Commits

Alex Szpakowski committed 91f961f

Added love.math.noise(x, [y, z, w]). Calculates the 1D, 2D, 3D or 4D Simplex noise value at a particular coordinate

  • Participants
  • Parent commits 9293d00

Comments (0)

Files changed (6)

File platform/macosx/love-framework.xcodeproj/project.pbxproj

 	objects = {
 
 /* Begin PBXBuildFile section */
+		FA03546C1731F3A700284828 /* simplexnoise1234.cpp in Sources */ = {isa = PBXBuildFile; fileRef = FA03546A1731F3A700284828 /* simplexnoise1234.cpp */; };
+		FA03546D1731F3A700284828 /* simplexnoise1234.h in Headers */ = {isa = PBXBuildFile; fileRef = FA03546B1731F3A700284828 /* simplexnoise1234.h */; };
 		FA08F5B016C752F900F007B5 /* Source.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 2FB732687B1669402408356D /* Source.cpp */; };
 		FA08F5B116C752F900F007B5 /* wrap_Audio.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 02CA1BE908D91B104EB9590F /* wrap_Audio.cpp */; };
 		FA08F5B216C752F900F007B5 /* wrap_Source.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 02662CBC29B954295A634A39 /* wrap_Source.cpp */; };
 		7F575BE9573C654B5ED44CC1 /* wrap_Timer.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = wrap_Timer.h; sourceTree = "<group>"; };
 		7F796B7A3362196075C62E61 /* wrap_Fixture.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = wrap_Fixture.cpp; sourceTree = "<group>"; };
 		7F911CF2107B22F44C5B2542 /* b2Collision.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = b2Collision.h; sourceTree = "<group>"; };
+		FA03546A1731F3A700284828 /* simplexnoise1234.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = simplexnoise1234.cpp; sourceTree = "<group>"; };
+		FA03546B1731F3A700284828 /* simplexnoise1234.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = simplexnoise1234.h; sourceTree = "<group>"; };
 		FA08F5AE16C7525600F007B5 /* Info-Framework.plist */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.plist.xml; path = "Info-Framework.plist"; sourceTree = "<group>"; };
 		FA0CDE3B1710F9A50056E8D7 /* FormatHandler.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = FormatHandler.h; sourceTree = "<group>"; };
 		FA5454C016F1310000D30303 /* MathModule.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = MathModule.cpp; sourceTree = "<group>"; };
 				63287ED84D0F2EEB65D249A3 /* Box2D */,
 				FAE010D7170DDE99006F29D0 /* ddsparse */,
 				3AED1DE005A53DDB07902760 /* luasocket */,
+				FA0354691731F3A700284828 /* noise1234 */,
 				36C14C81334735EC54E33637 /* utf8 */,
 			);
 			name = libraries;
 			path = Contacts;
 			sourceTree = "<group>";
 		};
+		FA0354691731F3A700284828 /* noise1234 */ = {
+			isa = PBXGroup;
+			children = (
+				FA03546A1731F3A700284828 /* simplexnoise1234.cpp */,
+				FA03546B1731F3A700284828 /* simplexnoise1234.h */,
+			);
+			path = noise1234;
+			sourceTree = "<group>";
+		};
 		FA08F5AC16C751BA00F007B5 /* Resources */ = {
 			isa = PBXGroup;
 			children = (
 				FAC86E641724552C00EED715 /* wrap_Geometry.h in Headers */,
 				FAC86E6A1724555D00EED715 /* DrawGable.h in Headers */,
 				FAC86E6C1724555D00EED715 /* Geometry.h in Headers */,
+				FA03546D1731F3A700284828 /* simplexnoise1234.h in Headers */,
 			);
 			runOnlyForDeploymentPostprocessing = 0;
 		};
 				FAC86E631724552C00EED715 /* wrap_Geometry.cpp in Sources */,
 				FAC86E691724555D00EED715 /* DrawGable.cpp in Sources */,
 				FAC86E6B1724555D00EED715 /* Geometry.cpp in Sources */,
+				FA03546C1731F3A700284828 /* simplexnoise1234.cpp in Sources */,
 			);
 			runOnlyForDeploymentPostprocessing = 0;
 		};

File src/libraries/noise1234/simplexnoise1234.cpp

+// SimplexNoise1234
+// Copyright � 2003-2011, Stefan Gustavson
+//
+// Contact: stegu@itn.liu.se
+//
+// This library is public domain software, released by the author
+// into the public domain in February 2011. You may do anything
+// you like with it. You may even remove all attributions,
+// but of course I'd appreciate it if you kept my name somewhere.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+
+/** \file
+		\brief Implements the SimplexNoise1234 class for producing Perlin simplex noise.
+		\author Stefan Gustavson (stegu@itn.liu.se)
+*/
+
+/*
+ * This implementation is "Simplex Noise" as presented by
+ * Ken Perlin at a relatively obscure and not often cited course
+ * session "Real-Time Shading" at Siggraph 2001 (before real
+ * time shading actually took on), under the title "hardware noise".
+ * The 3D function is numerically equivalent to his Java reference
+ * code available in the PDF course notes, although I re-implemented
+ * it from scratch to get more readable code. The 1D, 2D and 4D cases
+ * were implemented from scratch by me from Ken Perlin's text.
+ *
+ * This is a highly reusable class. It has no dependencies
+ * on any other file, apart from its own header file.
+ */
+
+
+#include	"simplexnoise1234.h"
+
+#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
+
+//---------------------------------------------------------------------
+// Static data
+
+/*
+ * Permutation table. This is just a random jumble of all numbers 0-255,
+ * repeated twice to avoid wrapping the index at 255 for each lookup.
+ * This needs to be exactly the same for all instances on all platforms,
+ * so it's easiest to just keep it as static explicit data.
+ * This also removes the need for any initialisation of this class.
+ *
+ * Note that making this an int[] instead of a char[] might make the
+ * code run faster on platforms with a high penalty for unaligned single
+ * byte addressing. Intel x86 is generally single-byte-friendly, but
+ * some other CPUs are faster with 4-aligned reads.
+ * However, a char[] is smaller, which avoids cache trashing, and that
+ * is probably the most important aspect on most architectures.
+ * This array is accessed a *lot* by the noise functions.
+ * A vector-valued noise over 3D accesses it 96 times, and a
+ * float-valued 4D noise 64 times. We want this to fit in the cache!
+ */
+unsigned char SimplexNoise1234::perm[512] = {151,160,137,91,90,15,
+  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
+  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
+  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
+  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
+  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
+  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
+  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
+  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
+  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
+  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
+  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
+  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
+  151,160,137,91,90,15,
+  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
+  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
+  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
+  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
+  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
+  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
+  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
+  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
+  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
+  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
+  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
+  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 
+};
+
+//---------------------------------------------------------------------
+
+/*
+ * Helper functions to compute gradients-dot-residualvectors (1D to 4D)
+ * Note that these generate gradients of more than unit length. To make
+ * a close match with the value range of classic Perlin noise, the final
+ * noise values need to be rescaled to fit nicely within [-1,1].
+ * (The simplex noise functions as such also have different scaling.)
+ * Note also that these noise functions are the most practical and useful
+ * signed version of Perlin noise. To return values according to the
+ * RenderMan specification from the SL noise() and pnoise() functions,
+ * the noise values need to be scaled and offset to [0,1], like this:
+ * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5;
+ */
+
+float  SimplexNoise1234::grad( int hash, float x ) {
+    int h = hash & 15;
+    float grad = 1.0f + (h & 7);   // Gradient value 1.0, 2.0, ..., 8.0
+    if (h&8) grad = -grad;         // Set a random sign for the gradient
+    return ( grad * x );           // Multiply the gradient with the distance
+}
+
+float  SimplexNoise1234::grad( int hash, float x, float y ) {
+    int h = hash & 7;      // Convert low 3 bits of hash code
+    float u = h<4 ? x : y;  // into 8 simple gradient directions,
+    float v = h<4 ? y : x;  // and compute the dot product with (x,y).
+    return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
+}
+
+float  SimplexNoise1234::grad( int hash, float x, float y , float z ) {
+    int h = hash & 15;     // Convert low 4 bits of hash code into 12 simple
+    float u = h<8 ? x : y; // gradient directions, and compute dot product.
+    float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
+    return ((h&1)? -u : u) + ((h&2)? -v : v);
+}
+
+float  SimplexNoise1234::grad( int hash, float x, float y, float z, float t ) {
+    int h = hash & 31;      // Convert low 5 bits of hash code into 32 simple
+    float u = h<24 ? x : y; // gradient directions, and compute dot product.
+    float v = h<16 ? y : z;
+    float w = h<8 ? z : t;
+    return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
+}
+
+  // A lookup table to traverse the simplex around a given point in 4D.
+  // Details can be found where this table is used, in the 4D noise method.
+  /* TODO: This should not be required, backport it from Bill's GLSL code! */
+  static unsigned char simplex[64][4] = {
+    {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
+    {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
+    {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
+    {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
+    {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
+    {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
+    {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
+    {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
+
+// 1D simplex noise
+float SimplexNoise1234::noise(float x) {
+
+  int i0 = FASTFLOOR(x);
+  int i1 = i0 + 1;
+  float x0 = x - i0;
+  float x1 = x0 - 1.0f;
+
+  float n0, n1;
+
+  float t0 = 1.0f - x0*x0;
+//  if(t0 < 0.0f) t0 = 0.0f;
+  t0 *= t0;
+  n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
+
+  float t1 = 1.0f - x1*x1;
+//  if(t1 < 0.0f) t1 = 0.0f;
+  t1 *= t1;
+  n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
+  // The maximum value of this noise is 8*(3/4)^4 = 2.53125
+  // A factor of 0.395 will scale to fit exactly within [-1,1]
+  return 0.395f * (n0 + n1);
+
+}
+
+// 2D simplex noise
+float SimplexNoise1234::noise(float x, float y) {
+
+#define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0)
+#define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0
+
+    float n0, n1, n2; // Noise contributions from the three corners
+
+    // Skew the input space to determine which simplex cell we're in
+    float s = (x+y)*F2; // Hairy factor for 2D
+    float xs = x + s;
+    float ys = y + s;
+    int i = FASTFLOOR(xs);
+    int j = FASTFLOOR(ys);
+
+    float t = (float)(i+j)*G2;
+    float X0 = i-t; // Unskew the cell origin back to (x,y) space
+    float Y0 = j-t;
+    float x0 = x-X0; // The x,y distances from the cell origin
+    float y0 = y-Y0;
+
+    // For the 2D case, the simplex shape is an equilateral triangle.
+    // Determine which simplex we are in.
+    int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
+    if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
+    else {i1=0; j1=1;}      // upper triangle, YX order: (0,0)->(0,1)->(1,1)
+
+    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
+    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
+    // c = (3-sqrt(3))/6
+
+    float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
+    float y1 = y0 - j1 + G2;
+    float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
+    float y2 = y0 - 1.0f + 2.0f * G2;
+
+    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
+    int ii = i & 0xff;
+    int jj = j & 0xff;
+
+    // Calculate the contribution from the three corners
+    float t0 = 0.5f - x0*x0-y0*y0;
+    if(t0 < 0.0f) n0 = 0.0f;
+    else {
+      t0 *= t0;
+      n0 = t0 * t0 * grad(perm[ii+perm[jj]], x0, y0); 
+    }
+
+    float t1 = 0.5f - x1*x1-y1*y1;
+    if(t1 < 0.0f) n1 = 0.0f;
+    else {
+      t1 *= t1;
+      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1]], x1, y1);
+    }
+
+    float t2 = 0.5f - x2*x2-y2*y2;
+    if(t2 < 0.0f) n2 = 0.0f;
+    else {
+      t2 *= t2;
+      n2 = t2 * t2 * grad(perm[ii+1+perm[jj+1]], x2, y2);
+    }
+
+    // Add contributions from each corner to get the final noise value.
+    // The result is scaled to return values in the interval [-1,1].
+    return 45.23f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
+  }
+
+// 3D simplex noise
+float SimplexNoise1234::noise(float x, float y, float z) {
+
+// Simple skewing factors for the 3D case
+#define F3 0.333333333
+#define G3 0.166666667
+
+    float n0, n1, n2, n3; // Noise contributions from the four corners
+
+    // Skew the input space to determine which simplex cell we're in
+    float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
+    float xs = x+s;
+    float ys = y+s;
+    float zs = z+s;
+    int i = FASTFLOOR(xs);
+    int j = FASTFLOOR(ys);
+    int k = FASTFLOOR(zs);
+
+    float t = (float)(i+j+k)*G3; 
+    float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
+    float Y0 = j-t;
+    float Z0 = k-t;
+    float x0 = x-X0; // The x,y,z distances from the cell origin
+    float y0 = y-Y0;
+    float z0 = z-Z0;
+
+    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+    // Determine which simplex we are in.
+    int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
+    int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+
+/* This code would benefit from a backport from the GLSL version! */
+    if(x0>=y0) {
+      if(y0>=z0)
+        { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
+        else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
+        else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
+      }
+    else { // x0<y0
+      if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
+      else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
+      else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
+    }
+
+    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
+    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
+    // c = 1/6.
+
+    float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
+    float y1 = y0 - j1 + G3;
+    float z1 = z0 - k1 + G3;
+    float x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
+    float y2 = y0 - j2 + 2.0f*G3;
+    float z2 = z0 - k2 + 2.0f*G3;
+    float x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
+    float y3 = y0 - 1.0f + 3.0f*G3;
+    float z3 = z0 - 1.0f + 3.0f*G3;
+
+    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
+    int ii = i & 0xff;
+    int jj = j & 0xff;
+    int kk = k & 0xff;
+
+    // Calculate the contribution from the four corners
+    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
+    if(t0 < 0.0f) n0 = 0.0f;
+    else {
+      t0 *= t0;
+      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
+    }
+
+    float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
+    if(t1 < 0.0f) n1 = 0.0f;
+    else {
+      t1 *= t1;
+      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
+    }
+
+    float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
+    if(t2 < 0.0f) n2 = 0.0f;
+    else {
+      t2 *= t2;
+      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
+    }
+
+    float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
+    if(t3<0.0f) n3 = 0.0f;
+    else {
+      t3 *= t3;
+      n3 = t3 * t3 * grad(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
+    }
+
+    // Add contributions from each corner to get the final noise value.
+    // The result is scaled to stay just inside [-1,1]
+    return 32.74f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
+  }
+
+
+// 4D simplex noise
+float SimplexNoise1234::noise(float x, float y, float z, float w) {
+  
+  // The skewing and unskewing factors are hairy again for the 4D case
+#define F4 0.309016994 // F4 = (Math.sqrt(5.0)-1.0)/4.0
+#define G4 0.138196601 // G4 = (5.0-Math.sqrt(5.0))/20.0
+
+    float n0, n1, n2, n3, n4; // Noise contributions from the five corners
+
+    // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
+    float s = (x + y + z + w) * F4; // Factor for 4D skewing
+    float xs = x + s;
+    float ys = y + s;
+    float zs = z + s;
+    float ws = w + s;
+    int i = FASTFLOOR(xs);
+    int j = FASTFLOOR(ys);
+    int k = FASTFLOOR(zs);
+    int l = FASTFLOOR(ws);
+
+    float t = (i + j + k + l) * G4; // Factor for 4D unskewing
+    float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
+    float Y0 = j - t;
+    float Z0 = k - t;
+    float W0 = l - t;
+
+    float x0 = x - X0;  // The x,y,z,w distances from the cell origin
+    float y0 = y - Y0;
+    float z0 = z - Z0;
+    float w0 = w - W0;
+
+    // For the 4D case, the simplex is a 4D shape I won't even try to describe.
+    // To find out which of the 24 possible simplices we're in, we need to
+    // determine the magnitude ordering of x0, y0, z0 and w0.
+    // The method below is a good way of finding the ordering of x,y,z,w and
+    // then find the correct traversal order for the simplex we�re in.
+    // First, six pair-wise comparisons are performed between each possible pair
+    // of the four coordinates, and the results are used to add up binary bits
+    // for an integer index.
+    int c1 = (x0 > y0) ? 32 : 0;
+    int c2 = (x0 > z0) ? 16 : 0;
+    int c3 = (y0 > z0) ? 8 : 0;
+    int c4 = (x0 > w0) ? 4 : 0;
+    int c5 = (y0 > w0) ? 2 : 0;
+    int c6 = (z0 > w0) ? 1 : 0;
+    int c = c1 + c2 + c3 + c4 + c5 + c6;
+
+    int i1, j1, k1, l1; // The integer offsets for the second simplex corner
+    int i2, j2, k2, l2; // The integer offsets for the third simplex corner
+    int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
+
+    // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
+    // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
+    // impossible. Only the 24 indices which have non-zero entries make any sense.
+    // We use a thresholding to set the coordinates in turn from the largest magnitude.
+    // The number 3 in the "simplex" array is at the position of the largest coordinate.
+    i1 = simplex[c][0]>=3 ? 1 : 0;
+    j1 = simplex[c][1]>=3 ? 1 : 0;
+    k1 = simplex[c][2]>=3 ? 1 : 0;
+    l1 = simplex[c][3]>=3 ? 1 : 0;
+    // The number 2 in the "simplex" array is at the second largest coordinate.
+    i2 = simplex[c][0]>=2 ? 1 : 0;
+    j2 = simplex[c][1]>=2 ? 1 : 0;
+    k2 = simplex[c][2]>=2 ? 1 : 0;
+    l2 = simplex[c][3]>=2 ? 1 : 0;
+    // The number 1 in the "simplex" array is at the second smallest coordinate.
+    i3 = simplex[c][0]>=1 ? 1 : 0;
+    j3 = simplex[c][1]>=1 ? 1 : 0;
+    k3 = simplex[c][2]>=1 ? 1 : 0;
+    l3 = simplex[c][3]>=1 ? 1 : 0;
+    // The fifth corner has all coordinate offsets = 1, so no need to look that up.
+
+    float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
+    float y1 = y0 - j1 + G4;
+    float z1 = z0 - k1 + G4;
+    float w1 = w0 - l1 + G4;
+    float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords
+    float y2 = y0 - j2 + 2.0f*G4;
+    float z2 = z0 - k2 + 2.0f*G4;
+    float w2 = w0 - l2 + 2.0f*G4;
+    float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords
+    float y3 = y0 - j3 + 3.0f*G4;
+    float z3 = z0 - k3 + 3.0f*G4;
+    float w3 = w0 - l3 + 3.0f*G4;
+    float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords
+    float y4 = y0 - 1.0f + 4.0f*G4;
+    float z4 = z0 - 1.0f + 4.0f*G4;
+    float w4 = w0 - 1.0f + 4.0f*G4;
+
+    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
+    int ii = i & 0xff;
+    int jj = j & 0xff;
+    int kk = k & 0xff;
+    int ll = l & 0xff;
+
+    // Calculate the contribution from the five corners
+    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
+    if(t0 < 0.0f) n0 = 0.0f;
+    else {
+      t0 *= t0;
+      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
+    }
+
+   float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
+    if(t1 < 0.0f) n1 = 0.0f;
+    else {
+      t1 *= t1;
+      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
+    }
+
+   float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
+    if(t2 < 0.0f) n2 = 0.0f;
+    else {
+      t2 *= t2;
+      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
+    }
+
+   float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
+    if(t3 < 0.0f) n3 = 0.0f;
+    else {
+      t3 *= t3;
+      n3 = t3 * t3 * grad(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
+    }
+
+   float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
+    if(t4 < 0.0f) n4 = 0.0f;
+    else {
+      t4 *= t4;
+      n4 = t4 * t4 * grad(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
+    }
+
+    // Sum up and scale the result to cover the range [-1,1]
+    return 27.3f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
+  }
+//---------------------------------------------------------------------

File src/libraries/noise1234/simplexnoise1234.h

+// SimplexNoise1234
+// Copyright � 2003-2011, Stefan Gustavson
+//
+// Contact: stegu@itn.liu.se
+//
+// This library is public domain software, released by the author
+// into the public domain in February 2011. You may do anything
+// you like with it. You may even remove all attributions,
+// but of course I'd appreciate it if you kept my name somewhere.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+
+/** \file
+		\brief Declares the SimplexNoise1234 class for producing Perlin simplex noise.
+		\author Stefan Gustavson (stegu@itn.liu.se)
+*/
+
+/*
+ * This is a clean, fast, modern and free Perlin Simplex noise class in C++.
+ * Being a stand-alone class with no external dependencies, it is
+ * highly reusable without source code modifications.
+ *
+ *
+ * Note:
+ * Replacing the "float" type with "double" can actually make this run faster
+ * on some platforms. A templatized version of SimplexNoise1234 could be useful.
+ */
+
+class SimplexNoise1234 {
+
+  public:
+    SimplexNoise1234() {}
+    ~SimplexNoise1234() {}
+
+/** 1D, 2D, 3D and 4D float Perlin noise
+ */
+    static float noise( float x );
+    static float noise( float x, float y );
+    static float noise( float x, float y, float z );
+    static float noise( float x, float y, float z, float w );
+
+/** 1D, 2D, 3D and 4D float Perlin noise, with a specified integer period
+ */
+    static float pnoise( float x, int px );
+    static float pnoise( float x, float y, int px, int py );
+    static float pnoise( float x, float y, float z, int px, int py, int pz );
+    static float pnoise( float x, float y, float z, float w,
+                              int px, int py, int pz, int pw );
+
+  private:
+    static unsigned char perm[];
+    static float  grad( int hash, float x );
+    static float  grad( int hash, float x, float y );
+    static float  grad( int hash, float x, float y , float z );
+    static float  grad( int hash, float x, float y, float z, float t );
+
+};

File src/modules/math/MathModule.h

 #include "common/Module.h"
 #include "common/math.h"
 #include "common/int.h"
+#include "common/StringMap.h"
+
+// Noise
+#include "libraries/noise1234/simplexnoise1234.h"
 
 // STL
 #include <limits>
 	 **/
 	std::vector<Triangle> triangulate(const std::vector<vertex> &polygon);
 
+	/**
+	 * Calculate Simplex noise for the specified coordinate(s).
+	 *
+	 * @return Noise value in the range of [0,1].
+	 **/
+	float simplexNoise1(float x) const;
+	float simplexNoise2(float x, float y) const;
+	float simplexNoise3(float x, float y, float z) const;
+	float simplexNoise4(float x, float y, float z, float w) const;
+
 	static Math instance;
 
 private:
 
 }; // Math
 
+inline float Math::simplexNoise1(float x) const
+{
+	return SimplexNoise1234::noise(x);
+}
+
+inline float Math::simplexNoise2(float x, float y) const
+{
+	return SimplexNoise1234::noise(x, y);
+}
+
+inline float Math::simplexNoise3(float x, float y, float z) const
+{
+	return SimplexNoise1234::noise(x, y, z);
+}
+
+inline float Math::simplexNoise4(float x, float y, float z, float w) const
+{
+	return SimplexNoise1234::noise(x, y, z, w);
+}
+
 } // math
 } // love
 

File src/modules/math/wrap_Math.cpp

 	return 1;
 }
 
+int w_noise(lua_State *L)
+{
+	float w, x, y, z;
+	float val;
+
+	switch (lua_gettop(L))
+	{
+	case 1:
+		x = luaL_checknumber(L, 1);
+		val = Math::instance.simplexNoise1(x);
+		break;
+	case 2:
+		x = luaL_checknumber(L, 1);
+		y = luaL_checknumber(L, 2);
+		val = Math::instance.simplexNoise2(x, y);
+		break;
+	case 3:
+		x = luaL_checknumber(L, 1);
+		y = luaL_checknumber(L, 2);
+		z = luaL_checknumber(L, 3);
+		val = Math::instance.simplexNoise3(x, y, z);
+		break;
+	case 4:
+	default:
+		x = luaL_checknumber(L, 1);
+		y = luaL_checknumber(L, 2);
+		z = luaL_checknumber(L, 3);
+		w = luaL_checknumber(L, 4);
+		val = Math::instance.simplexNoise4(x, y, z, w);
+		break;
+	}
+
+	lua_pushnumber(L, (lua_Number) val);
+	return 1;
+}
+
 // List of functions to wrap.
 static const luaL_Reg functions[] =
 {
 	{ "randomnormal", w_randomnormal },
 	{ "newRandomGenerator", w_newRandomGenerator },
 	{ "triangulate", w_triangulate },
+	{ "noise", w_noise },
 	{ 0, 0 }
 };
 

File src/modules/math/wrap_Math.h

 int w_randomnormal(lua_State *L);
 int w_newRandomGenerator(lua_State *L);
 int w_triangulate(lua_State *L);
+int w_noise(lua_State *L);
 extern "C" LOVE_EXPORT int luaopen_love_math(lua_State *L);
 
 } // random