Source

love / src / libraries / Box2D / Dynamics / Joints / b2PrismaticJoint.cpp

The branch 'box2d-2.3' does not exist.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#include <Box2D/Dynamics/Joints/b2PrismaticJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>

// Linear constraint (point-to-line)
// d = p2 - p1 = x2 + r2 - x1 - r1
// C = dot(perp, d)
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
//      = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
//
// Angular constraint
// C = a2 - a1 + a_initial
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
//
// K = J * invM * JT
//
// J = [-a -s1 a s2]
//     [0  -1  0  1]
// a = perp
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
// s2 = cross(r2, a) = cross(p2 - x2, a)


// Motor/Limit linear constraint
// C = dot(ax1, d)
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]

// Block Solver
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
// when the mass has poor distribution (leading to large torques about the joint anchor points).
//
// The Jacobian has 3 rows:
// J = [-uT -s1 uT s2] // linear
//     [0   -1   0  1] // angular
//     [-vT -a1 vT a2] // limit
//
// u = perp
// v = axis
// s1 = cross(d + r1, u), s2 = cross(r2, u)
// a1 = cross(d + r1, v), a2 = cross(r2, v)

// M * (v2 - v1) = JT * df
// J * v2 = bias
//
// v2 = v1 + invM * JT * df
// J * (v1 + invM * JT * df) = bias
// K * df = bias - J * v1 = -Cdot
// K = J * invM * JT
// Cdot = J * v1 - bias
//
// Now solve for f2.
// df = f2 - f1
// K * (f2 - f1) = -Cdot
// f2 = invK * (-Cdot) + f1
//
// Clamp accumulated limit impulse.
// lower: f2(3) = max(f2(3), 0)
// upper: f2(3) = min(f2(3), 0)
//
// Solve for correct f2(1:2)
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1
//                       = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3)
// K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2)
// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
//
// Now compute impulse to be applied:
// df = f2 - f1

void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis)
{
	bodyA = bA;
	bodyB = bB;
	localAnchorA = bodyA->GetLocalPoint(anchor);
	localAnchorB = bodyB->GetLocalPoint(anchor);
	localAxisA = bodyA->GetLocalVector(axis);
	referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
}

b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def)
: b2Joint(def)
{
	m_localAnchorA = def->localAnchorA;
	m_localAnchorB = def->localAnchorB;
	m_localXAxisA = def->localAxisA;
	m_localXAxisA.Normalize();
	m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
	m_referenceAngle = def->referenceAngle;

	m_impulse.SetZero();
	m_motorMass = 0.0f;
	m_motorImpulse = 0.0f;

	m_lowerTranslation = def->lowerTranslation;
	m_upperTranslation = def->upperTranslation;
	m_maxMotorForce = def->maxMotorForce;
	m_motorSpeed = def->motorSpeed;
	m_enableLimit = def->enableLimit;
	m_enableMotor = def->enableMotor;
	m_limitState = e_inactiveLimit;

	m_axis.SetZero();
	m_perp.SetZero();
}

void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data)
{
	m_indexA = m_bodyA->m_islandIndex;
	m_indexB = m_bodyB->m_islandIndex;
	m_localCenterA = m_bodyA->m_sweep.localCenter;
	m_localCenterB = m_bodyB->m_sweep.localCenter;
	m_invMassA = m_bodyA->m_invMass;
	m_invMassB = m_bodyB->m_invMass;
	m_invIA = m_bodyA->m_invI;
	m_invIB = m_bodyB->m_invI;

	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;

	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;

	b2Rot qA(aA), qB(aB);

	// Compute the effective masses.
	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 d = (cB - cA) + rB - rA;

	float32 mA = m_invMassA, mB = m_invMassB;
	float32 iA = m_invIA, iB = m_invIB;

	// Compute motor Jacobian and effective mass.
	{
		m_axis = b2Mul(qA, m_localXAxisA);
		m_a1 = b2Cross(d + rA, m_axis);
		m_a2 = b2Cross(rB, m_axis);

		m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;
		if (m_motorMass > 0.0f)
		{
			m_motorMass = 1.0f / m_motorMass;
		}
	}

	// Prismatic constraint.
	{
		m_perp = b2Mul(qA, m_localYAxisA);

		m_s1 = b2Cross(d + rA, m_perp);
		m_s2 = b2Cross(rB, m_perp);

		float32 k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2;
		float32 k12 = iA * m_s1 + iB * m_s2;
		float32 k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2;
		float32 k22 = iA + iB;
		if (k22 == 0.0f)
		{
			// For bodies with fixed rotation.
			k22 = 1.0f;
		}
		float32 k23 = iA * m_a1 + iB * m_a2;
		float32 k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;

		m_K.ex.Set(k11, k12, k13);
		m_K.ey.Set(k12, k22, k23);
		m_K.ez.Set(k13, k23, k33);
	}

	// Compute motor and limit terms.
	if (m_enableLimit)
	{
		float32 jointTranslation = b2Dot(m_axis, d);
		if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
		{
			m_limitState = e_equalLimits;
		}
		else if (jointTranslation <= m_lowerTranslation)
		{
			if (m_limitState != e_atLowerLimit)
			{
				m_limitState = e_atLowerLimit;
				m_impulse.z = 0.0f;
			}
		}
		else if (jointTranslation >= m_upperTranslation)
		{
			if (m_limitState != e_atUpperLimit)
			{
				m_limitState = e_atUpperLimit;
				m_impulse.z = 0.0f;
			}
		}
		else
		{
			m_limitState = e_inactiveLimit;
			m_impulse.z = 0.0f;
		}
	}
	else
	{
		m_limitState = e_inactiveLimit;
		m_impulse.z = 0.0f;
	}

	if (m_enableMotor == false)
	{
		m_motorImpulse = 0.0f;
	}

	if (data.step.warmStarting)
	{
		// Account for variable time step.
		m_impulse *= data.step.dtRatio;
		m_motorImpulse *= data.step.dtRatio;

		b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis;
		float32 LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1;
		float32 LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2;

		vA -= mA * P;
		wA -= iA * LA;

		vB += mB * P;
		wB += iB * LB;
	}
	else
	{
		m_impulse.SetZero();
		m_motorImpulse = 0.0f;
	}

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
}

void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data)
{
	b2Vec2 vA = data.velocities[m_indexA].v;
	float32 wA = data.velocities[m_indexA].w;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float32 wB = data.velocities[m_indexB].w;

	float32 mA = m_invMassA, mB = m_invMassB;
	float32 iA = m_invIA, iB = m_invIB;

	// Solve linear motor constraint.
	if (m_enableMotor && m_limitState != e_equalLimits)
	{
		float32 Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
		float32 impulse = m_motorMass * (m_motorSpeed - Cdot);
		float32 oldImpulse = m_motorImpulse;
		float32 maxImpulse = data.step.dt * m_maxMotorForce;
		m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
		impulse = m_motorImpulse - oldImpulse;

		b2Vec2 P = impulse * m_axis;
		float32 LA = impulse * m_a1;
		float32 LB = impulse * m_a2;

		vA -= mA * P;
		wA -= iA * LA;

		vB += mB * P;
		wB += iB * LB;
	}

	b2Vec2 Cdot1;
	Cdot1.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA;
	Cdot1.y = wB - wA;

	if (m_enableLimit && m_limitState != e_inactiveLimit)
	{
		// Solve prismatic and limit constraint in block form.
		float32 Cdot2;
		Cdot2 = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
		b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);

		b2Vec3 f1 = m_impulse;
		b2Vec3 df =  m_K.Solve33(-Cdot);
		m_impulse += df;

		if (m_limitState == e_atLowerLimit)
		{
			m_impulse.z = b2Max(m_impulse.z, 0.0f);
		}
		else if (m_limitState == e_atUpperLimit)
		{
			m_impulse.z = b2Min(m_impulse.z, 0.0f);
		}

		// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
		b2Vec2 b = -Cdot1 - (m_impulse.z - f1.z) * b2Vec2(m_K.ez.x, m_K.ez.y);
		b2Vec2 f2r = m_K.Solve22(b) + b2Vec2(f1.x, f1.y);
		m_impulse.x = f2r.x;
		m_impulse.y = f2r.y;

		df = m_impulse - f1;

		b2Vec2 P = df.x * m_perp + df.z * m_axis;
		float32 LA = df.x * m_s1 + df.y + df.z * m_a1;
		float32 LB = df.x * m_s2 + df.y + df.z * m_a2;

		vA -= mA * P;
		wA -= iA * LA;

		vB += mB * P;
		wB += iB * LB;
	}
	else
	{
		// Limit is inactive, just solve the prismatic constraint in block form.
		b2Vec2 df = m_K.Solve22(-Cdot1);
		m_impulse.x += df.x;
		m_impulse.y += df.y;

		b2Vec2 P = df.x * m_perp;
		float32 LA = df.x * m_s1 + df.y;
		float32 LB = df.x * m_s2 + df.y;

		vA -= mA * P;
		wA -= iA * LA;

		vB += mB * P;
		wB += iB * LB;
	}

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
}

bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float32 aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float32 aB = data.positions[m_indexB].a;

	b2Rot qA(aA), qB(aB);

	float32 mA = m_invMassA, mB = m_invMassB;
	float32 iA = m_invIA, iB = m_invIB;

	// Compute fresh Jacobians
	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
	b2Vec2 d = cB + rB - cA - rA;

	b2Vec2 axis = b2Mul(qA, m_localXAxisA);
	float32 a1 = b2Cross(d + rA, axis);
	float32 a2 = b2Cross(rB, axis);
	b2Vec2 perp = b2Mul(qA, m_localYAxisA);

	float32 s1 = b2Cross(d + rA, perp);
	float32 s2 = b2Cross(rB, perp);

	b2Vec3 impulse;
	b2Vec2 C1;
	C1.x = b2Dot(perp, d);
	C1.y = aB - aA - m_referenceAngle;

	float32 linearError = b2Abs(C1.x);
	float32 angularError = b2Abs(C1.y);

	bool active = false;
	float32 C2 = 0.0f;
	if (m_enableLimit)
	{
		float32 translation = b2Dot(axis, d);
		if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
		{
			// Prevent large angular corrections
			C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
			linearError = b2Max(linearError, b2Abs(translation));
			active = true;
		}
		else if (translation <= m_lowerTranslation)
		{
			// Prevent large linear corrections and allow some slop.
			C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
			linearError = b2Max(linearError, m_lowerTranslation - translation);
			active = true;
		}
		else if (translation >= m_upperTranslation)
		{
			// Prevent large linear corrections and allow some slop.
			C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
			linearError = b2Max(linearError, translation - m_upperTranslation);
			active = true;
		}
	}

	if (active)
	{
		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
		float32 k12 = iA * s1 + iB * s2;
		float32 k13 = iA * s1 * a1 + iB * s2 * a2;
		float32 k22 = iA + iB;
		if (k22 == 0.0f)
		{
			// For fixed rotation
			k22 = 1.0f;
		}
		float32 k23 = iA * a1 + iB * a2;
		float32 k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2;

		b2Mat33 K;
		K.ex.Set(k11, k12, k13);
		K.ey.Set(k12, k22, k23);
		K.ez.Set(k13, k23, k33);

		b2Vec3 C;
		C.x = C1.x;
		C.y = C1.y;
		C.z = C2;

		impulse = K.Solve33(-C);
	}
	else
	{
		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
		float32 k12 = iA * s1 + iB * s2;
		float32 k22 = iA + iB;
		if (k22 == 0.0f)
		{
			k22 = 1.0f;
		}

		b2Mat22 K;
		K.ex.Set(k11, k12);
		K.ey.Set(k12, k22);

		b2Vec2 impulse1 = K.Solve(-C1);
		impulse.x = impulse1.x;
		impulse.y = impulse1.y;
		impulse.z = 0.0f;
	}

	b2Vec2 P = impulse.x * perp + impulse.z * axis;
	float32 LA = impulse.x * s1 + impulse.y + impulse.z * a1;
	float32 LB = impulse.x * s2 + impulse.y + impulse.z * a2;

	cA -= mA * P;
	aA -= iA * LA;
	cB += mB * P;
	aB += iB * LB;

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;

	return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
}

b2Vec2 b2PrismaticJoint::GetAnchorA() const
{
	return m_bodyA->GetWorldPoint(m_localAnchorA);
}

b2Vec2 b2PrismaticJoint::GetAnchorB() const
{
	return m_bodyB->GetWorldPoint(m_localAnchorB);
}

b2Vec2 b2PrismaticJoint::GetReactionForce(float32 inv_dt) const
{
	return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis);
}

float32 b2PrismaticJoint::GetReactionTorque(float32 inv_dt) const
{
	return inv_dt * m_impulse.y;
}

float32 b2PrismaticJoint::GetJointTranslation() const
{
	b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA);
	b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB);
	b2Vec2 d = pB - pA;
	b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA);

	float32 translation = b2Dot(d, axis);
	return translation;
}

float32 b2PrismaticJoint::GetJointSpeed() const
{
	b2Body* bA = m_bodyA;
	b2Body* bB = m_bodyB;

	b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter);
	b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter);
	b2Vec2 p1 = bA->m_sweep.c + rA;
	b2Vec2 p2 = bB->m_sweep.c + rB;
	b2Vec2 d = p2 - p1;
	b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA);

	b2Vec2 vA = bA->m_linearVelocity;
	b2Vec2 vB = bB->m_linearVelocity;
	float32 wA = bA->m_angularVelocity;
	float32 wB = bB->m_angularVelocity;

	float32 speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA));
	return speed;
}

bool b2PrismaticJoint::IsLimitEnabled() const
{
	return m_enableLimit;
}

void b2PrismaticJoint::EnableLimit(bool flag)
{
	if (flag != m_enableLimit)
	{
		m_bodyA->SetAwake(true);
		m_bodyB->SetAwake(true);
		m_enableLimit = flag;
		m_impulse.z = 0.0f;
	}
}

float32 b2PrismaticJoint::GetLowerLimit() const
{
	return m_lowerTranslation;
}

float32 b2PrismaticJoint::GetUpperLimit() const
{
	return m_upperTranslation;
}

void b2PrismaticJoint::SetLimits(float32 lower, float32 upper)
{
	b2Assert(lower <= upper);
	if (lower != m_lowerTranslation || upper != m_upperTranslation)
	{
		m_bodyA->SetAwake(true);
		m_bodyB->SetAwake(true);
		m_lowerTranslation = lower;
		m_upperTranslation = upper;
		m_impulse.z = 0.0f;
	}
}

bool b2PrismaticJoint::IsMotorEnabled() const
{
	return m_enableMotor;
}

void b2PrismaticJoint::EnableMotor(bool flag)
{
	m_bodyA->SetAwake(true);
	m_bodyB->SetAwake(true);
	m_enableMotor = flag;
}

void b2PrismaticJoint::SetMotorSpeed(float32 speed)
{
	m_bodyA->SetAwake(true);
	m_bodyB->SetAwake(true);
	m_motorSpeed = speed;
}

void b2PrismaticJoint::SetMaxMotorForce(float32 force)
{
	m_bodyA->SetAwake(true);
	m_bodyB->SetAwake(true);
	m_maxMotorForce = force;
}

float32 b2PrismaticJoint::GetMotorForce(float32 inv_dt) const
{
	return inv_dt * m_motorImpulse;
}

void b2PrismaticJoint::Dump()
{
	int32 indexA = m_bodyA->m_islandIndex;
	int32 indexB = m_bodyB->m_islandIndex;

	b2Log("  b2PrismaticJointDef jd;\n");
	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
	b2Log("  jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y);
	b2Log("  jd.referenceAngle = %.15lef;\n", m_referenceAngle);
	b2Log("  jd.enableLimit = bool(%d);\n", m_enableLimit);
	b2Log("  jd.lowerTranslation = %.15lef;\n", m_lowerTranslation);
	b2Log("  jd.upperTranslation = %.15lef;\n", m_upperTranslation);
	b2Log("  jd.enableMotor = bool(%d);\n", m_enableMotor);
	b2Log("  jd.motorSpeed = %.15lef;\n", m_motorSpeed);
	b2Log("  jd.maxMotorForce = %.15lef;\n", m_maxMotorForce);
	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}