Source

Bayesian-Optimization / nlopt2 / luksan / mssubs.c

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
#include <math.h>
#include "luksan.h"

#define MAX2(a,b) ((a) > (b) ? (a) : (b))
#define iabs(a) ((a) < 0 ? -(a) : (a))

/*     subroutines extracted from mssubs.for */
/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* FUNCTION MXVMAX             ALL SYSTEMS                   91/12/01 */
/* PURPOSE : */
/* L-INFINITY NORM OF A VECTOR. */

/* PARAMETERS : */
/*  II  N  VECTOR DIMENSION. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RR  MXVMAX  L-INFINITY NORM OF THE VECTOR X. */

double luksan_mxvmax__(int *n, double *x)
{
    /* System generated locals */
    int i__1;
    double d__1, d__2, d__3;

    /* Local variables */
    int i__;
    double mxvmax;

    /* Parameter adjustments */
    --x;

    /* Function Body */
    mxvmax = 0.;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	d__2 = mxvmax, d__3 = (d__1 = x[i__], fabs(d__1));
	mxvmax = MAX2(d__2,d__3);
/* L1: */
    }
    return mxvmax;
} /* luksan_mxvmax__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVINE             ALL SYSTEMS                   94/12/01 */
/* PURPOSE : */
/* ELEMENTS OF THE INTEGER VECTOR ARE REPLACED BY THEIR ABSOLUTE VALUES. */

/* PARAMETERS : */
/*  II  N DIMENSION OF THE INTEGER VECTOR. */
/*  IU  IX(N)  INTEGER VECTOR WHICH IS UPDATED SO THAT IX(I):=ABS(IX(I)) */
/*         FOR ALL I. */

void luksan_mxvine__(int *n, int *ix)
{
    /* System generated locals */
    int i__1, i__2;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --ix;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ix[i__] = (i__2 = ix[i__], iabs(i__2));
/* L1: */
    }
    return;
} /* luksan_mxvine__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDCMV               ALL SYSTEMS                91/12/01 */
/* PURPOSE : */
/* RANK-TWO UPDATE OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX A. */
/* THIS MATRIX IS UPDATED BY THE RULE A:=A+ALF*X*TRANS(U)+BET*Y*TRANS(V). */

/* PARAMETERS : */
/*  II  N  NUMBER OF ROWS OF THE MATRIX A. */
/*  II  M  NUMBER OF COLUMNS OF THE MATRIX A. */
/*  RU  A(N*M)  RECTANGULAR MATRIX STORED COLUMNWISE IN THE */
/*         ONE-DIMENSIONAL ARRAY. */
/*  RI  ALF  SCALAR PARAMETER. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RI  U(M)  INPUT VECTOR. */
/*  RI  BET  SCALAR PARAMETER. */
/*  RI  Y(N)  INPUT VECTOR. */
/*  RI  V(M)  INPUT VECTOR. */

void luksan_mxdcmv__(int *n, int *m, double *a, 
	double *alf, double *x, double *u, double *bet, 
	double *y, double *v)
{
    /* System generated locals */
    int i__1, i__2;

    /* Local variables */
    int i__, j, k;
    double tempa, tempb;

    /* Parameter adjustments */
    --v;
    --y;
    --u;
    --x;
    --a;

    /* Function Body */
    k = 0;
    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	tempa = *alf * u[j];
	tempb = *bet * v[j];
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    a[k + i__] = a[k + i__] + tempa * x[i__] + tempb * y[i__];
/* L1: */
	}
	k += *n;
/* L2: */
    }
    return;
} /* luksan_mxdcmv__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVSAV                ALL SYSTEMS                91/12/01 */
/* PORTABILITY : ALL SYSTEMS */
/* 91/12/01 LU : ORIGINAL VERSION */

/* PURPOSE : */
/* DIFFERENCE OF TWO VECTORS RETURNED IN THE SUBSTRACTED ONE. */

/* PARAMETERS : */
/*  II  N  VECTOR DIMENSION. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RU  Y(N)  UPDATE VECTOR WHERE Y:= X - Y. */

void luksan_mxvsav__(int *n, double *x, double *y)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;
    double temp;

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	temp = y[i__];
	y[i__] = x[i__] - y[i__];
	x[i__] = temp;
/* L10: */
    }
    return;
} /* luksan_mxvsav__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVLIN                ALL SYSTEMS                92/12/01 */
/* PURPOSE : */
/* LINEAR COMBINATION OF TWO VECTORS. */

/* PARAMETERS : */
/*  II  N  VECTOR DIMENSION. */
/*  RI  A  SCALING FACTOR. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RI  B  SCALING FACTOR. */
/*  RI  Y(N)  INPUT VECTOR. */
/*  RO  Z(N)  OUTPUT VECTOR WHERE Z:= A*X + B*Y. */

void luksan_mxvlin__(int *n, double *a, double *x, 
	double *b, double *y, double *z__)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --z__;
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	z__[i__] = *a * x[i__] + *b * y[i__];
/* L1: */
    }
    return;
} /* luksan_mxvlin__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDCMU               ALL SYSTEMS                91/12/01 */
/* PURPOSE : */
/* UPDATE OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX A. THIS MATRIX */
/* IS UPDATED BY THE RULE A:=A+ALF*X*TRANS(Y). */

/* PARAMETERS : */
/*  II  N  NUMBER OF ROWS OF THE MATRIX A. */
/*  II  M  NUMBER OF COLUMNS OF THE MATRIX A. */
/*  RU  A(N*M)  RECTANGULAR MATRIX STORED COLUMNWISE IN THE */
/*         ONE-DIMENSIONAL ARRAY. */
/*  RI  ALF  SCALAR PARAMETER. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RI  Y(M)  INPUT VECTOR. */

void luksan_mxdcmu__(int *n, int *m, double *a, 
	double *alf, double *x, double *y)
{
    /* System generated locals */
    int i__1, i__2;

    /* Local variables */
    int i__, j, k;
    double temp;

    /* Parameter adjustments */
    --y;
    --x;
    --a;

    /* Function Body */
    k = 0;
    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	temp = *alf * y[j];
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    a[k + i__] += temp * x[i__];
/* L1: */
	}
	k += *n;
/* L2: */
    }
    return;
} /* luksan_mxdcmu__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVDIR                ALL SYSTEMS                91/12/01 */
/* PURPOSE : */
/* VECTOR AUGMENTED BY THE SCALED VECTOR. */

/* PARAMETERS : */
/*  II  N  VECTOR DIMENSION. */
/*  RI  A  SCALING FACTOR. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RI  Y(N)  INPUT VECTOR. */
/*  RO  Z(N)  OUTPUT VECTOR WHERE Z:= Y + A*X. */

void luksan_mxvdir__(int *n, double *a, double *x, 
		    double *y, double *z__)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --z__;
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	z__[i__] = y[i__] + *a * x[i__];
/* L10: */
    }
} /* luksan_mxvdir__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDCMD               ALL SYSTEMS                91/12/01
* PURPOSE :
* MULTIPLICATION OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX A
* BY A VECTOR X AND ADDITION OF THE SCALED VECTOR ALF*Y.
*
* PARAMETERS :
*  II  N  NUMBER OF ROWS OF THE MATRIX A.
*  II  M  NUMBER OF COLUMNS OF THE MATRIX A.
*  RI  A(N*M)  RECTANGULAR MATRIX STORED COLUMNWISE IN THE
*         ONE-DIMENSIONAL ARRAY.
*  RI  X(M)  INPUT VECTOR.
*  RI  ALF  SCALING FACTOR.
*  RI  Y(N)  INPUT VECTOR.
*  RO  Z(N)  OUTPUT VECTOR EQUAL TO A*X+ALF*Y.
*
* SUBPROGRAMS USED :
*  S   MXVDIR  VECTOR AUGMENTED BY THE SCALED VECTOR.
*  S   MXVSCL  SCALING OF A VECTOR.
*/
void luksan_mxdcmd__(int *n, int *m, double *a, 
	double *x, double *alf, double *y, double *z__)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int j, k;

    /* Parameter adjustments */
    --z__;
    --y;
    --x;
    --a;

    /* Function Body */
    luksan_mxvscl__(n, alf, &y[1], &z__[1]);
    k = 0;
    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	luksan_mxvdir__(n, &x[j], &a[k + 1], &z__[1], &z__[1]);
	k += *n;
/* L1: */
    }
    return;
} /* luksan_mxdcmd__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDRCB               ALL SYSTEMS                91/12/01
* PURPOSE :
* BACKWARD PART OF THE STRANG FORMULA FOR PREMULTIPLICATION OF
* THE VECTOR X BY AN IMPLICIT BFGS UPDATE.
*
* PARAMETERS :
*  II  N  NUMBER OF ROWS OF THE MATRICES A AND B.
*  II  M  NUMBER OF COLUMNS OF THE MATRICES A AND B.
*  RI  A(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RI  B(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RI  U(M)  VECTOR OF SCALAR COEFFICIENTS.
*  RO  V(M)  VECTOR OF SCALAR COEFFICIENTS.
*  RU  X(N)  PREMULTIPLIED VECTOR.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*
* SUBPROGRAM USED :
*  S   MXUDIR  VECTOR AUGMENTED BY THE SCALED VECTOR.
*  RF  MXUDOT  DOT PRODUCT OF VECTORS.
*
* METHOD :
* H.MATTHIES, G.STRANG: THE SOLUTION OF NONLINEAR FINITE ELEMENT
* EQUATIONS. INT.J.NUMER. METHODS ENGN. 14 (1979) 1613-1626.
*/
void luksan_mxdrcb__(int *n, int *m, double *a, 
	double *b, double *u, double *v, double *x, int *
	ix, int *job)
{
    /* System generated locals */
    int i__1;
    double d__1;

    /* Local variables */
    int i__, k;

    /* Parameter adjustments */
    --ix;
    --x;
    --v;
    --u;
    --b;
    --a;

    /* Function Body */
    k = 1;
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	v[i__] = u[i__] * luksan_mxudot__(n, &x[1], &a[k], &ix[1], job);
	d__1 = -v[i__];
	luksan_mxudir__(n, &d__1, &b[k], &x[1], &x[1], &ix[1], job);
	k += *n;
/* L1: */
    }
    return;
} /* luksan_mxdrcb__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDRCF               ALL SYSTEMS                91/12/01
* PURPOSE :
* FORWARD PART OF THE STRANG FORMULA FOR PREMULTIPLICATION OF
* THE VECTOR X BY AN IMPLICIT BFGS UPDATE.
*
* PARAMETERS :
*  II  N  NUMBER OF ROWS OF THE MATRICES A AND B.
*  II  M  NUMBER OF COLUMNS OF THE MATRICES A AND B.
*  RI  A(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RI  B(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RI  U(M)  VECTOR OF SCALAR COEFFICIENTS.
*  RI  V(M)  VECTOR OF SCALAR COEFFICIENTS.
*  RU  X(N)  PREMULTIPLIED VECTOR.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*
* SUBPROGRAM USED :
*  S   MXUDIR  VECTOR AUGMENTED BY THE SCALED VECTOR.
*  RF  MXUDOT  DOT PRODUCT OF VECTORS.
*
* METHOD :
* H.MATTHIES, G.STRANG: THE SOLUTION OF NONLINEAR FINITE ELEMENT
* EQUATIONS. INT.J.NUMER. METHODS ENGN. 14 (1979) 1613-1626.
*/
void luksan_mxdrcf__(int *n, int *m, double *a, 
	double *b, double *u, double *v, double *x, int *
	ix, int *job)
{
    /* System generated locals */
    double d__1;

    /* Local variables */
    int i__, k;
    double temp;

    /* Parameter adjustments */
    --ix;
    --x;
    --v;
    --u;
    --b;
    --a;

    /* Function Body */
    k = (*m - 1) * *n + 1;
    for (i__ = *m; i__ >= 1; --i__) {
	temp = u[i__] * luksan_mxudot__(n, &x[1], &b[k], &ix[1], job);
	d__1 = v[i__] - temp;
	luksan_mxudir__(n, &d__1, &a[k], &x[1], &x[1], &ix[1], job);
	k -= *n;
/* L1: */
    }
    return;
} /* luksan_mxdrcf__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDRMM               ALL SYSTEMS                91/12/01
* PURPOSE :
* MULTIPLICATION OF A ROWWISE STORED DENSE RECTANGULAR MATRIX A BY
* A VECTOR X.
*
* PARAMETERS :
*  II  N  NUMBER OF COLUMNS OF THE MATRIX A.
*  II  M  NUMBER OF ROWS OF THE MATRIX A.
*  RI  A(M*N)  RECTANGULAR MATRIX STORED ROWWISE IN THE
*         ONE-DIMENSIONAL ARRAY.
*  RI  X(N)  INPUT VECTOR.
*  RO  Y(M)  OUTPUT VECTOR EQUAL TO A*X.
*/
void luksan_mxdrmm__(int *n, int *m, double *a, 
	double *x, double *y)
{
    /* System generated locals */
    int i__1, i__2;

    /* Local variables */
    int i__, j, k;
    double temp;

    /* Parameter adjustments */
    --y;
    --x;
    --a;

    /* Function Body */
    k = 0;
    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	temp = 0.;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    temp += a[k + i__] * x[i__];
/* L1: */
	}
	y[j] = temp;
	k += *n;
/* L2: */
    }
    return;
} /* luksan_mxdrmm__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXDRSU               ALL SYSTEMS                91/12/01
* PURPOSE :
* SHIFT OF COLUMNS OF THE RECTANGULAR MATRICES A AND B. SHIFT OF
* ELEMENTS OF THE VECTOR U. THESE SHIFTS ARE USED IN THE LIMITED
* MEMORY BFGS METHOD.
*
* PARAMETERS :
*  II  N  NUMBER OF ROWS OF THE MATRIX A AND B.
*  II  M  NUMBER OF COLUMNS OF THE MATRIX A AND B.
*  RU  A(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RU  B(N*M)  RECTANGULAR MATRIX STORED AS A ONE-DIMENSIONAL ARRAY.
*  RU  U(M)  VECTOR.
*/
void luksan_mxdrsu__(int *n, int *m, double *a, 
		     double *b, double *u)
{
    int i__, k, l;

    /* Parameter adjustments */
    --u;
    --b;
    --a;

    /* Function Body */
    k = (*m - 1) * *n + 1;
    for (i__ = *m - 1; i__ >= 1; --i__) {
	l = k - *n;
	luksan_mxvcop__(n, &a[l], &a[k]);
	luksan_mxvcop__(n, &b[l], &b[k]);
	u[i__ + 1] = u[i__];
	k = l;
/* L1: */
    }
    return;
} /* luksan_mxdrsu__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXUCOP                ALL SYSTEMS                99/12/01
* PURPOSE :
* COPY OF THE VECTOR WITH INITIATION OF THE ACTIVE PART.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RO  Y(N)  OUTPUT VECTOR WHERE Y:= X.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*/
void luksan_mxucop__(int *n, double *x, double *y,
	 int *ix, int *job)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --ix;
    --y;
    --x;

    /* Function Body */
    if (*job == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    y[i__] = x[i__];
/* L1: */
	}
    } else if (*job > 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] >= 0) {
		y[i__] = x[i__];
	    } else {
		y[i__] = 0.;
	    }
/* L2: */
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] != -5) {
		y[i__] = x[i__];
	    } else {
		y[i__] = 0.;
	    }
/* L3: */
	}
    }
    return;
} /* luksan_mxucop__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXUDIR                ALL SYSTEMS                99/12/01
* PURPOSE :
* VECTOR AUGMENTED BY THE SCALED VECTOR IN A BOUND CONSTRAINED CASE.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  A  SCALING FACTOR.
*  RI  X(N)  INPUT VECTOR.
*  RI  Y(N)  INPUT VECTOR.
*  RO  Z(N)  OUTPUT VECTOR WHERE Z:= Y + A*X.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*/
void luksan_mxudir__(int *n, double *a, double *x,
	 double *y, double *z__, int *ix, int *job)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --ix;
    --z__;
    --y;
    --x;

    /* Function Body */
    if (*job == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    z__[i__] = y[i__] + *a * x[i__];
/* L1: */
	}
    } else if (*job > 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] >= 0) {
		z__[i__] = y[i__] + *a * x[i__];
	    }
/* L2: */
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] != -5) {
		z__[i__] = y[i__] + *a * x[i__];
	    }
/* L3: */
	}
    }
    return;
} /* luksan_mxudir__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* FUNCTION MXVDOT                  ALL SYSTEMS                91/12/01 */
/* PURPOSE : */
/* DOT PRODUCT OF TWO VECTORS. */

/* PARAMETERS : */
/*  II  N  VECTOR DIMENSION. */
/*  RI  X(N)  INPUT VECTOR. */
/*  RI  Y(N)  INPUT VECTOR. */
/*  RR  MXVDOT  VALUE OF DOT PRODUCT MXVDOT=TRANS(X)*Y. */

double luksan_mxvdot__(int *n, double *x, double *y)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;
    double temp;

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    temp = 0.;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	temp += x[i__] * y[i__];
/* L10: */
    }
    return temp;
} /* luksan_mxvdot__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* FUNCTION MXUDOT                  ALL SYSTEMS                99/12/01
* PURPOSE :
* DOT PRODUCT OF VECTORS IN A BOUND CONSTRAINED CASE.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RI  Y(N)  INPUT VECTOR.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*  RR  MXUDOT  VALUE OF DOT PRODUCT MXUDOT=TRANS(X)*Y.
*/
double luksan_mxudot__(int *n, double *x, double *y, int *ix,
		       int *job)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;
    double temp;

    /* Parameter adjustments */
    --ix;
    --y;
    --x;

    /* Function Body */
    temp = 0.;
    if (*job == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    temp += x[i__] * y[i__];
/* L1: */
	}
    } else if (*job > 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] >= 0) {
		temp += x[i__] * y[i__];
	    }
/* L2: */
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] != -5) {
		temp += x[i__] * y[i__];
	    }
/* L3: */
	}
    }
    return temp;
} /* luksan_mxudot__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXUNEG                ALL SYSTEMS                00/12/01
* PURPOSE :
* COPY OF THE VECTOR WITH INITIATION OF THE ACTIVE PART.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RO  Y(N)  OUTPUT VECTOR WHERE Y:= X.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*/
void luksan_mxuneg__(int *n, double *x, double *y,
	 int *ix, int *job)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --ix;
    --y;
    --x;

    /* Function Body */
    if (*job == 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    y[i__] = -x[i__];
/* L1: */
	}
    } else if (*job > 0) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] >= 0) {
		y[i__] = -x[i__];
	    } else {
		y[i__] = 0.;
	    }
/* L2: */
	}
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] != -5) {
		y[i__] = -x[i__];
	    } else {
		y[i__] = 0.;
	    }
/* L3: */
	}
    }
    return;
} /* luksan_mxuneg__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXUZER                ALL SYSTEMS                99/12/01
* PURPOSE :
* VECTOR ELEMENTS CORRESPONDING TO ACTIVE BOUNDS ARE SET TO ZERO.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RO  X(N)  OUTPUT VECTOR SUCH THAT X(I)=A FOR ALL I.
*  II  IX(N)  VECTOR CONTAINING TYPES OF BOUNDS.
*  II  JOB  OPTION. IF JOB.GT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).LE.-1. IF JOB.LT.0 THEN INDEX I IS NOT USED WHENEVER
*         IX(I).EQ.-5.
*/
void luksan_mxuzer__(int *n, double *x, int *ix, 
		     int *job)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --ix;
    --x;

    /* Function Body */
    if (*job == 0) {
	return;
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (ix[i__] < 0) {
	    x[i__] = 0.;
	}
/* L1: */
    }
    return;
} /* luksan_mxuzer__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVCOP                ALL SYSTEMS                88/12/01
* PURPOSE :
* COPYING OF A VECTOR.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RO  Y(N)  OUTPUT VECTOR WHERE Y:= X.
*/
void luksan_mxvcop__(int *n, double *x, double *y)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	y[i__] = x[i__];
/* L10: */
    }
    return;
} /* luksan_mxvcop__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVDIF                ALL SYSTEMS                88/12/01
* PURPOSE :
* VECTOR DIFFERENCE.
*
* PARAMETERS :
*  RI  X(N)  INPUT VECTOR.
*  RI  Y(N)  INPUT VECTOR.
*  RO  Z(N)  OUTPUT VECTOR WHERE Z:= X - Y.
*/
void luksan_mxvdif__(int *n, double *x, double *y,
	 double *z__)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --z__;
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	z__[i__] = x[i__] - y[i__];
/* L10: */
    }
    return;
} /* luksan_mxvdif__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVNEG                ALL SYSTEMS                88/12/01
* PURPOSE :
* CHANGE THE SIGNS OF VECTOR ELEMENTS.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RO  Y(N)  OUTPUT VECTOR WHERE Y:= - X.
*/
void luksan_mxvneg__(int *n, double *x, double *y)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	y[i__] = -x[i__];
/* L10: */
    }
    return;
} /* luksan_mxvneg__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVSCL                ALL SYSTEMS                88/12/01
* PURPOSE :
* SCALING OF A VECTOR.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  X(N)  INPUT VECTOR.
*  RI  A  SCALING FACTOR.
*  RO  Y(N)  OUTPUT VECTOR WHERE Y:= A*X.
*/
void luksan_mxvscl__(int *n, double *a, double *x,
	 double *y)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --y;
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	y[i__] = *a * x[i__];
/* L1: */
    }
    return;
} /* luksan_mxvscl__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE MXVSET                ALL SYSTEMS                88/12/01
* PURPOSE :
* A SCALAR IS SET TO ALL THE ELEMENTS OF A VECTOR.
*
* PARAMETERS :
*  II  N  VECTOR DIMENSION.
*  RI  A  INITIAL VALUE.
*  RO  X(N)  OUTPUT VECTOR SUCH THAT X(I)=A FOR ALL I.
*/
void luksan_mxvset__(int *n, double *a, double *x)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --x;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	x[i__] = *a;
/* L10: */
    }
    return;
} /* luksan_mxvset__ */