\
<![CDATA[&\quad=]]>
\sum_{\ell=1}^{n}\sum_{\substack{1\leq j\leq n\\j\neq\ell}}
(-1)^{j+i+\ell-\epsilon_{\ell j}}
\matrixentry{A}{1j}\matrixentry{A}{i\ell}\detname{\submatrix{A}{1,i}{j,\ell}}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&\quad=]]>
\sum_{\ell=1}^{n}(-1)^{i+\ell}\matrixentry{A}{i\ell}
\sum_{\substack{1\leq j\leq n\\j\neq\ell}}
(-1)^{j-\epsilon_{\ell j}}
\matrixentry{A}{1j}\detname{\submatrix{A}{1,i}{j,\ell}}
<![CDATA[&&]]>\text{<acroref type="property" acro="DCN" />}\\
<![CDATA[&\quad=]]>
\sum_{\ell=1}^{n}(-1)^{i+\ell}\matrixentry{A}{i\ell}
\sum_{\substack{1\leq j\leq n\\j\neq\ell}}
(-1)^{\epsilon_{\ell j}+j}
\matrixentry{A}{1j}\detname{\submatrix{A}{i,1}{\ell,j}}
<![CDATA[&&\text{$2\epsilon_{\ell j}$ is even}\\]]>
<![CDATA[&\quad=]]>
\sum_{\ell=1}^{n}(-1)^{i+\ell}\matrixentry{A}{i\ell}\detname{\submatrix{A}{i}{\ell}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="DM" />}
</alignmath>
</p>

</proof>
</theorem>

<p>We can also obtain a formula that computes a determinant by expansion about a column, but this will be simpler if we first prove a result about the interplay of determinants and transposes.  Notice how the following proof makes use of the ability to compute a determinant by expanding about <em>any</em> row.</p>

<theorem acro="DT" index="determinant!transpose">
<title>Determinant of the Transpose</title>
<statement>
<p>Suppose that $A$ is a square matrix.  Then $\detname{\transpose{A}}=\detname{A}$.</p>

</statement>

<proof>
<p>With our definition of the determinant (<acroref type="definition" acro="DM" />) and theorems like <acroref type="theorem" acro="DER" />, using induction (<acroref type="technique" acro="I" />) is a natural approach to proving properties of determinants.  And so it is here.  Let $n$ be the size of the matrix $A$, and we will use induction on $n$.</p>

<p>For $n=1$, the transpose of a matrix is identical to the original matrix, so vacuously, the determinants are equal.</p>

<p>Now assume the result is true for matrices of size $n-1$.  Then,
<alignmath>
\detname{\transpose{A}}
<![CDATA[&=\frac{1}{n}\sum_{i=1}^{n}\detname{\transpose{A}}\\]]>
<![CDATA[&=]]>
\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}(-1)^{i+j}
\matrixentry{\transpose{A}}{ij}\detname{\submatrix{\transpose{A}}{i}{j}}
<![CDATA[&&]]>\text{<acroref type="theorem" acro="DER" />}\\
<![CDATA[&=]]>
\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}(-1)^{i+j}
\matrixentry{A}{ji}\detname{\submatrix{\transpose{A}}{i}{j}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="TM" />}\\
<![CDATA[&=]]>
\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}(-1)^{i+j}
\matrixentry{A}{ji}\detname{\transpose{\left(\submatrix{A}{j}{i}\right)}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="TM" />}\\
<![CDATA[&=]]>
\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}(-1)^{i+j}
\matrixentry{A}{ji}\detname{\submatrix{A}{j}{i}}
<![CDATA[&&\text{Induction Hypothesis}\\]]>
<![CDATA[&=]]>
\frac{1}{n}\sum_{j=1}^{n}\sum_{i=1}^{n}(-1)^{j+i}
\matrixentry{A}{ji}\detname{\submatrix{A}{j}{i}}
<![CDATA[&&]]>\text{<acroref type="property" acro="CACN" />}\\
<![CDATA[&=]]>
\frac{1}{n}\sum_{j=1}^{n}\detname{A}
<![CDATA[&&]]>\text{<acroref type="theorem" acro="DER" />}\\
<![CDATA[&=\detname{A}]]>
</alignmath>
</p>

</proof>
</theorem>

<p>Now we can easily get the result that a determinant can be computed by expansion about any column as well.</p>

<theorem acro="DEC" index="determinant!expansion, columns">
<title>Determinant Expansion about Columns</title>
<statement>
<p>Suppose that $A$ is a square matrix of size $n$.  Then for $1\leq j\leq n$
<alignmath>
<![CDATA[\detname{A}&=]]>
(-1)^{1+j}\matrixentry{A}{1j}\detname{\submatrix{A}{1}{j}}+
(-1)^{2+j}\matrixentry{A}{2j}\detname{\submatrix{A}{2}{j}}\\
<![CDATA[&\quad+(-1)^{3+j}\matrixentry{A}{3j}\detname{\submatrix{A}{3}{j}}+]]>
\cdots+
(-1)^{n+j}\matrixentry{A}{nj}\detname{\submatrix{A}{n}{j}}
</alignmath>
which is known as <define>expansion</define> about column $j$.</p>

</statement>

<proof>
<p>
<alignmath>
\detname{A}
<![CDATA[&=]]>
<![CDATA[\detname{\transpose{A}}&&]]>\text{<acroref type="theorem" acro="DT" />}\\
<![CDATA[&=]]>
\sum_{i=1}^{n}(-1)^{j+i}\matrixentry{\transpose{A}}{ji}\detname{\submatrix{\transpose{A}}{j}{i}}
<![CDATA[&&]]>\text{<acroref type="theorem" acro="DER" />}\\
<![CDATA[&=]]>
\sum_{i=1}^{n}(-1)^{j+i}\matrixentry{\transpose{A}}{ji}\detname{\transpose{\left(\submatrix{A}{i}{j}\right)}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="TM" />}\\
<![CDATA[&=]]>
\sum_{i=1}^{n}(-1)^{j+i}\matrixentry{\transpose{A}}{ji}\detname{\submatrix{A}{i}{j}}
<![CDATA[&&]]>\text{<acroref type="theorem" acro="DT" />}\\
<![CDATA[&=]]>
\sum_{i=1}^{n}(-1)^{i+j}\matrixentry{A}{ij}\detname{\submatrix{A}{i}{j}}
<![CDATA[&&]]>\text{<acroref type="definition" acro="TM" />}
</alignmath>
</p>

</proof>
</theorem>

<p>That the determinant of an $n\times n$ matrix can be computed in $2n$ different (albeit similar) ways is nothing short of remarkable.  For the doubters among us, we will do an example, computing a $4\times 4$ matrix in two different ways.</p>

<example acro="TCSD" index="determinant!computed two ways">
<title>Two computations, same determinant</title>

<p>Let
<equation>
A=
\begin{bmatrix}
<![CDATA[-2 & 3 & 0 & 1\\]]>
<![CDATA[9 & -2 & 0 & 1\\]]>
<![CDATA[1 & 3 & -2 & -1\\]]>
<![CDATA[4 & 1 & 2 & 6]]>
\end{bmatrix}
</equation>
</p>

<p>Then expanding about the fourth row (<acroref type="theorem" acro="DER" /> with $i=4$) yields,
<alignmath>
\detbars{A}
<![CDATA[&=]]>
(4)(-1)^{4+1}
\begin{vmatrix}
<![CDATA[ 3 & 0 & 1\\]]>
<![CDATA[ -2 & 0 & 1\\]]>
<![CDATA[ 3 & -2 & -1]]>
\end{vmatrix}
+(1)(-1)^{4+2}
\begin{vmatrix}
<![CDATA[-2 &  0 & 1\\]]>
<![CDATA[9 &  0 & 1\\]]>
<![CDATA[1 &  -2 & -1]]>
\end{vmatrix}\\
<![CDATA[&\quad\quad+(2)(-1)^{4+3}]]>
\begin{vmatrix}
<![CDATA[-2 & 3 &  1\\]]>
<![CDATA[9 & -2 &  1\\]]>
<![CDATA[1 & 3  & -1]]>
\end{vmatrix}
+(6)(-1)^{4+4}
\begin{vmatrix}
<![CDATA[-2 & 3 & 0 \\]]>
<![CDATA[9 & -2 & 0 \\]]>
<![CDATA[1 & 3 & -2]]>
\end{vmatrix}\\
<![CDATA[&=]]>
(-4)(10)+(1)(-22)+(-2)(61)+6(46)=92
</alignmath>
</p>

<p>Expanding about column 3 (<acroref type="theorem" acro="DEC" /> with $j=3$) gives
<alignmath>
\detbars{A}
<![CDATA[&=]]>
(0)(-1)^{1+3}
\begin{vmatrix}
<![CDATA[9 & -2 & 1\\]]>
<![CDATA[1 & 3 & -1\\]]>
<![CDATA[4 & 1 & 6]]>
\end{vmatrix}
+
(0)(-1)^{2+3}
\begin{vmatrix}
<![CDATA[-2 & 3 & 1\\]]>
<![CDATA[1 & 3 & -1\\]]>
<![CDATA[4 & 1 & 6]]>
\end{vmatrix}
+\\
<![CDATA[&\quad\quad(-2)(-1)^{3+3}]]>
\begin{vmatrix}
<![CDATA[-2 & 3 & 1\\]]>
<![CDATA[9 & -2 & 1\\]]>
<![CDATA[4 & 1 & 6]]>
\end{vmatrix}
+
(2)(-1)^{4+3}
\begin{vmatrix}
<![CDATA[-2 & 3 & 1\\]]>
<![CDATA[9 & -2 & 1\\]]>
<![CDATA[1 & 3 & -1]]>
\end{vmatrix}\\
<![CDATA[&=0+0+(-2)(-107)+(-2)(61)=92]]>
</alignmath>
</p>

<p>Notice how much easier the second computation was.  By choosing to expand about the third column, we have two entries that are zero, so two $3\times 3$ determinants need not be computed at all!</p>

</example>

<p>When a matrix has all zeros above (or below) the diagonal, exploiting the zeros by expanding about the proper row or column makes computing a determinant insanely easy.</p>

<example acro="DUTM" index="determinant, upper triangular matrix">
<title>Determinant of an upper triangular matrix</title>

<p>Suppose that
<equation>
T=
\begin{bmatrix}
<![CDATA[2 & 3 & -1 & 3 & 3\\]]>
<![CDATA[0 & -1 & 5 & 2 & -1\\]]>
<![CDATA[0 & 0 & 3 & 9 & 2\\]]>
<![CDATA[0 & 0 & 0 & -1 & 3\\]]>
<![CDATA[0 & 0 & 0 & 0 & 5]]>
\end{bmatrix}
</equation>
</p>

<p>We will compute the determinant of this $5\times 5$ matrix by consistently expanding about the first column for each submatrix that arises and does not have a zero entry multiplying it.
<alignmath>
<![CDATA[\detname{T}&=]]>
\begin{vmatrix}
<![CDATA[2 & 3 & -1 & 3 & 3\\]]>
<![CDATA[0 & -1 & 5 & 2 & -1\\]]>
<![CDATA[0 & 0 & 3 & 9 & 2\\]]>
<![CDATA[0 & 0 & 0 & -1 & 3\\]]>
<![CDATA[0 & 0 & 0 & 0 & 5]]>
\end{vmatrix}\\
<![CDATA[&=2(-1)^{1+1}]]>
\begin{vmatrix}
<![CDATA[-1 & 5 & 2 & -1\\]]>
<![CDATA[ 0 & 3 & 9 & 2\\]]>
<![CDATA[ 0 & 0 & -1 & 3\\]]>
<![CDATA[ 0 & 0 & 0 & 5]]>
\end{vmatrix}\\
<![CDATA[&=2(-1)(-1)^{1+1}]]>
\begin{vmatrix}
<![CDATA[ 3 & 9 & 2\\]]>
<![CDATA[ 0 & -1 & 3\\]]>
<![CDATA[ 0 & 0 & 5]]>
\end{vmatrix}\\
<![CDATA[&=2(-1)(3)(-1)^{1+1}]]>
\begin{vmatrix}
<![CDATA[ -1 & 3\\]]>
<![CDATA[ 0 & 5]]>
\end{vmatrix}\\
<![CDATA[&=2(-1)(3)(-1)(-1)^{1+1}]]>
\begin{vmatrix}
5
\end{vmatrix}\\
<![CDATA[&=2(-1)(3)(-1)(5)=30]]>
</alignmath>
</p>

</example>

<p>When you consult other texts in your study of determinants, you may run into the terms <q>minor</q> and <q>cofactor,</q> especially in a discussion centered on expansion about rows and columns.  We've chosen not to make these definitions formally since we've been able to get along without them.  However, informally, a <define>minor</define> is a determinant of a submatrix, specifically $\detname{\submatrix{A}{i}{j}}$ and is usually referenced as the minor of $\matrixentry{A}{ij}$.  A <define>cofactor</define> is a signed minor, specifically the cofactor of $\matrixentry{A}{ij}$ is $(-1)^{i+j}\detname{\submatrix{A}{i}{j}}$.</p>

<sageadvice acro="DM" index="determinant">
<title>Determinant of a Matrix</title>
Computing the determinant in Sage is straightforward.
<sage>
<input>A = matrix(QQ,[[ 4,  3, -2, -9, -11, -14, -4,  11,  -4,   4],
               [ 0,  1,  0, -1,  -1,  -3, -2,   3,   6,  15],
               [ 0,  1,  1,  1,   3,   0, -3,  -5,  -9,  -3],
               [-3,  3,  3,  6,  12,   3, -9, -12,  -9,  15],
               [-2,  0,  2,  3,   5,   3, -3,  -5,  -3,   7],
               [ 3,  3, -1, -7,  -8, -12, -5,   8,  -4,   9],
               [ 0, -1,  1,  2,   2,   5,  3,  -6,  -8, -12],
               [-1, -2, -1,  1,  -2,   5,  6,   3,   6,  -8],
               [ 2,  1, -3, -6,  -8,  -7,  0,  12,  11,   8],
               [-3, -2,  2,  5,   5,   9,  2,  -7,  -4,  -3]])
A.determinant()
</input>
<output>3
</output>
</sage>

Random matrices, even with small entries, can have very large determinants.
<sage>
<input>B = matrix(QQ,  15, [
  [-5, -5, -5,  4,  1,  1, -3,  0,  4,  4, -2, -4,  2,  3, -1],
  [ 1,  1, -4,  3,  3,  4,  1, -1, -5,  4, -3,  0, -1,  0,  0],
  [ 3,  4, -2,  3, -1, -5, -1, -4, -5,  0, -1,  2, -4, -1, -1],
  [ 2, -4,  4, -3, -3, -3, -1, -3, -3, -1,  2,  4, -1, -1, -3],
  [ 1,  4, -3, -1, -2, -2,  1, -1,  3, -5, -4, -2, -2, -2, -5],
  [-1, -2,  4,  0,  4,  1,  1,  4, -5,  3,  1, -1,  4,  2, -2],
  [ 4,  3,  2,  4,  4, -5,  2, -5, -5,  2, -5, -4, -4,  0,  3],
  [ 1, -2,  0, -2, -2,  0,  2,  3,  1,  2, -4,  0, -5, -2,  2],
  [-4, -4,  2,  1, -1,  4, -2,  1, -2,  2, -1, -1,  3,  4, -1],
  [-4,  0,  2,  3, -4, -5,  3, -5,  4, -4, -2,  3,  3, -3,  0],
  [ 1,  2,  3, -4,  2,  0, -4, -1,  1, -3,  1,  4, -2,  4, -1],
  [-3,  3,  0,  2,  1, -2, -4,  0, -1, -1, -1,  2,  3,  1, -4],
  [ 4,  3, -3, -4,  3,  1, -3,  2,  1, -5, -5, -3,  2,  1,  4],
  [-3, -5, -1, -5, -2,  0, -3,  1,  2, -1,  0, -4,  3, -2,  3],
  [-1,  1, -3, -1,  3, -3,  2, -3, -5, -1, -1,  3, -1,  2,  3]
                    ])
B.determinant()
</input>
<output>202905135564
</output>
</sage>

Sage is incredibly fast at computing determinants with rational entries.  Try the following two compute cells on whatever computer you might be using right now.  The one unfamilar command clears the value of the determinant that Sage caches, so we get accurate timing information across multiple evaluations.
<sage>
<input>C = random_matrix(QQ, 100, 100)
timeit("C.determinant(); C._cache={}")      # random
</input>
<output>5 loops, best of 3: 152 ms per loop
</output>
</sage>

<sage>
<input>C.determinant()                             # random
</input>
<output>-54987836999...175801344
</output>
</sage>



</sageadvice>
</subsection>

<!--   End of  dm.tex -->
<readingquestions>
<ol>
<li>Construct the elementary matrix that will effect the row operation $\rowopadd{-6}{2}{3}$ on a $4\times 7$ matrix.
</li>
<li>Compute the determinant of the matrix
<equation>
\begin{bmatrix}
<![CDATA[2&3&-1\\]]>
<![CDATA[3&8&2\\]]>
<![CDATA[4&-1&-3]]>
\end{bmatrix}
</equation>
</li>
<li>Compute the determinant of the matrix
<equation>
\begin{bmatrix}
<![CDATA[3 & 9 & -2 & 4 & 2 \\]]>
<![CDATA[0 & 1 & 4 & -2 & 7 \\]]>
<![CDATA[0 & 0 & -2 & 5 & 2 \\]]>
<![CDATA[0 & 0 & 0  & -1 & 6 \\]]>
<![CDATA[0 & 0 & 0  & 0 & 4]]>
\end{bmatrix}
</equation>
</li></ol>
</readingquestions>

<exercisesubsection>

<exercise type="C" number="21" rough="eterminant of a 2x2">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix below.
<equation>
\begin{bmatrix}
<![CDATA[1 & 3\\]]>
<![CDATA[6 & 2]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">Using the formula in <acroref type="theorem" acro="DMST" /> we have
<alignmath>
<![CDATA[\begin{vmatrix}1 & 3 \\ 6 & 2 \end{vmatrix}]]>
<![CDATA[&= 1 \cdot 2 - 6 \cdot 3 = 2 - 18 = -16]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="22" rough="eterminant of a 2x2">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix below.
<equation>
\begin{bmatrix}
<![CDATA[1 & 3\\]]>
<![CDATA[2 & 6]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">Using the formula in <acroref type="theorem" acro="DMST" /> we have
<alignmath>
<![CDATA[\begin{vmatrix}1 & 3 \\ 2 & 6 \end{vmatrix}]]>
<![CDATA[&= 1 \cdot 6 - 2 \cdot 3 = 6 - 6 = 0]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="23" rough="eterminant of a 3x3">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix below.
<equation>
\begin{bmatrix}
<![CDATA[ 1 & 3 & 2 \\]]>
<![CDATA[ 4 & 1 & 3 \\]]>
<![CDATA[ 1 & 0 & 1]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">We can compute the determinant by expanding about any row or column;  the most efficient ones to choose are either the second column or the third row.  In any case, the determinant will be $-4$.
</solution>
</exercise>

<exercise type="C" number="24" rough="determinant of a 3x3, equals 70">
<problem contributor="robertbeezer">Doing the computations by hand, find the determinant of the matrix below.
<equation>
\begin{bmatrix}
<![CDATA[ -2 & 3 & -2 \\]]>
<![CDATA[ -4 & -2 & 1 \\]]>
<![CDATA[ 2 & 4 & 2]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="robertbeezer">We'll expand about the first row since there are no zeros to exploit,
<alignmath>
\begin{vmatrix}
<![CDATA[ -2 & 3 & -2 \\]]>
<![CDATA[ -4 & -2 & 1 \\]]>
<![CDATA[ 2 & 4 & 2]]>
\end{vmatrix}
<![CDATA[&=]]>
(-2)\begin{vmatrix}
<![CDATA[ -2 & 1 \\]]>
<![CDATA[ 4 & 2]]>
\end{vmatrix}
+
(-1)(3)\begin{vmatrix}
<![CDATA[ -4 & 1 \\]]>
<![CDATA[ 2 & 2]]>
\end{vmatrix}
+
(-2)\begin{vmatrix}
<![CDATA[ -4 & -2 \\]]>
<![CDATA[ 2 & 4]]>
\end{vmatrix}\\
<![CDATA[&=(-2)((-2)(2)-1(4)) + (-3)((-4)(2)-1(2)) + (-2)((-4)(4)-(-2)(2))\\]]>
<![CDATA[&=(-2)(-8)+(-3)(-10) + (-2)(-12)=70]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="25" rough="determinant of a 3x3">
<problem contributor="robertbeezer">Doing the computations by hand, find the determinant of the matrix below.
<equation>
\begin{bmatrix}
<![CDATA[3 & -1 & 4\\]]>
<![CDATA[2 & 5 & 1\\]]>
<![CDATA[2 & 0 & 6]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="robertbeezer">We can expand about any row or column, so the zero entry in the middle of the last row is attractive.  Let's expand about column 2.  By <acroref type="theorem" acro="DER" /> and <acroref type="theorem" acro="DEC" /> you will get the same result by expanding about a different row or column.  We will use <acroref type="theorem" acro="DMST" /> twice.
<alignmath>
\begin{vmatrix}
<![CDATA[3 & -1 & 4\\]]>
<![CDATA[2 & 5 & 1\\]]>
<![CDATA[2 & 0 & 6]]>
\end{vmatrix}
<![CDATA[&=]]>
(-1)(-1)^{1+2}
\begin{vmatrix}
<![CDATA[2 &  1\\]]>
<![CDATA[2 &  6]]>
\end{vmatrix}
+
(5)(-1)^{2+2}
\begin{vmatrix}
<![CDATA[3 &  4\\]]>
<![CDATA[2 &  6]]>
\end{vmatrix}
+
(0)(-1)^{3+2}
\begin{vmatrix}
<![CDATA[3 &  4\\]]>
<![CDATA[2 &  1]]>
\end{vmatrix}\\
<![CDATA[&=(1)(10)+(5)(10)+0=60]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="26" rough="determinant of a 4x4, with zeros">
<problem contributor="robertbeezer">Doing the computations by hand, find the determinant of the matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[ 2 & 0 & 3 & 2 \\]]>
<![CDATA[ 5 & 1 & 2 & 4 \\]]>
<![CDATA[ 3 & 0 & 1 & 2 \\]]>
<![CDATA[ 5 & 3 & 2 & 1]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="robertbeezer">With two zeros in column 2, we choose to expand about that column (<acroref type="theorem" acro="DEC" />),
<alignmath>
\detname{A}
<![CDATA[&=]]>
\begin{vmatrix}
<![CDATA[ 2 & 0 & 3 & 2 \\]]>
<![CDATA[ 5 & 1 & 2 & 4 \\]]>
<![CDATA[ 3 & 0 & 1 & 2 \\]]>
<![CDATA[ 5 & 3 & 2 & 1]]>
\end{vmatrix}\\
<![CDATA[&=]]>
0(-1)
\begin{vmatrix}
<![CDATA[ 5 &  2 & 4 \\]]>
<![CDATA[ 3 &  1 & 2 \\]]>
<![CDATA[ 5 &  2 & 1]]>
\end{vmatrix}
+
1(1)
\begin{vmatrix}
<![CDATA[ 2 &  3 & 2 \\]]>
<![CDATA[ 3 &  1 & 2 \\]]>
<![CDATA[ 5 &  2 & 1]]>
\end{vmatrix}
+
0(-1)
\begin{vmatrix}
<![CDATA[ 2 & 3 & 2 \\]]>
<![CDATA[ 5 &  2 & 4 \\]]>
<![CDATA[ 5 &  2 & 1]]>
\end{vmatrix}
+
3(1)
\begin{vmatrix}
<![CDATA[ 2 &  3 & 2 \\]]>
<![CDATA[ 5 &  2 & 4 \\]]>
<![CDATA[ 3 &  1 & 2]]>
\end{vmatrix}\\
<![CDATA[&=]]>
(1)\left(2(1(1)-2(2)) - 3(3(1)-5(2)) + 2(3(2)-5(1))\right) +\\
<![CDATA[&\quad\quad(3)\left(2(2(2)-4(1)) - 3(5(2)-4(3)) + 2(5(1)-3(2))\right)\\]]>
<![CDATA[&=]]>
(-6+21+2) + (3)(0+6-2) = 29
</alignmath>
</solution>
</exercise>

<exercise type="C" number="27" rough="eterminant of a 4x4">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[1 & 0 & 1 & 1\\]]>
<![CDATA[2 & 2 & -1 & 1\\]]>
<![CDATA[2 & 1 & 3 & 0\\]]>
<![CDATA[1 & 1 & 0 & 1]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">Expanding on the first row, we have
<alignmath>
<![CDATA[\begin{vmatrix} 1 & 0 & 1 & 1\\ 2 & 2 &-1 & 1\\2 & 1 & 3 & 0\\1 & 1 & 0  & 1\end{vmatrix}]]>
<![CDATA[&=]]>
<![CDATA[\begin{vmatrix} 2 & -1 & 1\\1 & 3 & 0\\1 & 0 & 1 \end{vmatrix} - 0 +]]>
<![CDATA[\begin{vmatrix} 2 & 2 & 1\\ 2 & 1 & 0\\ 1 & 1 & 1\end{vmatrix} -]]>
<![CDATA[\begin{vmatrix} 2 & 2 & -1\\ 2 & 1 & 3 \\ 1 & 1 & 0 \end{vmatrix}\\]]>
<![CDATA[&= 4 + (-1) - (-1) = 4]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="28" rough="eterminant of a 4x4">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[1 & 0 & 1 & 1\\]]>
<![CDATA[2 & -1 & -1 & 1\\]]>
<![CDATA[2 & 5 & 3 & 0\\]]>
<![CDATA[1 & -1 & 0 & 1]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">Expanding along the first row, we have
<alignmath>
<![CDATA[\begin{vmatrix} 1 & 0 & 1 & 1 \\ 2 & -1 & -1 & 1\\ 2 & 5 & 3 & 0\\ 1 & -1 & 0 & 1 \end{vmatrix}]]>
<![CDATA[&=]]>
<![CDATA[\begin{vmatrix} -1 & -1 & 1\\5 & 3 & 0\\-1 & 0 & 1 \end{vmatrix} - 0 +]]>
<![CDATA[\begin{vmatrix} 2 & -1 & 1\\ 2 & 5 & 0\\1 & -1 & 1 \end{vmatrix} -]]>
<![CDATA[\begin{vmatrix}2 & -1 & -1\\2 & 5 & 3\\ 1 & -1 & 0 \end{vmatrix}\\]]>
<![CDATA[&= 5 - 0 + 5 - 10 = 0.]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="29" rough="eterminant of a 5x5, nearly triangular">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[2 & 3 & 0 & 2 & 1\\]]>
<![CDATA[0 & 1 & 1 & 1 & 2\\]]>
<![CDATA[0 & 0 & 1 & 2 & 3\\]]>
<![CDATA[0 & 1 & 2 & 1 & 0\\]]>
<![CDATA[0 & 0 & 0 & 1 & 2]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">Expanding along the first column, we have
<alignmath>
\begin{vmatrix}
<![CDATA[2 & 3 & 0 & 2 & 1\\]]>
<![CDATA[0 & 1 & 1 & 1 & 2\\]]>
<![CDATA[0 & 0 & 1 & 2 & 3\\]]>
<![CDATA[0 & 1 & 2 & 1 &0\\]]>
<![CDATA[0 & 0 & 0 & 1 & 2]]>
\end{vmatrix}
<![CDATA[&=]]>
2 \begin{vmatrix}
<![CDATA[1 & 1 & 1 & 2\\]]>
<![CDATA[0 & 1 & 2 & 3\\]]>
<![CDATA[1 & 2 & 1 & 0\\]]>
<![CDATA[0 & 0 & 1 & 2]]>
\end{vmatrix}
+ 0 + 0 + 0 + 0\\
<intertext>Now, expanding along the first column again, we have</intertext>
<![CDATA[&= 2\left(]]>
\begin{vmatrix}
<![CDATA[1 & 2 & 3\\]]>
<![CDATA[2 & 1 & 0\\]]>
<![CDATA[0 & 1 & 2]]>
\end{vmatrix} - 0  +
\begin{vmatrix}
<![CDATA[1 & 1 & 2\\]]>
<![CDATA[1 & 2 & 3\\]]>
<![CDATA[0 & 1 & 2]]>
\end{vmatrix} - 0
\right)\\
<![CDATA[&=]]> 2\left( [1 \cdot 1 \cdot 2 + 2 \cdot 0 \cdot 0 + 3 \cdot 2 \cdot 1 - 0 \cdot 1 \cdot 3 - 1 \cdot 0 \cdot 1 - 2 \cdot 2 \cdot 2] + \right.\\
<![CDATA[&]]>\quad\left.[1 \cdot 2 \cdot 2 + 1 \cdot 3 \cdot 0 +2 \cdot 1 \cdot 1 -0 \cdot 2 \cdot 2 - 1 \cdot 3 \cdot 1 - 2 \cdot 1 \cdot 1]\right)\\
<![CDATA[&= 2([2 +0 + 6 - 0 - 0 - 8] + [4 + 0 + 2 - 0 - 3 - 2])\\]]>
<![CDATA[&= 2]]>
</alignmath>
</solution>
</exercise>

<exercise type="C" number="30" rough="eterminant of a 5x5">
<problem contributor="chrisblack">Doing the computations by hand, find the determinant of the matrix $A$.
<equation>
A=
\begin{bmatrix}
<![CDATA[2 & 1 & 1 & 0  & 1\\]]>
<![CDATA[2 & 1 & 2 & -1 & 1\\]]>
<![CDATA[0 & 0 & 1 & 2 & 0\\]]>
<![CDATA[1 & 0 & 3 & 1 & 1\\]]>
<![CDATA[2 & 1 & 1 & 2 & 1]]>
\end{bmatrix}
</equation>
</problem>
<solution contributor="chrisblack">In order to exploit the zeros, let's expand along row 3.  We then have
<alignmath>
\begin{vmatrix}
<![CDATA[2 & 1 & 1 & 0  & 1\\]]>
<![CDATA[2 & 1 & 2 & -1 & 1\\]]>
<![CDATA[0 & 0 & 1 & 2 & 0\\]]>
<![CDATA[1 & 0 & 3 & 1 & 1\\]]>
<![CDATA[2 & 1 & 1 & 2 & 1]]>
\end{vmatrix}
<![CDATA[&= (-1)^6]]>
\begin{vmatrix}
<![CDATA[2 & 1 & 0 & 1 \\]]>
<![CDATA[2 & 1 & -1 & 1\\]]>
<![CDATA[1 & 0 & 1 & 1\\]]>
<![CDATA[2 & 1 & 2 & 1]]>
\end{vmatrix}
+ (-1)^7 \cdot
2\begin{vmatrix}
<![CDATA[ 2 & 1 & 1 & 1\\]]>
<![CDATA[2 & 1 & 2 & 1\\]]>
<![CDATA[1 & 0 & 3 & 1\\]]>
<![CDATA[2 & 1 & 1 & 1]]>
\end{vmatrix}\\
<intertext>Notice that the second matrix here is singular since two rows are identical and thus it cannot row-reduce to an identity matrix. We now have</intertext>
<![CDATA[&=]]>
\begin{vmatrix}
<![CDATA[2 & 1 & 0 & 1 \\]]>
<![CDATA[2 & 1 & -1 & 1\\]]>
<![CDATA[1 & 0 & 1 & 1\\]]>
<![CDATA[2 & 1 & 2 & 1]]>
\end{vmatrix}
+ 0\\
<intertext>and now we expand on the first row of the first matrix:</intertext>
<![CDATA[&= 2]]>
\begin{vmatrix}
<![CDATA[1 & -1 & 1\\]]>
<![CDATA[0 & 1 & 1\\]]>
<![CDATA[1 & 2 & 1]]>
\end{vmatrix} -
\begin{vmatrix}
<![CDATA[2 & -1 & 1\\]]>
<![CDATA[1 & 1 & 1\\]]>
<![CDATA[2 & 2 & 1]]>
\end{vmatrix} + 0 -
\begin{vmatrix}
<![CDATA[2 & 1 & -1 \\]]>
<![CDATA[1 & 0 & 1\\]]>
<![CDATA[2 & 1 & 2]]>
\end{vmatrix}\\
<![CDATA[&= 2(-3) - (-3) - (-3) = 0]]>
</alignmath>
</solution>
</exercise>

<exercise type="M" number="10" rough="2x2, find k to make the matrix have determinant = 0">
<problem contributor="chrisblack">Find a value of $k$ so that the matrix
$A =
\begin{bmatrix}
<![CDATA[2 & 4 \\]]>
<![CDATA[3 & k\end{bmatrix}$]]>
has $\det(A) = 0$, or explain why it is not possible.
</problem>
<solution contributor="chrisblack">There is only one value of $k$ that will make this matrix have a zero determinant.
<alignmath>
<![CDATA[\detname{A} &= \begin{vmatrix} 2 & 4 \\ 3 & k \end{vmatrix} = 2k - 12]]>
</alignmath>
so $\detname{A} = 0$ only when $k = 6$.
</solution>
</exercise>

<exercise type="M" number="11" rough="3x3, find k to make the matrix have determinant = 0">
<problem contributor="chrisblack">Find a value of $k$ so that the matrix
$A = \begin{bmatrix}
<![CDATA[1 & 2 & 1\\]]>
<![CDATA[2 & 0 & 1 \\]]>
<![CDATA[2 & 3 & k]]>
\end{bmatrix}$
has $\det(A) = 0$, or explain why it is not possible.
</problem>
<solution contributor="chrisblack"><alignmath>
<![CDATA[\detname{A} &=]]>
\begin{vmatrix}
<![CDATA[1 & 2 & 1 \\]]>
<![CDATA[2 & 0 & 1 \\]]>
<![CDATA[2& 3 & k]]>
\end{vmatrix}
= 7 - 4k
</alignmath>
Thus, $\detname{A} = 0$ only when $k = \frac{7}{4}$.
</solution>
</exercise>

<exercise type="M" number="15" rough="2x2, solve characteristic equation">
<problem contributor="chrisblack">Given the matrix
$B =
\begin{bmatrix}
<![CDATA[2 - x & 1 \\]]>
<![CDATA[4 & 2 - x]]>
\end{bmatrix}$,
find all values of $x$ that are solutions of $\det(B) = 0$.
</problem>
<solution contributor="chrisblack">Using the formula for the determinant of a $2\times 2$ matrix given in <acroref type="theorem" acro="DMST" />, we have
<alignmath>
<![CDATA[\det{(B)} &=]]>
\begin{vmatrix}
<![CDATA[2 - x & 1\\]]>
<![CDATA[4 & 2-x]]>
\end{vmatrix}
= (2 - x)(2 - x) - 4 = x^2 - 4x = x(x-4)
</alignmath>
and thus $\det{(B)} = 0$ only when $x=0$ or $x=4$.
</solution>
</exercise>

<exercise type="M" number="16" rough="2x2, solve characteristic equation">
<problem contributor="chrisblack">Given the matrix
$B =
\begin{bmatrix}
<![CDATA[4 - x & -4 & -4\\]]>
<![CDATA[2 & -2 - x & -4\\]]>
<![CDATA[3 & -3 & -4 -x]]>
\end{bmatrix}$,
find all values of $x$ that are solutions of $\det(B) = 0$.
</problem>
<solution contributor="chrisblack"><alignmath>
\detname{B}
<![CDATA[&= 8x -2x^2 - x^3]]>
= -x(x^2 + 2x - 8)
= -x(x-2)(x+4)
</alignmath>
And thus, $\detname{B}=0$ when $x = 0$, $x = 2$, or $x = -4$.
</solution>
</exercise>

</exercisesubsection>

</section>
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.