BayesOpt / include / mean_functors.hpp

/** \file mean_functors.hpp \brief Mean (parametric) functions. */
   This file is part of BayesOpt, an efficient C++ library for 
   Bayesian optimization.

   Copyright (C) 2011-2013 Ruben Martinez-Cantin <>
   BayesOpt is free software: you can redistribute it and/or modify it 
   under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   BayesOpt is distributed in the hope that it will be useful, but 
   WITHOUT ANY WARRANTY; without even the implied warranty of
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with BayesOpt.  If not, see <>.


#include <map>
#include "parameters.h"
#include "specialtypes.hpp"

namespace bayesopt
  /**\addtogroup ParametricFunctions
   *  \brief Set of parametric models for surrogate modelling

  /** \brief Interface for mean functors */
  class ParametricFunction
    virtual int init(size_t input_dim) {return 0;};
    virtual int init(size_t input_dim, ParametricFunction* left, 
		     ParametricFunction* right) {return 0;};

    virtual int setParameters(const vectord& params) = 0;
    virtual vectord getParameters() = 0;
    virtual size_t nParameters() = 0;

    virtual double getMean(const vectord& x) = 0;
    virtual vectord operator()(const vecOfvec& x)
      vectord result(x.size());
      std::vector<vectord>::const_iterator x_it = x.begin();
      std::vector<vectord>::const_iterator x_end = x.end();
      vectord::iterator res_it = result.begin();
      while(x_it != x_end)
	  *res_it++ = getMean(*x_it++);
      return result;

    virtual size_t nFeatures() = 0;
    virtual vectord getFeatures(const vectord& x) = 0;  
    virtual matrixd getAllFeatures(const vecOfvec& x)
      size_t nf = nFeatures();
      matrixd result(nf,x.size());

      for(size_t ii=0; ii< x.size(); ++ii)
	  column(result,ii) = getFeatures(x[ii]);

      return result;
    virtual ~ParametricFunction(){};

    size_t n_inputs;

  template <typename MeanType> ParametricFunction * create_func()
    return new MeanType();

   * \brief Factory model for parametric functions
   * This factory is based on the libgp library by Manuel Blum
   * which follows the squeme of GPML by Rasmussen and Nickisch
  class MeanFactory
    MeanFactory ();
    virtual ~MeanFactory () {};
    ParametricFunction* create(std::string name, size_t input_dim);
    typedef ParametricFunction* (*create_func_definition)();
    std::map<std::string , MeanFactory::create_func_definition> registry;


} //namespace bayesopt

Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.