# beamer / doc / beamerthemeexamplebase.tex

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 % Copyright 2003--2007 by Till Tantau % Copyright 2010 by Vedran Mileti\'c % % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Free Documentation License. % % See the file doc/licenses/LICENSE for more details. % $Header$ \beamertemplatesolidbackgroundcolor{black!5} \beamertemplatetransparentcovered \usepackage{times} \title{There Is No Largest Prime Number} \subtitle{With an introduction to a new proof technique} \author[Euklid]{Euklid of Alexandria} \institute[Univ. Alexandria]{Department of Mathematics\\ University of Alexandria} \date[ISPN '80]{27th International Symposium on Prime Numbers, --280} \begin{document} \begin{frame} \titlepage \tableofcontents \end{frame} \section{Results} \subsection{Proof of the Main Theorem} \begin{frame}<1> \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{proof} \begin{enumerate} % The strange way of typesetting math is to minimize font usage % in order to keep the file sizes of the examples small. \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q$\;+\,$1$ is not divisible by any of them. \item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere \end{enumerate} \end{proof} \end{frame} \end{document}