marge: An API for Analysis of Motifs Using HOMER
in R
Robert A. Amezquita
2018-01-16

Introduction

Profiling of open chromatin regions through the assay for transposase-accessible chromatin (ATAC) and
transcription factor binding via chromatin immunoprecipitation (ChIP) sequencing has increased our ability
to resolve patterns of putative transcription factor binding sites at the genome-wide level. Popular tools such
as HOMER and MEME have driven forward the analyses of sequence composition, deriving de novo motifs
and searching for the enrichment of known motifs. However, their interfaces do not allow for the construction
of parallel inquiries of multiple datasets. Furthermore, their results do not conform to formats amenable to
‘tidy’ analyses, presenting a significant bottleneck in motif analysis. Here, I present marge, a companion R
package that interfaces with HOMER to facilitate the construction of queries and to tidy results for further
downstream analyses.

Methods

Implementation

marge is an R package that makes use of various tidyverse conventions, allowing for modern conventions of
R programming and manipulations. marge interfaces directly with HOMER to construct queries, execute
motif enrichment searches, and organize results. While this requires a separate installation of HOMER, and
introduces this long-term dependency, core HOMER routines have been stable for a long time, with infrequent
updates. Given the popularity of HOMER, the syntax and construction of queries will thus be familiar to
the audience utilizing the marge companion package. However, to conform to modern standards of software
design, certain core routines, such as findMotifsGenome.pl which encompasses many different tasks, have
been partitioned into distinct R functions. For example, motif analysis and motif location identification have
been split up into distinct functions find_motifs_genome and find_motifs_instances, respectively.

Operation

marge is distributed on Bitbucket as an R package, and is compatible with Mac OS X, Windows, and Linux.
The latest version of HOMER (v4.9 as of this writing) should be installed prior to marge, and configured
with the desired genomes and feature sets. Subsequently, marge can be installed from the repository. R
Package dependencies and system requirements are documented in the repository and automatically installed
in conjunction with the marge package. Online documentation is also available at marge.aerobatic.io.

Use Cases

To demonstrate the functionality and utility of marge, we present a tutorial of core functionality and present
potential use cases for high-throughput motif enrichment studies and subsequent downstream analyses.

http://homer.ucsd.edu/homer/
http://meme-suite.org/
http://homer.ucsd.edu/homer/
http://homer.ucsd.edu/homer/introduction/configure.html
https://bitbucket.org/robert_amezquita/marge/
https://marge.aerobatic.io/

Conventions

Code objects shall be referred to in-line with the code font, whereas R functions will be referred to with a pair
of parentheses following the function name, as in find_motifs_genome (). R code chunks will be presented as
a block. Comments describing relevant portions of code are prepended by hashes (#), and all else is runnable
R code. Results of code chunks are printed in separate block below, with each line of output prepended by a
double hash (##). An example of code chunk and output formatting follows:

salutation <- c('hello world')
salutation # view output

[1] "hello world"

Lastly, documentation for functions can be accessed invoking through help utility in R. Online documentation
with the same content is also available under the ‘Reference’ tab.

Preamble

The latest version of HOMER should be installed prior to installing marge as documented online in the
introduction/install section. Following installation, HOMER packages should additionally be installed, which
contains the necessary sequence data to perform motif enrichment, such as those that follow:

In a terminal/command-line
perl /path-to-homer/configureHomer.pl -install hg38 # human sequence data
perl /path-to-homer/configureHomer.pl -install mm10 # mouse sequence data

Additionally, users should take care to ensure that HOMER is added to the executable path, such that
entering findMotifsGenome.pl on the command-line works as expected. For further details, we again refer
to the introduction/install section of the HOMER documentation.

Basic Usage

What follows is a basic tutorial of a typical workflow in performing motif enrichment analysis from a given,
single set of regions. This section will introduce the various verbs available in marge for this task.

Check HOMER and Installed Packages

To check that HOMER was installed properly and is detected by marge invoke the check_homer () function.
Sequence annotation data for the genome of interest should also have been installed prior to running HOMER
or marge. To check what is currently available via HOMER, simply run list_homer_packages(). For this
analysis, either ‘hg38 or ‘mm10’ packages can be installed, which include the human and mouse genomes
and annotations, respectively.

Install “marge’:

devtools::install_bitbucket('robert_amezquita/marge', ref = 'master')

library(marge)

check_homer ()

HOMER installation found

list_homer_packages()

A tibble: 3 x 4
status package version description

https://marge.aerobatic.io
http://homer.ucsd.edu/homer/introduction/install.html
http://homer.ucsd.edu/homer/introduction/install.html
http://homer.ucsd.edu/homer/introduction/install.html

<chr> <chr> <chr> <chr>

1 + homer v4.9.1 Code/Executables, ontologies, motifs for HOMER
2 + mouse-o v5.10 Mus musculus (mouse) accession and ontology info~
3 + mm10 v5.10 mouse genome and annotation for UCSC mml0

Input data

To begin, regions of interest should first be identified. For example, peak calls derived from ATAC-seq or
ChIP-seq data are of particular interest for motif enrichment analyses. At minimum, such regions should
contain three columns: chrom (chromosome), start, and end, describing the location of the region of interest.
Additional columns are also allowed - suggested columns include a region identifier, gene annotations, distance
to the gene, and properties such as expression/chromatin state.

A minimal set of regions is included with the marge package for testing, and can be loaded as follows:

Use included test regions from “marge” package
test_file <- system.file('extdata/test_regions.bed', package = 'marge')
dat <- readr::read_tsv(test_file)

dat

A tibble: 4 x 6

chrom start end id value gene
<chr> <int> <int> <chr> <int> <chr>
1 chr6 102207441 102207830 region_1 1A
2 chr7 44688352 44688664 region_2 2B
3 chr7 92093830 92094134 region_3 3 C
4 chrl2 103669461 103669829 region_4 4D

Find Motifs Across the Genome

From the regions of interest, enriched de novo and/or known motifs can be performed via the
find_motifs_genome () function. This function connects to the HOMER utility findMotifsGenome.pl,
and uses much of the same syntax, and so should be familiar to users of HOMER. The following code shows
all available options, with documentation available online and via R for further details. Suffice it to say, a
de movo and known motifs enrichment analysis is run on the test regions loaded prior, and writes results
to the designated path directory (here, results_dir). Thus, find_motifs_genome() is run purely for its
side-effect of creating a HOMER results directory.

Create a temporary directory to write results
This directory is erased once R session is closed
results_dir <- tempfile(pattern = 'test-dir_')

Run a motif enrichment analysis
find_motifs_genome (

dat,
path = results_dir,
genome = 'mml0’',

motif_length = 8,

scan_size = 50,

optimize_count = 2,

background = 'automatic',
local_background = FALSE,

only_known = FALSE, only_denovo = FALSE,
fdr_num = 5,

cores = 1, cache = 100,
overwrite = TRUE, keep_minimal = FALSE
)

Note in particular the argument keep_minimal, which if set to TRUE, removes all extraneous HTML and
logo images, retaining only the relevant enrichment results necessary for downstream analyses. If FALSE (the
default), the output is exactly the same as if HOMER had been run from the command line with the given
parameters.

Load Denovo and Known Motif Enrichment Results

HOMER produces two distinct files for de novo and known motif enrichments within the designated results
directory, contained in homerMotifs.all.motif and knownResults.txt, respectively. These results can be
read in using the respective read_*_results() functions, where * is either denovo or known.

known <- read_known_results(path = results_dir, homer_dir = TRUE)
denovo <- read_denovo_results(path = results_dir, homer_dir = TRUE)

known
denovo

A tibble: 365 x 14
motif~ motif~ experi~ acces~ data~ conse~ log_~ fdr tgt_~ tgt_~ bgd_~
#it <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Fosl2 bZIP 3T3L1-~ GSE56~ Homer NATGA~ 1.00 1.00 1.00 0.250 2386
2 MafB bZIP BMM-Ma~ GSE75~ Homer WNTGC~ 1.00 1.00 1.00 0.250 2820
3 Fra2 DbZIP Striat~ GSE43~ Homer GGATG~ 1.00 1.00 1.00 0.250 3308
4 Fral bZIP BT549-~ GSE46~ Homer NNATG~ 1.00 1.00 1.00 0.250 3747
5 JunB bZIP Dendri~ GSE36~ Homer RATGA~ 1.00 1.00 1.00 0.250 3900
6 Atf3 DbZIP GBM-AT~ GSE33~ Homer DATGA~ 1.00 1.00 1.00 0.250 4570
7 BATF bZIP Th17-B~ GSE39~ Homer DATGA~ 1.00 1.00 1.00 0.250 4634
8 AP-1 bZIP ThioMa~ GSE21~ Homer VTGAC~ 1.00 1.00 1.00 0.250 5299
9 RUNX Runt HPC7-R~ GSE22~ Homer SAAAC~ 1.00 1.00 1.00 0.250 5731
10 NFY CCAAT Promot~ <NA> Homer RGCCA~ 1.00 1.00 1.00 0.250 7831

... with 355 more rows, and 3 more variables: bgd_pct <dbl>, motif_pwm
<list>, log_odds_detection <dbl>

A tibble: 2 x 17

conse~ motif~ log_od~ moti~ log_p~ tgt_~ tgt_~ bgd_~ bgd_pct log_~ fdr
<chr> <chr> <dbl> <1lis> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 TCGCA~ 1-TCG~ 8.24 <tib~ -7.02 1.00 0.250 83.7 2.00e-4 3.00 1.00
2 GATTA~ 2-GAT~ 8.24 <tib~ -6.73 1.00 0.250 110 3.00e-4 2.00 1.00
... with 6 more variables: tgt_pos <dbl>, tgt_std <dbl>, bgd_pos <dbl>,
bgd_std <dbl>, strand_bias <dbl>, multiplicity <dbl>

These functions specifically are responsible for the core routine which tidies the HOMER results, and can be
pointed to any existing HOMER motif enrichment result files by setting homer_dir to FALSE. The output
provides a tidied version of the default HOMER output, capturing the various characteristics of enrichments,
such as the identity of the motifs, target and background number /percents of the motifs across the provided
sequences, statistics of enrichment, and finally the associated motif position weight matrices (PWM) in the
list-column motif_pwm. The columns are described further in the associated help files.

Accessing Motif PWMs

One core task of interest is working with the identified de novo motif PWMs that were enriched across the
regions of interest. To access a specific motif PWM, the following shows several ways of accessing them from
the motif_pwm list-column in the known and denovo objects previously created.

Known Motifs

known$motif _pwm[1] # positional access

known$motif _pwm['OCT:0CT"'] # named access

Denovo Motifs
denovo$motif_pwm[1] # positional access

denovo$motif_pwm['1-TCGCATTG'] # named access (denovo)

$ 1-TCGCATTG"
A tibble: 8 x 4

A C G T
<dbl> <dbl> <dbl> <dbl>
1 0.100 0.100 0.100 0.700
2 0.100 0.700 0.100 0.100
3 0.100 0.100 0.700 0.100
4 0.100 0.700 0.100 0.100
5 0.700 0.100 0.100 0.100
6 0.100 0.100 0.100 0.700
7 0.100 0.100 0.100 0.700
8 0.100 0.100 0.700 0.100

Note the column names identifying the nucleotide, the rows for the ordered nucleotide position, and the
frequencies at each cell, where each row sums to 1.

Writing Motif PWMs - Manual

To write a motif to a file, the helper function write_homer_motif () can be used, and values can be manually
specified for motifs of interest.

Note double bracket to access list value;
single bracket produces error
write_homer_motif (
motif_pwm = denovo$motif_pwm[['1-TCGCATTG']],
motif_name = 'my_first_motif',
log_odds_detection = 4.35,
consensus = 'CACATCCT',
file = pasteO(results_dir, '/my_first_motif.motif')

Writing Motif PWMs - Automatic

Oftentimes, one wants to write all associated motif PWMs from a given de novo enrichment search. Given
that write_homer_motif produces a single motif at a time, we need a way to produce a file for each row of
the denovo object.

While there are various ways to iterate over the rows of the denovo object, such as with for-loops or the
apply family of functions, below is shown a method using the purrr package from the tidyverse family,
using the map() and walk() functions. Briefly, these functions apply a function to each element of a vector,

http://purrr.tidyverse.org/

thus allowing for iteration over the rows of an object such as those we created, known and denovo. map
returns the transformed object, whereas walk calls the function for its side-effect, such as in the case of
writing a file as in write_homer_motif (). Given that we need several varying inputs (all the arguments
of write_homer_motif (), we use the variant pwalk() to allow for our many varying inputs. The resulting
code below writes all of our denovo results (three motifs in total) to unique files in our temporary R results
directory.

Write to multiple files - vary the “file® argument

library(purrr)
pwalk(
.1 = list(
motif_pwm = denovo$motif_pwm,

motif _name = denovo$motif_name,

log_odds_detection = denovo$log_odds_detection,

consensus = denovo$consensus,

file = pasteO(results_dir, '/', denovo$motif_name, '.motif')
)

3
.f = write_homer_motif

Write to a single file with all motifs
Keep the "file argument constant
my_motifs_file <- pasteO(results_dir, '/my-motifs.motif')

Append by default is TRUE, e.g. can write more than one
motif at once, but this means don't run this code more
than once!

pwalk(
.1 = list(
motif_pwm = denovo$motif_pwm,
motif_name = denovo$motif_name,
log_odds_detection = denovo$log_odds_detection,
consensus = denovo$consensus
e

.f = write_homer_motif,
file = my_motifs_file,
append = TRUE

Search for Instances of Motifs Across Regions

Now that we have produced our motif PWM as a file, it can be used to map the motif back to where it
occurs in our set of regions using the find_motifs_instances() function. While it is also a wrapper for
findMotifsGenome.pl, it partitions out a unique piece of functionality that presents an entirely different
type of results. Note that this function requires the use of a HOMER motif file that is written out (either
by hand or by the write_homer_motif () function) as it contains the necessary parametrization for motif
finding.

Also note that we can search for either a single motif or multiple motifs concurrently, where the multiple
motifs are written into a single file, as shown above. Here, we will search for all three of the de novo motifs
identified initially in our regions.

motif_instances_file <- pasteO(results_dir, '/motif-instances.txt')

find_motifs_instances(

dat,

path = motif_instances_file,
genome = 'mml0',

motif_file = my_motifs_file,
scan_size = 50,

cores = 1, cache = 100

)
This function, similarly to find_motifs_genome () and write_homer_motif (), produces output that is

written to into a file outside of R, and similarly relies on a helper function to read the resulting output.

Read Instances of Motifs Across Regions

The function read_motifs_instances() works in tandem with find_motifs_instances() to read its
output, returning the location and scores of the specified motifs from the previous step.

motif_ instances <- read_motifs_instances(motif_instances_file)

motif_instances

A tibble: 2 x 6
region_id offset sequence motif_name strand motif_score

<chr> <int> <chr> <chr> <chr> <dbl>
1 region_2 -24 TCGCATTG 1-TCGCATTG + 8.24
2 region_1 - 5 GATTACTC 2-GATTACTC + 8.24

Advanced Usage

Using the verbs learned in the previous section, this part will focus on tying it all together to create a
framework for testing for motif enrichment and subsequently analysing the results across multiple sets of
regions in a tidy fashion. This section relies heavily on the tidyverse framework, and in particular will use
the tools from purrr, map()/walk(), introduced in the previous section. Additionally, we will simulate a
dataset using the valr package function bed_random(). While outside of the scope of this tutorial, valr
provides additional functionality to work with genomic intervals using similar tidyverse conventions, and is
recommended for manipulating regions of interest from high-throughput experiments.

Below are the libraries required for this next section.

Required libraries for advanced usage tutorial
library(valr)

library(dplyr)

library(tidyr)

library(purrr)

library(ggplot2)

Constructing Multiple Simulated Sets of Regions

By bringing the usage of HOMER into R via an API, it becomes possible to construct multiple queries,
execute them all, and then read in the results from all the queries.

First, we will create a simulated set of intervals for which to test for motif enrichment, formatting the regions
into a tibble object which allows for the creation of list-columns, which tidily encapsulate the genomic
intervals.

1. Construct multiple region samples ——————--—————————————————————————————
Create genome from first two chromosomes of mouse
genome <- data.frame(chrom = c('chrl', 'chr2'),

size = c(195471971, 182113224))

Set seeds and ids for the simulated sets of regions
seed <- 1:5
id <- letters[1:5]

Simulate different sets of regions (each with unique seeds) and munge

into the tibble format, keeping the regions as a list-column

sim <- map(seed, ~ valr::bed_random(genome, length = 50, n = 50, seed = .x))
tbl_regions <- tibble(id = id, regions = sim)

Inspect overall tibble organization
tbl_regions

A tibble: 5 x 2

id regions

<chr> <list>

1 a <tibble [50 x 31>
2 b <tibble [50 x 3]>
3 c <tibble [50 x 3]>
4 d <tibble [50 x 3]>
5 e <tibble [50 x 3]>

View regions sample
tbl_regions$regions[[1]] %>/ print(n = 5)

A tibble: 50 x 3

chrom start end
<chr> <int> <int>
chri 3322213 3322263

1
2 chrl 12952049 12952099
3 chrl 13419401 13419451
4 chrl 13496953 13497003
5 chrl 44639848 44639898
. with 45 more rows

Finding Motifs Across Multiple Sets of Regions

The next step involves specifying the paths to the results directory for each respective set of regions. This is
necessary for find_motifs_genome () to output the motif enrichment results for each set of regions separately
(otherwise the results will be overwritten multiple times).

2. Find Motifs in Genome -----——-----"--"—--""-""""""""-"0 """

Create new (temp) results directory
results_dir <- tempfile(pattern = 'ht-dir_')

Append results path to tibble of regions
tbl_regions <- tbl_regions %>/
mutate(path = pasteO(results_dir, '/homer_ ', id))

tbl_regions[1,] # inspect resulting first row

A tibble: 1 x 3

id regions path
<chr> <list> <chr>
1 a <tibble [60 x 3]> /var/folders/nj/s_mzzyn92218vzmll72t0vdr0000gn/~

Now, using each set of regions and the unique paths for each set of regions, find_motifs_genome () can
be run, varying across these two parameters, and setting as constant the various motif enrichment search
parameters for all the different sets.

One other potential application not shown here is testing how these various parameters affect motif enrichment
results if we were instead to keep the regions tested as constant instead. This is left as an exercise for the
interested reader.

Iterate over all regions to perform motif finding
Writing each set of regions results to different directory
Only perform known motif results enrichments
pwalk(
Varying parameters (regions, output directory)
.1 = 1list(x = tbl_regions$regions, path = tbl_regions$path),
Function to find motifs across genome
.f = find_motifs_genome,
Constant parameters (motif search settings)
genome = 'mml0’',
scan_size = 50,
optimize_count = 2,
only_known = TRUE,
cores = 2, cache = 100,
keep_minimal = TRUE, overwrite = TRUE

Combining Results from Multiple Motif Enrichment Searches

Following the motif enrichment search for each set of regions, the results can be read in, iterating over the
variable path within the tbl_regions object to pull in the relevant results. The results are cleaned to remove
the path and regions columns subsequently, and then expanded such that each individual motif enrichment
result has its corresponding id as a separate variable.

3. Read in All Results ————————————————————————————————————— - ———————

Read known motif enrichment results into a new list-column
Remove the path and regions columns for cleanliness
Unnest results to expand into plotting friendly format
tbl_results <- tbl_regions 7>%
mutate (known_results = map(path, read_known_results)) %>’
select(-path, -regions) %>%
unnest ()

View sampling of results
tbl_results %>}, sample_n(size = 5)

A tibble: 5 x 15

id motif~ motif~ experim~ acce~ data~ conse~ log_~ fdr tgt_~ tgt_p~
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
##H 1 e Nr5a2 NR Pancrea~ GSE3~ Homer BTCAA~ 1.00 1.00 3.00 0.0638

##
#
##
##
##
##

Summarising Characteristics of Motif Enrichment Results

Pit1l Homeo~
E2F4 E2F
NPAS bHLH
ZNF317 Zf

GCrat-P~
K562-E2~
Liver-N~
HEK293-~

GSEb5~
GSE3~
GSE3~
GSE5~

. with 4 more variables: bgd_num
<list>, log_odds_detection <dbl>

Homer
Homer
Homer
Homer

ATGMA~
GGCGG~
NVCAC~
GTCWG~

O O O O

1.00
1.00
1.00
1.00

2.00 0.0408
0 0
4.00 0.0800
0 0

<dbl>, bgd_pct <dbl>, motif_pwm

In this tidy form, it becomes possible to summarise results on the basis of motif families, as opposed to simply
individual motifs. Below, we use the id and motif_family columns to group the results, and summarise a
given motif family by taking the most significant individual motif appearance as the summary statistic (e.g.,
the max -logl0 p-value).

Summarise number of
tbl_summary <- tbl_results %>/

group_by(id, motif_family) %>%
summarise (top_log_p_value = max(log_p_value)) %>’

ungroup ()

Print example results
tbl_summary %> sample_n(5)

A tibble: 5 x 3
motif_family top_log_p_value
<chr> <chr>

##
##
##
##
##
##
##

id

a s wN -
oM oo

d

CCAAT
VAN

?

EBF
Forkhead

Note that few motifs appear significant in this simulated dataset, as regions were chosen at random, without
a true biological correlate.

Plotting Results

Finally, we can inspect the results of our analyses using ggplot2 package conventions, given the tidiness of
the results. Here we show a subset of the overall results for succinctness.

families <- c('AP2',

tbl_summary %>%
filter(motif_family %in’% families) %>%
ggplot(aes(x = motif_family, y = id, fill = top_log_p_value)) +
geom_tile()

"bHLH' ,

"bZIP',

'"CCAAT',

10

'CP2')

top_log p value
2.0

15

1.0

0.5

0.0

AP2 bHLH bzIP CCAAT cP2
motif_family

Summary

marge presents an R centric form of performing and analyzing motif enrichment results using the popular
HOMER suite of tools, providing an easy-to-use interface and results in line with modern R idioms. We
envision that marge will serve as a valuable tool to assist researchers in performing motif enrichment analyses
quickly, easily, and reproducibly.

Data and Software Availability

Online documentation for HOMER and installation details can be found at: http://homer.ucsd.edu/homer/

marge can be installed via devtools using: devtools::install_bitbucket ('robert_amezquita/marge',
ref = 'master')

The latest marge source code is available at: https://bitbucket.org/robert_amezquita/marge/

Stable versions of marge are located in the Downloads section of the source code repository, under the tab
‘Tags’, at: https://bitbucket.org/robert_amezquita/marge/downloads/

Online documentation for marge can be found at: https://marge.aerobatic.io/

Competing Interests

No competing interests were disclosed.

11

http://homer.ucsd.edu/homer/

Acknowledgements

R.A.A. wrote the vignette, designed and implemented the software package. Jason Vander Heiden edited
the manuscript and reviewed source code for clarity. Greg Finak contributed to code sussing out HOMER
installation whereabouts.

12

	Introduction
	Methods
	Implementation
	Operation

	Use Cases
	Conventions
	Preamble
	Basic Usage
	Check HOMER and Installed Packages
	Input data
	Find Motifs Across the Genome
	Load Denovo and Known Motif Enrichment Results
	Accessing Motif PWMs
	Writing Motif PWMs - Manual
	Writing Motif PWMs - Automatic
	Search for Instances of Motifs Across Regions
	Read Instances of Motifs Across Regions

	Advanced Usage
	Constructing Multiple Simulated Sets of Regions
	Finding Motifs Across Multiple Sets of Regions
	Combining Results from Multiple Motif Enrichment Searches
	Summarising Characteristics of Motif Enrichment Results
	Plotting Results

	Summary
	Data and Software Availability
	Competing Interests
	Acknowledgements

