Source

love / src / libraries / Box2D / Collision / b2CollideEdge.cpp

The branch 'box2d-2.3' does not exist.
Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*
 * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#include <Box2D/Collision/b2Collision.h>
#include <Box2D/Collision/Shapes/b2CircleShape.h>
#include <Box2D/Collision/Shapes/b2EdgeShape.h>
#include <Box2D/Collision/Shapes/b2PolygonShape.h>


// Compute contact points for edge versus circle.
// This accounts for edge connectivity.
void b2CollideEdgeAndCircle(b2Manifold* manifold,
							const b2EdgeShape* edgeA, const b2Transform& xfA,
							const b2CircleShape* circleB, const b2Transform& xfB)
{
	manifold->pointCount = 0;
	
	// Compute circle in frame of edge
	b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p));
	
	b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2;
	b2Vec2 e = B - A;
	
	// Barycentric coordinates
	float32 u = b2Dot(e, B - Q);
	float32 v = b2Dot(e, Q - A);
	
	float32 radius = edgeA->m_radius + circleB->m_radius;
	
	b2ContactFeature cf;
	cf.indexB = 0;
	cf.typeB = b2ContactFeature::e_vertex;
	
	// Region A
	if (v <= 0.0f)
	{
		b2Vec2 P = A;
		b2Vec2 d = Q - P;
		float32 dd = b2Dot(d, d);
		if (dd > radius * radius)
		{
			return;
		}
		
		// Is there an edge connected to A?
		if (edgeA->m_hasVertex0)
		{
			b2Vec2 A1 = edgeA->m_vertex0;
			b2Vec2 B1 = A;
			b2Vec2 e1 = B1 - A1;
			float32 u1 = b2Dot(e1, B1 - Q);
			
			// Is the circle in Region AB of the previous edge?
			if (u1 > 0.0f)
			{
				return;
			}
		}
		
		cf.indexA = 0;
		cf.typeA = b2ContactFeature::e_vertex;
		manifold->pointCount = 1;
		manifold->type = b2Manifold::e_circles;
		manifold->localNormal.SetZero();
		manifold->localPoint = P;
		manifold->points[0].id.key = 0;
		manifold->points[0].id.cf = cf;
		manifold->points[0].localPoint = circleB->m_p;
		return;
	}
	
	// Region B
	if (u <= 0.0f)
	{
		b2Vec2 P = B;
		b2Vec2 d = Q - P;
		float32 dd = b2Dot(d, d);
		if (dd > radius * radius)
		{
			return;
		}
		
		// Is there an edge connected to B?
		if (edgeA->m_hasVertex3)
		{
			b2Vec2 B2 = edgeA->m_vertex3;
			b2Vec2 A2 = B;
			b2Vec2 e2 = B2 - A2;
			float32 v2 = b2Dot(e2, Q - A2);
			
			// Is the circle in Region AB of the next edge?
			if (v2 > 0.0f)
			{
				return;
			}
		}
		
		cf.indexA = 1;
		cf.typeA = b2ContactFeature::e_vertex;
		manifold->pointCount = 1;
		manifold->type = b2Manifold::e_circles;
		manifold->localNormal.SetZero();
		manifold->localPoint = P;
		manifold->points[0].id.key = 0;
		manifold->points[0].id.cf = cf;
		manifold->points[0].localPoint = circleB->m_p;
		return;
	}
	
	// Region AB
	float32 den = b2Dot(e, e);
	b2Assert(den > 0.0f);
	b2Vec2 P = (1.0f / den) * (u * A + v * B);
	b2Vec2 d = Q - P;
	float32 dd = b2Dot(d, d);
	if (dd > radius * radius)
	{
		return;
	}
	
	b2Vec2 n(-e.y, e.x);
	if (b2Dot(n, Q - A) < 0.0f)
	{
		n.Set(-n.x, -n.y);
	}
	n.Normalize();
	
	cf.indexA = 0;
	cf.typeA = b2ContactFeature::e_face;
	manifold->pointCount = 1;
	manifold->type = b2Manifold::e_faceA;
	manifold->localNormal = n;
	manifold->localPoint = A;
	manifold->points[0].id.key = 0;
	manifold->points[0].id.cf = cf;
	manifold->points[0].localPoint = circleB->m_p;
}

// This structure is used to keep track of the best separating axis.
struct b2EPAxis
{
	enum Type
	{
		e_unknown,
		e_edgeA,
		e_edgeB
	};
	
	Type type;
	int32 index;
	float32 separation;
};

// This holds polygon B expressed in frame A.
struct b2TempPolygon
{
	b2Vec2 vertices[b2_maxPolygonVertices];
	b2Vec2 normals[b2_maxPolygonVertices];
	int32 count;
};

// Reference face used for clipping
struct b2ReferenceFace
{
	int32 i1, i2;
	
	b2Vec2 v1, v2;
	
	b2Vec2 normal;
	
	b2Vec2 sideNormal1;
	float32 sideOffset1;
	
	b2Vec2 sideNormal2;
	float32 sideOffset2;
};

// This class collides and edge and a polygon, taking into account edge adjacency.
struct b2EPCollider
{
	void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
				 const b2PolygonShape* polygonB, const b2Transform& xfB);
	b2EPAxis ComputeEdgeSeparation();
	b2EPAxis ComputePolygonSeparation();
	
	enum VertexType
	{
		e_isolated,
		e_concave,
		e_convex
	};
	
	b2TempPolygon m_polygonB;
	
	b2Transform m_xf;
	b2Vec2 m_centroidB;
	b2Vec2 m_v0, m_v1, m_v2, m_v3;
	b2Vec2 m_normal0, m_normal1, m_normal2;
	b2Vec2 m_normal;
	VertexType m_type1, m_type2;
	b2Vec2 m_lowerLimit, m_upperLimit;
	float32 m_radius;
	bool m_front;
};

// Algorithm:
// 1. Classify v1 and v2
// 2. Classify polygon centroid as front or back
// 3. Flip normal if necessary
// 4. Initialize normal range to [-pi, pi] about face normal
// 5. Adjust normal range according to adjacent edges
// 6. Visit each separating axes, only accept axes within the range
// 7. Return if _any_ axis indicates separation
// 8. Clip
void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
						   const b2PolygonShape* polygonB, const b2Transform& xfB)
{
	m_xf = b2MulT(xfA, xfB);
	
	m_centroidB = b2Mul(m_xf, polygonB->m_centroid);
	
	m_v0 = edgeA->m_vertex0;
	m_v1 = edgeA->m_vertex1;
	m_v2 = edgeA->m_vertex2;
	m_v3 = edgeA->m_vertex3;
	
	bool hasVertex0 = edgeA->m_hasVertex0;
	bool hasVertex3 = edgeA->m_hasVertex3;
	
	b2Vec2 edge1 = m_v2 - m_v1;
	edge1.Normalize();
	m_normal1.Set(edge1.y, -edge1.x);
	float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1);
	float32 offset0 = 0.0f, offset2 = 0.0f;
	bool convex1 = false, convex2 = false;
	
	// Is there a preceding edge?
	if (hasVertex0)
	{
		b2Vec2 edge0 = m_v1 - m_v0;
		edge0.Normalize();
		m_normal0.Set(edge0.y, -edge0.x);
		convex1 = b2Cross(edge0, edge1) >= 0.0f;
		offset0 = b2Dot(m_normal0, m_centroidB - m_v0);
	}
	
	// Is there a following edge?
	if (hasVertex3)
	{
		b2Vec2 edge2 = m_v3 - m_v2;
		edge2.Normalize();
		m_normal2.Set(edge2.y, -edge2.x);
		convex2 = b2Cross(edge1, edge2) > 0.0f;
		offset2 = b2Dot(m_normal2, m_centroidB - m_v2);
	}
	
	// Determine front or back collision. Determine collision normal limits.
	if (hasVertex0 && hasVertex3)
	{
		if (convex1 && convex2)
		{
			m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal0;
				m_upperLimit = m_normal2;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal1;
				m_upperLimit = -m_normal1;
			}
		}
		else if (convex1)
		{
			m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f);
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal0;
				m_upperLimit = m_normal1;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal2;
				m_upperLimit = -m_normal1;
			}
		}
		else if (convex2)
		{
			m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f);
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal1;
				m_upperLimit = m_normal2;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal1;
				m_upperLimit = -m_normal0;
			}
		}
		else
		{
			m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal1;
				m_upperLimit = m_normal1;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal2;
				m_upperLimit = -m_normal0;
			}
		}
	}
	else if (hasVertex0)
	{
		if (convex1)
		{
			m_front = offset0 >= 0.0f || offset1 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal0;
				m_upperLimit = -m_normal1;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = m_normal1;
				m_upperLimit = -m_normal1;
			}
		}
		else
		{
			m_front = offset0 >= 0.0f && offset1 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = m_normal1;
				m_upperLimit = -m_normal1;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = m_normal1;
				m_upperLimit = -m_normal0;
			}
		}
	}
	else if (hasVertex3)
	{
		if (convex2)
		{
			m_front = offset1 >= 0.0f || offset2 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = -m_normal1;
				m_upperLimit = m_normal2;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal1;
				m_upperLimit = m_normal1;
			}
		}
		else
		{
			m_front = offset1 >= 0.0f && offset2 >= 0.0f;
			if (m_front)
			{
				m_normal = m_normal1;
				m_lowerLimit = -m_normal1;
				m_upperLimit = m_normal1;
			}
			else
			{
				m_normal = -m_normal1;
				m_lowerLimit = -m_normal2;
				m_upperLimit = m_normal1;
			}
		}		
	}
	else
	{
		m_front = offset1 >= 0.0f;
		if (m_front)
		{
			m_normal = m_normal1;
			m_lowerLimit = -m_normal1;
			m_upperLimit = -m_normal1;
		}
		else
		{
			m_normal = -m_normal1;
			m_lowerLimit = m_normal1;
			m_upperLimit = m_normal1;
		}
	}
	
	// Get polygonB in frameA
	m_polygonB.count = polygonB->m_count;
	for (int32 i = 0; i < polygonB->m_count; ++i)
	{
		m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]);
		m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]);
	}
	
	m_radius = 2.0f * b2_polygonRadius;
	
	manifold->pointCount = 0;
	
	b2EPAxis edgeAxis = ComputeEdgeSeparation();
	
	// If no valid normal can be found than this edge should not collide.
	if (edgeAxis.type == b2EPAxis::e_unknown)
	{
		return;
	}
	
	if (edgeAxis.separation > m_radius)
	{
		return;
	}
	
	b2EPAxis polygonAxis = ComputePolygonSeparation();
	if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius)
	{
		return;
	}
	
	// Use hysteresis for jitter reduction.
	const float32 k_relativeTol = 0.98f;
	const float32 k_absoluteTol = 0.001f;
	
	b2EPAxis primaryAxis;
	if (polygonAxis.type == b2EPAxis::e_unknown)
	{
		primaryAxis = edgeAxis;
	}
	else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol)
	{
		primaryAxis = polygonAxis;
	}
	else
	{
		primaryAxis = edgeAxis;
	}
	
	b2ClipVertex ie[2];
	b2ReferenceFace rf;
	if (primaryAxis.type == b2EPAxis::e_edgeA)
	{
		manifold->type = b2Manifold::e_faceA;
		
		// Search for the polygon normal that is most anti-parallel to the edge normal.
		int32 bestIndex = 0;
		float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]);
		for (int32 i = 1; i < m_polygonB.count; ++i)
		{
			float32 value = b2Dot(m_normal, m_polygonB.normals[i]);
			if (value < bestValue)
			{
				bestValue = value;
				bestIndex = i;
			}
		}
		
		int32 i1 = bestIndex;
		int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0;
		
		ie[0].v = m_polygonB.vertices[i1];
		ie[0].id.cf.indexA = 0;
		ie[0].id.cf.indexB = static_cast<uint8>(i1);
		ie[0].id.cf.typeA = b2ContactFeature::e_face;
		ie[0].id.cf.typeB = b2ContactFeature::e_vertex;
		
		ie[1].v = m_polygonB.vertices[i2];
		ie[1].id.cf.indexA = 0;
		ie[1].id.cf.indexB = static_cast<uint8>(i2);
		ie[1].id.cf.typeA = b2ContactFeature::e_face;
		ie[1].id.cf.typeB = b2ContactFeature::e_vertex;
		
		if (m_front)
		{
			rf.i1 = 0;
			rf.i2 = 1;
			rf.v1 = m_v1;
			rf.v2 = m_v2;
			rf.normal = m_normal1;
		}
		else
		{
			rf.i1 = 1;
			rf.i2 = 0;
			rf.v1 = m_v2;
			rf.v2 = m_v1;
			rf.normal = -m_normal1;
		}		
	}
	else
	{
		manifold->type = b2Manifold::e_faceB;
		
		ie[0].v = m_v1;
		ie[0].id.cf.indexA = 0;
		ie[0].id.cf.indexB = static_cast<uint8>(primaryAxis.index);
		ie[0].id.cf.typeA = b2ContactFeature::e_vertex;
		ie[0].id.cf.typeB = b2ContactFeature::e_face;
		
		ie[1].v = m_v2;
		ie[1].id.cf.indexA = 0;
		ie[1].id.cf.indexB = static_cast<uint8>(primaryAxis.index);		
		ie[1].id.cf.typeA = b2ContactFeature::e_vertex;
		ie[1].id.cf.typeB = b2ContactFeature::e_face;
		
		rf.i1 = primaryAxis.index;
		rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0;
		rf.v1 = m_polygonB.vertices[rf.i1];
		rf.v2 = m_polygonB.vertices[rf.i2];
		rf.normal = m_polygonB.normals[rf.i1];
	}
	
	rf.sideNormal1.Set(rf.normal.y, -rf.normal.x);
	rf.sideNormal2 = -rf.sideNormal1;
	rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1);
	rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2);
	
	// Clip incident edge against extruded edge1 side edges.
	b2ClipVertex clipPoints1[2];
	b2ClipVertex clipPoints2[2];
	int32 np;
	
	// Clip to box side 1
	np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1);
	
	if (np < b2_maxManifoldPoints)
	{
		return;
	}
	
	// Clip to negative box side 1
	np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2);
	
	if (np < b2_maxManifoldPoints)
	{
		return;
	}
	
	// Now clipPoints2 contains the clipped points.
	if (primaryAxis.type == b2EPAxis::e_edgeA)
	{
		manifold->localNormal = rf.normal;
		manifold->localPoint = rf.v1;
	}
	else
	{
		manifold->localNormal = polygonB->m_normals[rf.i1];
		manifold->localPoint = polygonB->m_vertices[rf.i1];
	}
	
	int32 pointCount = 0;
	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
	{
		float32 separation;
		
		separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1);
		
		if (separation <= m_radius)
		{
			b2ManifoldPoint* cp = manifold->points + pointCount;
			
			if (primaryAxis.type == b2EPAxis::e_edgeA)
			{
				cp->localPoint = b2MulT(m_xf, clipPoints2[i].v);
				cp->id = clipPoints2[i].id;
			}
			else
			{
				cp->localPoint = clipPoints2[i].v;
				cp->id.cf.typeA = clipPoints2[i].id.cf.typeB;
				cp->id.cf.typeB = clipPoints2[i].id.cf.typeA;
				cp->id.cf.indexA = clipPoints2[i].id.cf.indexB;
				cp->id.cf.indexB = clipPoints2[i].id.cf.indexA;
			}
			
			++pointCount;
		}
	}
	
	manifold->pointCount = pointCount;
}

b2EPAxis b2EPCollider::ComputeEdgeSeparation()
{
	b2EPAxis axis;
	axis.type = b2EPAxis::e_edgeA;
	axis.index = m_front ? 0 : 1;
	axis.separation = FLT_MAX;
	
	for (int32 i = 0; i < m_polygonB.count; ++i)
	{
		float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1);
		if (s < axis.separation)
		{
			axis.separation = s;
		}
	}
	
	return axis;
}

b2EPAxis b2EPCollider::ComputePolygonSeparation()
{
	b2EPAxis axis;
	axis.type = b2EPAxis::e_unknown;
	axis.index = -1;
	axis.separation = -FLT_MAX;

	b2Vec2 perp(-m_normal.y, m_normal.x);

	for (int32 i = 0; i < m_polygonB.count; ++i)
	{
		b2Vec2 n = -m_polygonB.normals[i];
		
		float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1);
		float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2);
		float32 s = b2Min(s1, s2);
		
		if (s > m_radius)
		{
			// No collision
			axis.type = b2EPAxis::e_edgeB;
			axis.index = i;
			axis.separation = s;
			return axis;
		}
		
		// Adjacency
		if (b2Dot(n, perp) >= 0.0f)
		{
			if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop)
			{
				continue;
			}
		}
		else
		{
			if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop)
			{
				continue;
			}
		}
		
		if (s > axis.separation)
		{
			axis.type = b2EPAxis::e_edgeB;
			axis.index = i;
			axis.separation = s;
		}
	}
	
	return axis;
}

void b2CollideEdgeAndPolygon(	b2Manifold* manifold,
							 const b2EdgeShape* edgeA, const b2Transform& xfA,
							 const b2PolygonShape* polygonB, const b2Transform& xfB)
{
	b2EPCollider collider;
	collider.Collide(manifold, edgeA, xfA, polygonB, xfB);
}