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Abstract

Especially since the advent of human civilization, heavy metal detoxification has become
a vital and necessary stress response mechanism in plants. The enzyme phytochelatin syn-
thase plays a key role in heavy metal detoxification and related metabolic processes. In
this diploma thesis, N- and C-terminally truncated monomeric and dimeric models of phy-
tochelatin synthase of Chlamydomonas reinhardtii (CrPCS) have been created using M-
 and a custom modeling procedure—the performance of which compares favorably
to several high-ranking automatic modeling servers—and submitted to molecular dynam-
ics simulations using the A and G packages. Explicit solvent simulations can
be considered stable, implicit solvent simulations did not reach stable conformations in the
given timeframe. Additionally, the possibility of crosslinking surface-facing lysine residues
was explored in order to verify the obtained models experimentally in the future. Four suit-
able lysine residues were identified around the active site, two more were in the unmodeled
N-terminus of the protein. As no lysines exist in the unmodeled, -residue long C-terminus
of CrPCS, crosslinking would not contribute to determining the structure of the protein’s
C-terminus. The code implementing the modeling procedure developed for this project can
be found at https://bitbucket.org/runiq/modeling-clustering.

https://bitbucket.org/runiq/modeling-clustering


“ Hofstadter’s Law: It always takes longer than you ex-
pect, even when you take into account Hofstadter’s
Law. ”

—Douglas R. Hofstadter
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. Introduction

The ability to handle stress is a necessity in any organism’s life. It can come in various forms,
and any and all constituents of an organism’s environment can enact stressful influences
on it. Consequently, even a normally benign environmental factor can have a toxic effect
(Figure .): Despite Zn+’s function as a cofactor for various enzymes, such as alcohol
dehydrogenase, carboxy- and aminopeptidases, and transcription factors with the zinc finger
motif, ingestion of very high concentrations can lead to nausea, vomiting, epigastric pain,
lethargy, and fatigue in humans []. Similarly, non-essential elements can only be tolerated
up to a certain threshold.The toxic effects of a non-essential element such as Cd+ on humans
include emphysema, osteoporosis, and irreversible damage to lungs, kidneys, and bones in
humans []. When left untreated, Cd+-polluted water can accumulate in the food chain
and potentially affect a large number of people [].

Low limitation High limitation

Micronutrient concentration

Pl
an

t
dr
y
w
ei
gh

ts

Deficiency Optimum Toxicity

Limitation

Non-essential element concentration

Tolerance Toxicity

Figure .. Dose-response curves of plants to micronutrients (Zn+) and non-essential elements
(Cd+), adapted from Lin and Aarts []. The Zn+ ion Zn+ is a micronutrient, so Zn+-deficient
plants do not grow as well as those supplied with sufficient amounts of the ion. On the contrary,
the Cd+ ion is detrimental to plant growth at high enough concentrations and is not known to
be used as a cofactor, resulting in a dose-response curve without a low limitation.

Among the cell biological consequences of prolonged exposure to toxic concentrations
of heavy metals are membrane disintegration, ion leakage, lipid peroxidation, DNA/RNA
degradation, and eventually cell death []. Heavy metals also cause the production of
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hydroxyl radicals, which in turn disturb the electron transport chain and have a detrimental
effect on the antioxidant defence system [].
Most of the effects of heavy metals on plants are assumed to be general stress responses

as exposure to different heavy metals often results in similar symptoms. Those symptoms
manifest in the heavy metal toxicity syndrome, which includes leaf chlorosis, disturbed water
balance, and reduced stomatal opening [].

Figure .. Soil contamination with cadmium in central and west Europe in , taken from
 samples from the Forum of European Geological Surveys Geochemical database. Adapted
from Lado, Hengl, and Reuter [].

Toxic soil concentrations of heavy metals pose a threat that previously was present only
in rare and small areas, such as calamine outcrops where heavy metal-rich minerals reach
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the surface, or nonmetalliferous soils followed by later contamination by metalliferous soils
[]. However, due to the ascent of human civilization and especially the advent of mining,
heavy metal concentrations were rising especially in industrial centers (Figure .). It is
therefore not entirely clear how tolerance to high zinc and cadmium concentrations—and,
by extension, the existence of so-called hyperaccumulators of these metals—has evolved. In
particular, high Cd+ concentrations in soil and water are a relatively recent phenomenon,
highly correlated with the expansion of human habitats and the advent of mining.
Due to the inability to escape their heavy metal-plagued habitat, plants were pressed to de-

velop different strategies in order to deal with both nutrient deficiency and toxic substances.
This eventually lead to the evolution of so-called hyperaccumulators, plants which can grow
and thrive in heavy metal-contaminated soils. These plants are able to absorb metal at doses
 to  times greater than average plants without exhibiting toxicity symptoms []. Ta-
ble . provides an overview over the tolerance levels of land plants against several trace
metals; the last column shows the concentration level needed for a species to be considered
a hyperaccumulator. The ability for hyperaccumulation was first described in the family
Brassicaceæ in  []; since then, hyperaccumulators from different families have been
identified, though members of Brassicaceæ are still the most numerous.

Table .. Tolerance levels for trace elements in land plants []

Element Critical deficiency
level (μg g−1)

Critical toxicity level
(μg g−1)

Hyperaccumulation
concentration criterion

(μg g−1)
Antimony n. r. < 2 > 1000
Arsenic n. r. < 2 − 80 > 1000
Cadmium n. r. 6 − 10 > 100
Cobalt n. r. 0.4−several > 1000
Copper 1 to 5 20 to 30 > 1000
Lead n. r. 0.6 to 28 > 1000
Manganese 10 to 20 200 to 3500 >10 000
Nickel 0.002 to 0.004 10 to 50 > 1000
Selenium n. r. 3 to 100 > 1000
Thallium n. r. 20 > 1000
Zinc 15 to 20 100 to 300 >10 000

Hyperaccumulators can be used for phytoremediation, such as lowering concentrations
of heavy metals in water [] or soil []. The process of wastewater detoxification by
micro- and macroalgæ is called phycoremediation. In contrast to more invasive methods
like soil excavation, which disrupts the soil structure, the local ecosystem, and reduces soil
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productivity, phytoremediation is an environmentally friendly process. Its success depends
on a number of factors, among them the biomass of the employed hyperaccumulator, its
bioconcentration factor, and its growth rate. For example, Willow (Salix viminalis) is used
for cadmium phytoremediation over aquiferous soil since it can accumulate a significant
amount of cadmium in its shoots and leaves (27mg kg−1dry weight) [].
Significant efforts have also beenmade to better understand themechanism of heavymetal

detoxification. Despite earlier research stating the contrary [], a study by Chaney et al. []
concludes that heavymetal detoxification and hyperaccumulation are correlated. Elucidating
the mechanism of heavy metal detoxification and solving the structure of involved enzymes
could therefore provide insight into hyperaccumulation as well.
To that end, the green alga Chlamydomonas reinhardtii is often employed as a model

organism for research on heavy metal tolerance in plants. C. reinhardtii is a cheap, viable
recombinant protein expression system [] and retains more than half of its accumulated
Cd+ content in chloroplasts, which makes it easily extractable []. Therefore, providing
insight into the heavy metal detoxification process in that organism can prove a viable next
step on the way to understanding hyperaccumulation and improve its applications.

.. Heavy Metal Detoxification

There is some controversy as to what constitutes a “heavy metal” in the biological sense as
its effects are largely independent of its density and instead rely on its chemical properties.
A feasible classification of metal ions based on equilibrium constants of metal ion–ligand
complex formation was proposed by Nieboer and Richardson []. While the classification
of metals into classes A (nitrogen-seeking) and B (oxygen-/sulfur-seeking) generally corre-
lates with the metal ion species’ toxicities, the situation is less clear-cut for the “borderline”
class of metal ions: Zn+ and Cd+ are both borderline elements; yet, the former is an essen-
tial micronutrient while the latter is inherently toxic.
The manifold defense mechanisms employed by plants must therefore be both varied and

specific:They have to keep the micronutrient concentration in a narrow optimal range while
at the same time keeping toxic heavy metals out of enzymes’ reaction centers. Based on
how they achieve this, plants can be divided into three categories: Metal-resistant exclud-
ers, metal-tolerant non-hyperaccumulators, and hyperaccumulators []. Excluders aim to
deter heavy metals from entering their roots, either by reducing their bioavailability or by
reducing the expression of metal uptake transporters. Accumulators rely on confinement
and detoxification of metals in a controlled way, either by sequestration into vacuoles, con-
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finement to the apoplast, or chelation in the cytosol. These methods are not exclusive; for
instance, the chelation of a heavy metal ion is often also a signal for sequestration of the
chelate into the vacuole, or for inhibiting its uptake into the symplast by transport proteins.
In general, the defense mechanism of land plants consists of several parts []:

Reducing Bioavailability Bioavailability determines whether the metal is in a form that
can be taken up by a plant or not. By secretingmetal chelators and altering the pH of the local
environment, plant shoots can alter the effective concentration of bioavailable metal ions
[]. Such exudates can be organic and amino acids, precipitants, sugars, polysaccharides,
and proteins. Additionally, mycorrhizal symbionts, which are present in most land plants,
and bacterial microbes can further reduce bioavailability by taking up metal ions from the
environment and secreting chelating agents themselves. By altering the composition and
thickness of their cell wall, plant cells can reduce the amount of metal ions which are able
to get into the cell.

Controlling Metal Flux Metal influx and efflux are regulated by specific transporter
proteins in the cell membrane. These have to be both specific and regulable in order to
carry out their intended function. In the case of toxic metals such as Cd+, influx is not
known to happen due to dedicated Cd+ transporters; instead, Cd+ is assumed to have low
affinity for Zn+ transporters [, ] and potentially iron transporters as well []. In C.
reinhardtii, for example, Cd+ is known to enter through a metal transporter of the Nramp
family []. Interestingly, no dedicated Cd+ efflux transporters have been identified either,
which means cadmium efflux is conferred by nonspecific transporters as well.

Chelation The process of chelation aims to incapacitate metal ions which have overcome
the plasma membrane. Hyperaccumulators often show higher concentrations of chelating
agents than non-hyperaccumulators []. Common chelators include nicotianamine (NA),
metallothioneïns (MTs), glutathione (GSH), and phytochelatins (PCs). NA is an ubiquitous,
non-proteinogenic amino acid which plays an important role in cellular and systemic iron
acquisition as well as intracellular metal transfer []. It is produced in cases of iron and
zinc deficiency stress. MTs are genetically encoded polypeptides with a high number of Cys
residues; these residues are placed so as to maximize the molecule’s chelate effect. They are
vital in tolerance and accumulation of Cu and tolerance of Zn/Cd and can scavenge reactive
oxygen species (ROS) as well [, ]. GSH is a γ–Glu Cys Gly tripeptide which chelates
metal ions by the thiol group of its Cys residue. Its roles in the cell are diverse, but mostly
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oxidation-stress related, ranging from keeping the cellular oxidation status, over acting as a
signal for the occurrence of ROS, to being a precursor for PCs by means of phytochelatin
synthase (PCS). PCs have the general formula [γ–Glu Cys]n Gly and are usually between
n = 5 · · · 11 in length. While PCs contribute to heavy metal tolerance, they do not play a
substantial role in hyperaccumulators [, ].

Sequestration The next stage is to move toxic ions (or chelates) from places where they
can do damage to safer ones, including vacuole(s), the cell wall, or different tissues which
are better equipped to deal with them. How sequestration is carried out depends on the
plant’s capability to tolerate high heavy metal concentrations: Non-tolerent species se-
quester primarily into root vacuoles since high concentrations in the photosynthesis ap-
paratus are potentially more dangerous; this sequestration is mediated primarily by ATP
binding cassette-type transporters []. Tolerant species and (hyper-)accumulators favor
sequestration into shoot tissues by means of the xylem network, using the leaves as storage
[]. Chlamydomonas reinhardtii and Euglena gracilis are special in that they sequester PC ·
Cd+ complexes into plastids instead [, , ]. Often, metal ions chelated by MTs or PCs
can initiate the sequestration process.

ROS Detoxification Introducing toxic heavy metals into cells leads to oxidative stress
in the form of superoxide O –

 , hydroxyl radicals OH , hydrogen peroxide HO, or singlet
oxygen O. These so-called reactive oxygen species (ROS) are highly reactive and can dam-
age a broad range of molecules and cellular structures. However, since oxidative stress can
have various sources, the cellular response is fairly general in nature, mainly consisting of
an increase in GSH production and antioxidant enzymes like superoxide dismutase, catalase,
and GSH reductase. Metal tolerant and (hyper-)accumulator plants generally have a higher
level of antioxidant enzymes than metal sensitive ones. As metal-induced stress leads to ox-
idative stress, keeping the right ratio of GSH to PCs is a balancing act: Both have to be kept
at a sufficient level to perform their duties. Of special note is the Zn+ ion and its dual role
in ROS detoxification: While an overabundance of the ion leads to induction of oxidative
stress, it is also a cofactor in superoxide dismutase [].

.. Phytochelatins

Historically, it was assumed that chelation of heavy metal ions is carried out by PCs in
plants [] and MTs in animals []. In fact, plants make use of all three—PCs, MTs, and
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GSH—while most animals deal with heavy metals only by using GSH and MTs []. It
has even been found that PCs are not necessarily the major ligands of Cd+ []. Until
the discovery by Lane, Kajioka, and Kennedy in , MTs were thought to exist only in
animals, with PCs being the plant equivalent []. However, shortly after the discovery of
PCs’ protective function against cadmium, an MT protein was identified in wheat [] and
it was found that PCs, GSH, and MTs work in tandem with each other to convey the ability
to protect against heavy metals. Vice versa, PCS genes have also been identified in animals.
In particular, the PCS genes of the nematodes Cænorhabditis elegans, Cænorhabditis briggsæ,
and the slime mould Dictyostelium discoideum deserve special mention as the proteins they
encode actually confer PC synthase activity.

Cd2+

GSH

Nramp
transporters

Cell wall

PC

Cytosol

PCS

LMW
Cd-PC

Cd-GSH

HMW
Cd-PC

S2-

Figure .. Detoxification mechanism by phytochelatins.

The role of PCs in cellular heavy metal detoxification is closely coupled to that of GSH.
After entering the cytosol, Cd+ ions are first chelated by GSH and PCs. These initial com-
plexes serve to activate PCS to produce more and longer PCs. Those that are not bound by
PCS are sequestered to vacuoles where they are rendered harmless by being incorporated
into high molecular weight (HMW) complexes. Once the influx of toxic cadmium ions is
lessened and the ration of free PC to PC ·Cd+ complexes reaches a certain threshold, the
free PC molecules serve as a feedback inhibitor to PCS, indicating that the immediate threat
is over. For an overview on the detoxification mechanism by PCs, see Figure ..
PCs are synthesized either from two molecules of GSH, resulting in PC, or a molecule
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Figure .. (a) General formula of PCs. R = H, Cys; R = OH, Gly, Ser, Glu, Gln, Ala. n = 2 · · · 11,
usually between 2 and 5. (b) Phytochelatin (PC) biosynthesis pathway, starting from commonly
available amino acids. Longer PCs can be synthesized by exchanging one or both GSH molecules
in the last, PCS-synthesized step by PCs; for example, PC + PC

PCS PC. The GSH* in the
last step is a GSH molecule with its thiol group blocked [], most commonly by a heavy metal
such as Cd+.
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of GSH and a molecule of PCn, resulting in PCn+1. Both reactions are catalyzed by the same
enzyme, phytochelatin synthase, which will be examined further in the next section. The
general structure of a PC can be seen in Figure .a. It consists of n γ–Glu Cys subunits,
where n = 2 · · · 11, and a terminal Gly residue.The Cys residues’ thiol groups are responsible
for the chelation ofmetal ions, asmentioned above (Section .). Because a single Cd+ ion can
bind several chelating thiol groups, PC ·Cd+ complexes do not have a defined stoichiometry.
Additionally, PC ·Cd+ complexes exist in two distinct forms with different functions,

depending on their cellular localization []: Lowmolecular weight (LMW) complexes occur
in the cytosol and are ready to be sequestered into vacuoles or out of the cell. Their binding
capacity for Cd+ is comparatively low, yet they are crucial as they activate PCS and lead
to the production of more PCs. The HMW complexes located in the vacuole—or in plastids
for C. reinhardtii—are more stable than LMW complexes, and have an increased Cd+ to PC
ratio []. They are created from sequestered LMW complexes and sulfides, which stem
from cysteine sulfinate and are supplied by enzymes from the purine biosynthesis pathway
[, ]. The HMW complexes confer the actual detoxification ability [, ]. Structurally,
they are assumed to take the form of a Cd+ · S– crystal encased in PCs of different lengths.
The ratio of Cd+ to PC also differs at different values of ionic strength [].

.. Phytochelatinsynthase

The last reaction in Figure ., the formation of PCn+1 catalyzed by phytochelatin synthase
(PCS), is main topic of interest in the present thesis. PCS is constitutively expressed in the
cytosol [, ] and has been demonstrated to occur in three different kingdoms []. While
PCs have been found in several higher plants, PCS or PCS-like genes have been found in a
surprisingly large range of organisms and are almost ubiquitous in higher plants []. This
widespread availability of PCS genes in nature is assumed to occur due to both horizontal
and vertical gene transfer [].

... Structure

Structurally, PCS (EC ...) is a member of the papain superfamily [] whose members
in turn are a group of cysteine proteases []. It usually occurs as a dimer or tetramer [,
] although monomers have also been found []. Eukaryotic PCSs have an N-terminal
catalytic and a C-terminal regulatory subunit, while the prokaryotic “half-size” PCSs lack
the C-terminal subunit ([], see Figure . for an example). A D model of the only available
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Figure .. Alignment between several eukaryotic and prokaryotic PCSs. Positions where all
residues match are indicated in green, positions which are identical for at least 50 % of sequences
are dark gray, sequences with lower matching ratio are light gray, gaps are black lines. Active site
residues are highlighted in orange (all active site residues are conserved between all displayed
sequences). The only prokaryotic PCS, NsPCS, lacks the C-terminal regulatory domain. CePCS is
the only animal PCS in this alignment and has relatively low sequence identity to the other PCSs.
NsPCS, phytochelatin synthase of Nostoc spec.; SpPCS, phytochelatin synthase of Saccharomyces
pombe; CePCS, phytochelatin synthase of Cænorhabditis elegans; AtPCS, phytochelatin synthase
of Arabidopsis thaliana; TaPCS, phytochelatin synthase of Tuber æstivum; NtPCS, phytochelatin
synthase of Nicotiana tabacum. For the full-length alignment, see Appendix A..

structure of a PCS at the time of writing, the prokaryotic NsPCS, can be found in Figure ..
The active site is in the N-terminal domain depicted in Figure . and Figure .. As its

most vital residues—those of the catalytic triad and the oxyanion hole—are widely conserved
among all known PCSs (see Figure . and Appendix A.), and the reaction mechanism of
PCSs has been elucidated, it can be assumed that the active site of eukaryotic PCSs looks
similar to that of NsPCS. The active site of 2BTW consists of the catalytic triad, its associ-
ated residues, and two substrate binding sites. Both substrate binding sites are necessary
for the full reaction to be carried out; however, the first substrate binding site suffices for
γ-glutamylcysteine (gEC) cleavage (see next section).
At the time of writing, no structural data on the C-terminal domain has been published,

but it is assumed to play a role in metal sensing and activation (see Section, []).
Ruotolo et al. propose that the C-terminal domain is not as compact and stable as the

N-terminal domain and does not fold autonomously []. The most upstream part of the
C-terminal domain is required for PCS stabilization. The downstream part is responsible for
interaction with other species of heavymetal ions. According to Ruotolo et al., it is conserved
in a lineage-dependent fashion, thus providing a selective advantage by defining the range
of heavy metals to which the enzyme is responsive []. Several cysteine residues have
been identified in the C-terminal domain which could confer that ability (see Figure .),
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Figure .. D structure model of phytochelatin synthase of Nostoc spec. (2BTW as found by
Vivares, Arnoux, and Pignol []. The two chains are shown as different representations; chain A
is represented as a cartoon, chain B as a surface. Orange colored residues are part of the active
site, green residues are part of B-loops, and the protruding loop is in dark gray. The tunnel on the
surface to the right is the substrate binding site.

and homology to thioredoxin and MTs has been established [, ].

... Functions and Mechanism

The apparent main function of PCS in eukaryotes is the synthesis of PCs from GSH and PCs
[]. Longer PCs can bind heavy metals at higher affinity and PC ·Cd+ complexes can be
sequestered to “safer” locations, as mentioned above. However, the synthesis of PCs, while
an integral part of heavy metal detoxification, is not the “original” main function of PCS [,
]. Two facts hint at one or more auxiliary functions: Firstly, prokaryotic “half-size” PCSs
like NsPCS hardly catalyze the formation of longer PCs []. Secondly, PCS is a constitutively
expressed, widely available enzyme despite the recent anthropogenic occurrence of large
heavy metal concentrations. Among others, PCS enzymes have been identified to play roles
in zinc homeostasis [], GSH-conjugate catabolism [, , ], plant innate immunity
[], and xenobiotic resistance [].
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Figure .. Close-up view of the NsPCS active site. Active site residues, which are those residues
involved in the binding of the substrate, are colored orange, b-loops are green, and the protruding
loop is in dark gray.

The general reaction catalyzed by PCS is the last one depicted in Figure .: The transfer
of a gEC moiety onto a GSH or PC molecule via an acyl-enzyme intermediate []. The
reaction consists of two steps. First, the enzyme acts as a peptidase by cleavage of the Cys-Gly
bond and formation of the acyl-enzyme intermediate:

γ–Glu Cys Gly + PCS γ–Glu Cys PCS + Gly

Second, a transpeptidase reaction with a thiol-blocked GSH/PC molecule results in the
release of PCn+1 and the reconstitution of the active site:

γ–Glu Cys PCS + (γ–Glu Cys*)n Gly PCS + (γ–Glu Cys*)n+1 Gly

Three residues forming a catalytic triad are involved in both reaction steps, namely cys-
teine, histidine, and aspartate. In 2BTW/2BU3, those are Cys, His, and Asp [, ].
This catalytic triad is present in all serine and cysteine proteases and is conserved among
all known prokaryotic and eukaryotic PCSs [].
The binding of the donor GSH molecule leads to conformational changes in the protein

which, in turn, result in the formation of a low-barrier hydrogen bond between the imidazole
ring of His and the carboxyl group of Asp (step , []).This hydrogen bond increases the
basicity of the His δ-nitrogen, which can now abstract a proton from the Cys thiol side
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chain, turning it strongly nucleophilic (step ).The thiolate ion attacks the substrate carbonyl
carbon in an SN reaction, leading to the formation of the first tetrahedral intermediate (step
). This intermediate is stabilized by backbone carbonyl oxygens of adjacent residues and
forms an oxyanion hole, like in serine and cysteine proteases. Due to the conformational
changes induced by substrate binding, the glycyl amide nitrogen is a better leaving group
than the thiol sulfur and is cleaved off upon abstracting a proton from His (step ). Thus,
the chemically stable acyl-enzyme complex is formed (Figure .). As the newly formed
glycine leaves the active site, the acceptor GSH/PC takes its place. His again abstracts a
proton from the acceptor N-terminal amine group, making it nucleophilic. This leads to an
SN attack of the acceptor amine on the thioester carbonyl carbon and to the formation of
the second tetrahedral intermedate (step ). Subsequently, the thioester bond is cleaved and
Cys regains its proton from His, leading to the protein’s original state (step ).
Despite its primary function in heavy metal detoxification, no metal ions are actually re-

quired for PCS to perform its function. Albeit the “canonical” GSH/PC and their metal thio-
lates are required for maximum catalytic efficiency, the necessary criterion for PC formation
is the presence of a blocked thiol group in the acceptor molecule []. With this acceptor,
the enzyme forms another acyl-enzyme intermediate at a second acylation site, the exact
position of which has not yet been conclusively determined []: Experiments on truncated
phytochelatin synthase of Arabidopsis thaliana (AtPCS) and prokaryotic PCSs—which lack
the C-terminal domain and only weakly catalyze the PC formation step [, ]—indicate
that the second acylation site is located in the C-terminal domain. However, Vivares, Arnoux,
and Pignol show evidence of a second acylation site in the N-terminal domain of NsPCS [].

... Regulation and Role of the C-Terminus

PCS can be regulated both at the transcriptional and post-translational level. It is generally
constitutively expressed and almost exclusively regulated posttranslationally via interaction
with free metal ions and PC ·Cd+/GSH ·Cd+ metal complexes [, ], although transcrip-
tional regulation has been found in phytochelatin synthase of Tuber æstivum (TaPCS) and
phytochelatin synthase of Chlamydomonas reinhardtii (CrPCS) [, ]. The highest enzyme
activity is achieved in 0.5 μ Cd+ []. However, the protein doesn’t usually bind free
metal ions; instead, it is activated by thiol-blocked PC or GSH molecules [, ] which
in vivo occur as PC ·Cd+/GSH·Cd+ complexes during heavy metal-induced stress [,
]. As mentioned in the previous Section, thiol-blocked PC and GSH molecules also act as
substrates. Due to this enzyme-substrate positive feedback loop, PC biosynthesis generally
occurs within minutes of Cd+ exposure. In addition to the enzyme-substrate positive feed-
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back loop, phosphorylation at a specific conserved threonin residue in the C-terminus has
been found to influence PCS activity [].
Direct binding of free heavy metal ions can occur at exceptionally high heavy metal

concentrations. The binding site for such a direct interaction is assumed to be at a site
distinct from the active site []. However, the N-terminal binding of free Cd+ can actually
inhibit enzyme activity in both prokaryotic and C-terminally truncated eukaryotic PCSs
[]. A direct metal binding site is therefore proposed to exist in the C-terminal domain.
The observed differences between prokaryotic PCSs, which only catalyze the first step of

the PCS reaction andwhich are not affected by heavymetal ions, and eukaryotic PCSs, which
catalyze the full PCS reaction and which are affected by complexed metal ions, are a direct
result of the presence or absence of the C-terminal domain. It is the binding of complexed
heavy metal ions by the C-terminal domain which leads to higher activity in eukaryotic
PCSs. According to some authors, the C-terminus is also the location of the second acylation
site responsible for PC biosynthesis []. An activation mechanism proposed by Tsuji et al.
suggests that PCS is initially in an inactive, unfolded state and only folds upon binding of a
PC ·Cd+/GSH·Cd+ complex []. However, the prokaryotic NsPCS, whose D structure
was solved by Vivares, Arnoux, and Pignol [], is able to synthesize PCs. Additionally,
truncated AtPCS, i.e. AtPCS without its C-terminus, is also competent in synthesizing PCs
[]. In light of these findings, Vivares, Arnoux, and Pignol propose the location of the
second acylation site to be in the N-terminal domain. Accordingly, Tsuji et al. propose
that N-terminal conserved sequence regions are associated with the first reaction step while
N-terminal regions with low homology interact with heavy metals and/or bind to acceptor
molecules, i.e. are associated with the second reaction step []. The final location of the
second acylation site is therefore not yet conclusively found.
Inhibition of PCS function occurs by the accumulation of free PCs in the cytosol or the

depletion of PC ·Cd+/GSH ·Cd+ substrate: The fact that free PCs—which are the molecules
with the highest Cd+ binding affinity—exist means that no more heavy metal detoxification
is necessary; a lack of thiol-blocked PC/GSH molecules interrupts the enzyme-substrate
positive feedback loop.

.. Motivation and Goal

The goal of this thesis project was to create a viable structure model of CrPCS and verify it
using molecular dynamics (MD) simulations in A and G. To that effect, correct
and suitable parameters are to be found for those simulations. Additionally, the possibility
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of crosslinking CrPCS with other enzymes via lysine linkers is to be investigated.





Glu
Cys

O

N
H

Gly

S
H

N HN 	

O

O

GSH



Glu
Cys

O

N
H

Gly

S
H

N HN 	

O

O



Glu
Cys

O

N
H

Gly

S	

N HN
H

⊕
	

O

O



Glu
Cys

O	

S

N
H

Gly

N HN
H

⊕
	

O

O

GSHGlycine



N
HH

Glu
Cys

GlyGlu
Cys

O

S

N HN 	

O

O



Glu
Cys

O	

S

N
H

Glu
Cys

Gly

N HN
H

⊕
	

O

O

PC



Figure .. Reaction mechanism of phytochelatin synthase. The formation of PC from two
molecules of GSH is shown as an example; by replacement of the acceptor GSH by PCn, the
formation of longer PCs is possible. Refer to the text for a detailed explanation of the mechanism.
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Figure .. Conformational changes in the active site of NsPCS chain B upon formation of the
acyl-enzyme complex. Active site residues are orange, the bound gEC substrate is in light blue,
b-loops are green, and the rest of the molecules are white. The most significant changes are the
change in position of Gln, changing the protein from a “closed” to an “open” conformation;
the increased mobility of Arg in the acyl-enzyme complex, which results in Arg having a low
resolution; and the change of orientation in the Gln side chain to form the oxyanion hole together
with Cys. Also, the protruding loop (dark gray in Figure .) is disordered in the acyl-enzyme
intermediate.
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. Fundamentals

There are several different ways to go about obtaining a valid model of a molecular structure.
This chapter outlines the necessary basics to understand the methods used in this project.

.. Molecular Modeling

Though the exact ways to obtain a model of a molecular structure by means of homology
modeling differ in details, the basic steps are generally the same:

. Identify templates.

. Create an alignment between the template(s) and the target sequence.

. Create model(s) from the alignment.

. Evaluate and validate model(s) by different means.

Depending on the method used, these steps can partially blend into each other, or addi-
tional steps might have to be introduced, or steps could be omitted entirely.

... Alignments

The creation of target–template alignments (TTAs) lies at the very heart of the comparative
modeling process since errors produced in this step can only very rarely be compensated
for later on. Therefore it is imperative that the target amino acid sequence and template
structure (or structures) are as well-aligned as possible.
There are two general approaches to create a sequence alignment: Dynamic programming

as used in the Needleman-Wunsch [] and Smith-Waterman [] algorithms, and heuristic
approaches as employed, for example, by the TC [] and HHsearch [] suite of
programs. The heuristic approach is favored in template identification due to its superior
speed, while the dynamic programming approach is often used when generating sequence
alignments between known templates and the target. I will start this introduction with
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the dynamic programming approaches, however; they came first historically and are the
simplest to explain and expand upon.

Dynamic Programming Algorithms

Dynamic programming always leads to the best possible alignment with a given scoring
matrix. The most common methods used today are the Needleman-Wunsch algorithm for
global alignments and the Smith-Waterman one for local alignments. Both are essentially
the same except for a few differences. The Needleman-Wunsch algorithm works as follows:

. Create an empty array H with the residues of sequence A as rows and sequence B as
columns, so that the array is of size NA × NB where N is the number of amino acids
in the sequence

. For each row, determine the score for each cell:

Hi ,j = max


Hi−1,j−1 + wAi ,B j

Hi−1,j + wAi ,∆

Hi ,j−1 + w∆,B j


(.)

. Starting from the bottom-right cell, trace the highest-scoring path back to the begin-
ning

In Equation (.), Hi ,j is the value of the cell in row i and column j, w is the score for the
current substitution, and a ∆ index indicates a gap in the sequence alignment.
The score w depends on the chosen scoring matrix. The simplest matrix one could use

is the identity matrix which assigns a score of 1 for identical residues and 0 otherwise.
However, other, more elaborate matrices are often used as well, the most common ones being
the P and B matrices. Their scores are based on the notion of evolutionary
distance: A negative score means a substitution is unlikely, a positive score means it is more
likely. The B family of matrices is considered somewhat better than P since they
were assembled from a more diverse set of sequences. Note that a higher P index indicates
higher evolutionary distance while a higher B index indicates lower evolutionary
distance.
The gap score is usually negative since gaps in an alignment are undesirable. Nowadays,

two different values are used for ∆, a high gap opening and a lower gap extension cost.
More elaborate schemes to calculate the gap costs are not uncommon, however. M’s
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salign() algorithm can make use of secondary structure information to increate the gap
penalty in helices and sheets, where a gap could lead to the disruption of the entire tertiary
structure [].
TheNeedleman-Wunsch algorithm always produces global alignments and is therefore not

well-suited to aligning e.g. an entire protein with a single homologous domain. For that, the
Smith-Waterman algorithm should be used. It has the same steps as the Needleman-Wunsch
algorithm but alters the scoring function (Equation (.)) so that no negative values can
occur. It also changes the traceback mechanism to accommodate for the different scoring
pattern.

The Inadequacy of the Dynamic Programming Approach for Template
Identification

The number of protein sequences is rising exponentially thanks to recent breakthroughs in
sequencing technology. This can be an immense boon to alignment accuracy, as alignments
between multiple related sequences can increase the signal-to-noise ratio, leading to higher
quality alignments in the process. Bigger databases also lead to better results for template
identification inmolecular modeling. It would therefore be desirable to be able to sift through
these ever-growing databases as quickly as possible.
While the dynamic programming algorithms always identify optimal alignments, they

have the disadvantage of running in O (n3) time and O (n2) space complexity1 and are there-
fore not suited for the “needle-in-a-haystack” problem that is template identification. It is
also not straightforward to extend them beyond the realm of pairwise alignment. So, while
template identification and sequence alignments share a common basis, their requirements
are orthogonal.
Where pairwise or multiple-sequence alignment algorithms value accuracy above all else,

an algorithm that is to be used for template identification must favor speed and sensitivity
due to the necessity of having to search through potentially large databases of sequences
(or related data, such as sequence profiles or HMMs). The goal is to find as many possible
templates in a short timespan as possible, with as few false positive results as possible. After-
wards, the found templates are usually realigned with a different MSA algorithm to make

To classify the computation time, one is interested in proving upper and lower bounds on the minimum
amount of time required by the most efficient algorithm solving a given problem. The “big O notation”
is useful for comparing the resource requirements of different algorithms in terms of input data. Say we
have an input dataset of size 100MB. An algorithm with time complexity O (n2) would take at worst
100 · 100 = 10 000 units of time to complete, while an algorithm with complexity O (n3) would take
100 · 100 · 100 = 1 000 000 units of time to complete.
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up for the inaccuracies introduced by the template identification step. Since no algorithm is
perfect, manual adjustments are common as well.
To tackle the speed problem, heuristic algorithms have been developed. These algorithms

can traverse large sequence databases in a fraction of the time by sacrificing a modicum of
accuracy.
The F [] and B [] programs were the first heuristic search algorithms to be

widely used in the field. B was also the basis for several improvements, among them
the popular programPsi-Blast algorithm [] and its descendants.
However, while these algorithms addressed the problem of time complexity, they could

still only create pairwise alignments. True multiple-sequence alignments have a number of
advantages: By adding (at least) an additional dimension to the sequence information, they
can indicate which residues in an alignment are conserved and which are more likely to fall
victim to the mutation and selection process. Using multiple template sequences/structures
also improves the signal/noise ratio when doing comparative modeling.
To tackle the multiple-sequence alignment problem, the classic approach is to create

iterative pairwise alignments and rank them according to their evolutionary distance. To that
effect, Position-specific scoring matrices (PSSMs) have been created, which are used when
aligning more than two sequences: A separate scoring matrix is generated for each position
in the alignment, leading to much more sensitive and accurate alignments. These PSSMs,
which are at the heart of profile-based sequence alignments, do not necessarily have to be
derived from the sequences alone: A number of D structure-based approaches to calculate
PSSMs exist, and the M suite can make use of secondary structure information in
its salign() algorithm in order to improve its scoring matrix.
By using PSSMs, the problem of sifting through a vast array of sequences can therefore

be reduced to the alignment of a comparatively small number of sequence profiles since the
number of protein folds—and, therefore, the number of meaningful sequence profiles—is
limited.

HiddenMarkovModels While PSSMs lead to an increase in search sensitivity and speed,
there are still a number of issues associated with them []: They are complicated models
with a large number of parameters (for a sequence profile of length , ten 20×20 substitution
matrices have to be constructed), and gap and insert penalties still have to be assigned
empirically. By using profile hidden Markov models (HMMs), all of these issues can be
addressed.
A profile HMM consists of a number of states (which, for the purposes of sequence align-
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ment, can be considered sequence matches), transitions between these states (each with
accompanying probabilities), and values that can be emitted at each state (for a PSSM, this
would be the residue occurring at a given position in the alignment). The goals when using
HMMs are threefold:

. Given an existing HMM and an observed sequence, how likely is it that the HMM
could have generated the sequence?

. Given an HMM and a target sequence, what combination of HMM states is most likely
to result in the target sequence?

. Given multiple sequences (for example, database of homologous proteins), what is the
HMM that will reproduce these sequences’ properties most accurately?

An HMM can be considered a nondeterministic finite automaton and as such consists of
a number of states and transitions between them. In the context of sequence alignments,
states represent the match at a given position in the alignment: There is either an insert, a
deletion, or a matching residue (which is called an emission). A simple HMM for sequence
alignment is illustrated in Figure ..

s CAF
s CGW
s CDY
s CVF
s CKY

(a) Test sequences

start

I0

m1

D1

I1

m2

D2

I2

m3

D3

I3

end

A p1
A

C p1
C
...

A p2
A

C p2
C
...

A p3
A

C p3
C
...

...
...

...
...

(b) Profile HMM for sequences to the left

Figure .. A simple profile HMM, built for the alignment of five sequences of length  shown
in (a). In (b), m1, m2, and m3 are match states (i.e. positions in the alignment). At each match
state, every residue type R occurs with probability pR , as illustrated for the A and C residues and
their respective probabilities pA and pC in the black rectangles. The green boxes I0;. . .;3 represent
insertions; they also have probabilities for each amino acid attached to them (which are here
omitted for brevity). The orange D1;. . .;3 states represent deletions from the sequence. In order to
generate a sequence, one has to walk from the “start” to the “end” states.
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... Comparative Modeling

In contrast to the ab initio approach to proteinmodeling, the comparativemodeling approach
uses already solved structures as a jumping-off point. The validity of the comparative model-
ing approach is based on the fact that protein structure is far more conserved than its amino
acid sequence: While a large number of protein structures are already known, they adopt a
relatively small number of different folds []. In fact, Zhang and Skolnick argue that the
current contents of the PDB could be enough to solve the structures of all new protein se-
quences to an accuracy of about 2.25Å, given algorithms powerful enough to identify the
correct templates [].
Comparative modeling methods can be loosely divided into two different approaches,

homology modeling and fold recognition/threading. For “easier” target sequences with viable
templates, the homology modeling methods are usually superior. If no obvious templates
can be found (that is, the sequence similarity is at or below the twilight zone threshold,
which is at about 30 % identity []), fold recognition methods might yield better results
since they are not solely based on sequence similarity.

Homology Modeling

Homologymodeling is based on the correct sequence alignment between the target sequence
and the sequence(s) of one or more template structures. (For the sake of clarity, only an
alignment of a target sequence with a single template structure is considered.) From this
sequence alignment, the target structure is then constructed. Note that the term “homology
modeling” is a bit misleading here since the templates used are not necessarily homologous
to the target sequence.
For “pure” homology modeling methods, no information besides the sequence alignment

is used beyond the initial alignment step. However, modern protein structure prediction
methods often use a variety of ways in order to improve alignment quality and cannot be
accurately described as either homology modeling or threading methods; most of the time
they take bits and pieces of both.
The quality of a sequence alignment is vital to the success of the comparative modeling

approach. This is doubly so when using homology modeling, as all subsequent steps directly
depend on the quality of the TTA.
There are several ways to go about creating structures for the target sequence. For the

sake of brevity, only the rigid body assembly and satisfaction of spatial restraints methods
will be explained in the following paragraphs.
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Rigid Body Assembly This historically important method relies on the identification of
structurally conserved regions (SCRs) and structurally variable regions (SVRs) in the TTA.
When using a sequence profile, these can be easily inferred from the scoring matrices at
each position; when HMM-based alignment is used, visualizing the profile HMM using logos
[] can be helpful in identifying conserved regions as well. SCRs can also be assigned
from the secondary structure of either the template or the target (using secondary structure
prediction methods such as PsiP [, ]).
SCRs in the target sequence can be assumed to adopt largely the same fold and structure

as in the template and can therefore modeled as rigid bodies. The modeling process for SVRs
is more involved, however, since not enough information is available from the template to
create meaningful conformations for them.

Satisfaction of Spatial Restraints A more versatile approach is implemented in the
M package []. Here, a number of distance restraints is used to infer features
of the target sequence, such as bond lengths/angles, torsion angles, disulfide bonds and
more. Then, for each inferred feature, probability density functions (PDFs) are constructed.
A PDF is a smooth function which gives the distribution of the feature as a function of the
related variables [, page ]. The goal is then to find values for these PDFs so that the
number of violations (i.e. large deviations from expected values) is minimized. This method
is inherently flexible since restraints can be inferred from almost any source:

• Target–template alignment

• Basic geometric restraints (bond length, bond angles, torsion angle restraints etc. as
used in MD simulations)

• Secondary structure information (limits allowed torsion and bond angles)

• Experimentally determined contacts between residues (e.g. from crosslinking experi-
ments)

To that end, the feature PDFs are assembled to a single molecular PDF:

P =
∏
i

pF ( fi ) (.)

Here, P is the molecular PDF and pF ( fi ) are the feature PDFs for features fi . The best
conformation is the one whose PDF violates the restraints as little as possible. To find this
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PDF, M minimizes an energy function calculated from the molecular PDF using a
conjugate gradients method (Section ..).

Threading

Not all hope is lost if no good template sequences can be found—the threading (or fold recog-
nition) approach is still a viable option. It is based on the observation that, even though the
number of existing protein structures is vast, these structures adopt only a limited number
of folds []. Thus there is a high probability that, given a large enough structure database,
a protein with a similar fold has already been archived []. This limits the usefulness of
the threading approach to proteins with known folds but allows creating reliable structures
for proteins for which templates only exist deep within the twilight zone.
Threading is at its most basic a very simple approach to protein structure prediction: The

target sequence is “threaded” through the backbone of the decoy2 structure and a scoring
function is used to assess the quality of the adopted conformation. After having identified
the most promising decoys this way, a more elaborate scoring function can be used to find
the best model.
Note that this is just a very basic, intentionally broad description; there is a number of

ways in which this very simple method can be improved, both in accuracy and speed.

BetterDatabases By collecting structures with similar folds into clusters and running the
threading search against these clusters instead of individual sequences, a lot of redundant
information can be removed from the database. This can be done in a number of ways—the
HHsearch method [], for example, represents both the target sequence and the protein
fold database as HMMs (see Section ..) and matches these against each other. The success
of this approach led to the occurrence of a number of “second-generation” databases, among
them the C [], Pfam [], or S [] databases. To pick just an example, the C
database stores a large number of sequences as HMMs and MSAs.

Faster Alignment Additionally, the actual threading mechanism itself can be sped up by
using faster sequence-structure alignment algorithms. A widely used one is the double dy-
namic programming approach [, page ]: First of all, a matrix is created which compares
the vectors between any two residues ij in protein A to the vectors of any two residues lm

A decoy is a computer-generated protein structure which is designed so to compete with the real structure
of the protein. Decoys are used to test the validity of a protein model; the model is considered correct only
if is able to identify the native state configuration of the protein among the decoys.
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in protein B. For each of those vectors, a similarity score is calculated and put into a scoring
matrix. The first dynamic programming step is carried out on that matrix in order to obtain
the optimal alignment between i and l (i.e. the alignment with the highest similarity score).
The similarity scores for each residue are placed in another matrix, upon which the second
dynamic programming step is performed. This is the actual “threading” part of the approach.
Another way would be to create a profile HMM to represent the alignment, as is done in

the HHsearch approach [], and use established methods such as the Viterbi algorithm
[] to obtain the correct alignment.

Scoring Function The choice of a good scoring function with high prediction ability is
possibly themost vital part of the threadingmethods. A good scoring functionmust take into
account as much information available as possible while at the same time be small enough
to give a result in a reasonable timeframe. This is a hard problem, and so meta-threading
servers are quite common [, , ]. They use several different scoring functions and
evaluate the combined results. Since different scoring functions have different strengths and
weaknesses, combining them can improve the signal/noise ratio.

... Clustering

It is postulated that a large number of near-native, partially folded conformations exist
near the native state of a protein []. Based on this hypothesis, one can argue that, in
order to facilitate the folding process, proteins may have evolved native structures within a
relatively broad “basin” of low-energy conformations. This can be exploited by clustering a
large number of potential models into groups of similar structures.
The models created in previous molecular modeling steps are usually already minimized

(see Section ..) and are therefore located in one of the “energy basins” mentioned above.
Now, by generating a large number of potential models (decoys) and grouping them based on
their rootmean square deviation (RMSD) to one another, one can observe how themodels are
split up among the basins. Provided the hypothesis described by Shortle, Simons, and Baker
[] holds, the native structure of the protein is then at the bottom of the basin which is
occupied by the highest number of decoys.
The accuracy of this process can be improved by sampling from a larger number of decoys:

The more decoys, the better the phase space coverage.
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The Average-Linkage Algorithm

The algorithm used in this project for clustering is called average-linkage []. It is a
bottom-up algorithm in which a cluster is created by merging (i.e., linking) smaller clusters.
In order to choose which two clusters are merged, the algorithms compares the consensus
(i.e., average) structureThe steps are outlined in Algorithm .. For clustering protein decoys,
the RMSD is often used as a distance measure.
First, every decoy is placed in its own cluster. Then, the RMSD between all clusters is

computed. The two decoys with the lowest RMSD are grouped together to form a new
cluster. The last step is to compute the consensus structure of the newly-formed cluster,
and to calculate the RMSD of the consensus structure to all other clusters. This process is
repeated until either a target cluster number or target RMSD distance threshold is reached.

Algorithm . Average-linkage algorithm.
Require: Target cluster number nmax or RMSD limit dmax

for Decoy i ← 1 to N do
for Decoy j ← 1 to N ; j , i do

Calculate dij
end for
Place decoy in its own cluster ci

end for
while nclusters < nmax or dcurrent < dmax do

Find and merge two clusters i and j with lowest dij
Calculate average RMSD of newly merged cluster

end while

Clustering Metrics

There are two basic ways how to choose the granularity of the clustering: Supplying a cutoff,
or explicitly specifying a target cluster number for the algorithm to stop.
The cutoff is the maximum distance criterion for which a decoy is still included. For ex-

ample, if clustering a number of protein decoys with an RMSD cutoff of 1.5Å, the average-
linkage algorithm puts all proteins whose RMSDs are within 1.5Å of each other in a single
cluster. This cluster is removed from the pool and the algorithm starts anew with the remain-
ing decoys. When supplying a target cluster number instead, the algorithm merges decoys
into clusters until only the given number of clusters is remaining.
In this project, the cluster number was supplied manually. In order to find the “best”

possible cluster number—that is, the number of clusters with the highest information con-
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tent—a group of similarity and dissimilarity metrics are used: The critical distance, the
Davies-Bouldin index (DBI), the pseudo F-statistic (pSF), and the ratio of the sum of squares
regression to the total sum of squares (SSR/SST).

Critical Distance The critical distance is the aforementioned cutoff, i.e., the RMSD dis-
tance between the consensus structures of clusters to be merged. An “elbow” in the critical
distance vs. number of clusters plot indicates an optimal cluster count []. For example, if
the critical distance resulting from merging two clusters is far larger than that of previous
merges, the chosen clusters are disproportionately more dissimilar to each other than the
previously merged clusters. Therefore, the best cluster number according to this metric is
the one where the “elbow” is.

Davies-Bouldin index This metric quantifies the average distinctiveness of a cluster
configuration by comparing the average intra-cluster dispersion to the inter-cluster dis-
persion []. The smaller the DBI, the larger the ratio between intra-cluster similarity to
inter-cluster similarity. The larger the DBI, the more similar clusters are to each other. A
small DBI is therefore preferrable.

pseudo F-statistic Instead of measuring dispersion, this metric describes the ratio of
inter-cluster variance to intra-cluster variance, where variance is measured as the sum
of squares of the distances dij between decoys []. It is based on an F-test and measures
how well-separated clusters are: The larger the pSF metric, the more tight-knit the clusters
resulting from the chosen cluster number. A peak in the pSF vs. number of clusters plot
therefore indicates the best cluster number.

SSR/SST This metric compares the sum of squares of decoys within clusters to the sum
of squares between all decoys. The sum of squares is calculated separately for each cluster
and then summed; this is the SSR. The SST is the sum of squared distances between all
clusters, not only those within a given cluster. An SSR/SST close to  indicates that a lot
of the variance between decoys is accounted for by the current clustering configuration.
If the SSR/SST is small, only a small amount of the total variance is explained by dividing
the decoys into the current clustering configuration. To find the best number of clusters
according to this metric, the so-called “elbow criterion” is applied: If merging two clusters
results in a steep drop (an “elbow”) in the SSR/SST vs. number of clusters plot, this merged
cluster configuration does not account for a lot of the variance among the decoys. The best
cluster number is therefore on the top of the “elbow”.
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.. Molecular Dynamics

After a model has been created, the next step is to evaluate its validity and compliance with
native behavior. Accordingly, molecular dynamics (MD) simulations are often used. They
simulate the environment of a protein as accurately as possible. If a protein structure model
is stable over a long time in an MD simulation, one can assume it to be of high quality. After
all, if only a single atom is placed wrongly, large repulsive forces between nuclei might occur
and lead to the blowup of the entire finely-tuned system.
The goal of MD is therefore to simulate a system of particles over time and yield reasonably

accurate successive configurations of the system. To that effect, Newton’s second law is
integrated over time:

F =ma (.)

Fi =mi
d2ri
dt2

(.)

dri
dt
= vi ;

dvi
dt
=

Fi

mi
(.)

ri (t ) =

∫ t

t0

vi dt − ri (t0); vi (t ) =

∫ t

t0

Fi

mi
dt − vi (t0) (.)

In Equation (.), F is the force on a particle, a its acceleration, andm its mass. In Equa-
tion (.), d2ri

dt2 is the second derivative of the particle’s position with respect to time, Fi is
the force upon the particle, andmi is again the particle’s mass.
Now, in order to obtain the time evolution of a system, the forces F acting upon each of

its particles i must be computed. The force that acts upon a single particle is related to the
potential energy of the system:

Fi = ∇iE (ri ) (.)

Thus the force Fi can be calculated by differentiating the particle’s potential energy E (ri )

with respect to its position. How to obtain the potential energy of a particle is subject to the
particular force field that is chosen for the simulation.
While the actual implementation varies across the popular MD programs, the general

procedure stays the same. It is outlined in Algorithm ..





Algorithm . General force field algorithm.
Require: Force field
Require: Coordinates rN
Require: Number of timesteps nmax

δt
for atom i ← 1 to N do

Generate velocity vi
end for
while nδt < nmax

δt
do

for atom i ← 1 to N do
Calculate bonded forces Fi = −∇riV (ri )
for atom j ← 1 to N ; j , i do

Add nonbonded forces
∑

j Fij

end for
Calculate kinetic energy K (vi )
Calculate acceleration ai

Update coordinates ri
end for
if required then

Write output coordinates
Advance timestep

end if
end while
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... Force Fields

A force field describes how the potential energy field of a system,V , is calculated. It can be
described by a number of summation terms over all particles N in a system:

V (rN ) =
∑
Bonds

+
∑

Angles

+
∑

Torsions
+

∑
Nonbonded

(.)

Besides the ones described here, the introduction of additional terms might be necessary:
Improper torsion angle potentials can be used to correct out-of-plane bending motions,
while cross terms can account for the fact that bonding terms might influence each other.

Bond Term

The most accurate way to describe the bond energy would be a Morse potential. However,
due to its computational complexity and the fact that bonds rarely deviate much from their
equilibrium values, a simple harmonic potential is used:

EBonds =
∑
Bonds

ki
2
(li − li ,0)

2 (.)

In this potential, modeled after Hooke’s law, the bonds behave like springs that oscillate
around an equilibrium value. li ,0 is the equilibrium bond length, li is the actual bond length,
and ki is the force constant. The equilibrium bond length and force constant are different for
each bond and for each force field implementation. If higher conformance with the Morse
potential is desired, higher-order terms can be incorporated into the equation, turning it
into a power series.

Angle Term

The angle potential is a simple Hooke’s law harmonic potential, too:

EAngles =
∑

Angles

ki
2
(θi − θi ,0)

2 (.)

The force constants k are, however, considerable smaller than those used in the bond
term. As with the bond term, adding higher-order terms improves accuracy at the cost of
computational efficiency.
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Torsion Angle Term

A torsion angle ∠ABCD is the angle between the planes spanned up by ∠ABC and ∠BCD.
Its potential is usually defined as a cosine series expansion:

ν (ω) =
N∑
n=0

Vn
2

[
1 + cos(nω − γ )

]
(.)

Here, ω is the torsion angle, Vn is the so-called “barrier height” which is related to the
wave’s amplitude, n is the multiplicity, and γ is the phase. The higher the potential’s order
N , the higher the accuracy of the torsion potential.
Besides “normal” torsion angles, it is sometimes necessary to calculate improper torsions.

Improper torsion terms occur mainly to correct for out-of-plane angle bending motions
in aromatic rings and other conjugated systems. They are called “improper” because the
involved atoms are not bonded in sequence.

Nonbonded Interactions Term

Nonbonded interactions do not work along specific bonds, but instead through space. There-
fore, they are usually modeled as functions of some power of the distance and can be divided
into two basic groups, electrostatic interactions and van derWaals interactions [, page ].
Generally, nonbonded interactions are calculated between all atoms which are either not in
the same molecule or are separated by three or more bonds.

Electrostatic Interactions There are several ways to model the electrostatic contribu-
tions to the potential. To ascertain computational efficiency, electrostatics are often modeled
as point charges at specific points in the system, usually at the atom coordinates ri . This
allows for easy calculation of the Coulomb contribution to the electrostatic potential:

V =

NA∑
i=1

NA∑
j=1,i

qiqj

4πϵ0rij
(.)

Here, NA is the overall number of atoms in the system, qi and qj are the point charges of
atoms i resp. j, and rij is the distance between atoms j and j. The simplest model, in which
point charges are placed at the coordinates of the atoms in the system, does not consider
the contributions of dipole-dipole interactions, or interactions of even higher order such
as quadrupoles or octopoles. The accurate incorporation of those would require the central
multipole expansion method of calculating charges, which comes with its own drawbacks
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[, page ]. The higher-order terms are instead approximated by using more than one
point charge per atom: In order to model the quadrupole in a nitrogen, for example, an addi-
tional point charge is placed on the bond between the two nitrogen atoms. Even higher ac-
curacy can be achieved by adding additional charges—however, one must consider that each
additional charge increases the computational complexity exponentially since electrostatic
interactions are calculated between a comparatively large number of atoms in a system.
The point charge distribution is determined during the parameterization stage of the force

field and depends on atom and bond types.

Van der Waals Interactions The nonbonded interactions between some types of atoms
cannot be accurately modeled by electrostatic interactions alone. Sufficiently close contact
between two atoms can lead to the creation ofmomentary dipoles through polarization of the
atoms’ electron clouds.This polarization can in turn lead toweak attractive behavior between
those atoms—up to a certain distance at which the repulsive forces between the nuclei
become dominant. These dipole-induced interactions are known as London or dispersive
interactions [].
The dispersive interaction is usually modeled as a - Lennard-Jones potential:

ν (r ) = 4ϵij
[ (σ

r

) 12
−

(σ
r

) 6]
(.)

Here, σ is the optimum distance between atoms i and j, and ϵ is the depth of the potential
well. The repulsive term is proportional to r−12 while the attractive term is proportional to
r−6, leading to the characteristic shape of the Lennard-Jones potential.

Final Form of the Force Field Equation

Putting all potential terms into Equation (.) yields the final form of the general force field
equation:
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V (rN ) =
∑
Bonds

ki
2
(li − li ,0)

2 +
∑

Angles

ki
2
(θi − θi ,0)

2 +

∑
Torsions

Vn
2
(1 + cos(nω − γ )) +

N∑
i=1

N∑
j=1;j,i

4ϵij

σijrij


12

−

σijrij

6 +

N∑
i=1

N∑
j=1;j,i

qiqj

4πϵ0rij

(.)

... Energy Minimization

Before a force field can be applied to a molecular structure, one or more energy minimization
steps must usually be performed to reduce the risk of instability. This is because the criteria
required for successful model creation are usually not the same as those for a dynamics
simulation.
As an example, consider the situation of a structure created byM that shall be stud-

ied in an MD simulation using the GROMOS96 53A6 force field []. The structure obtained
by M is created by minimizing M’s objective energy function, followed by
several MD steps in the CHARMM27 force field. While the CHARMM27 and GROMOS96 force fields
are similar in their basic form (Equation (.)), their actual parameter values differ. Since
their parameters are different, their minima probably do not coincide either. Therefore, the
minima have to be recalculated for the force field used in the MD simlation, in this case the
GROMOS96 53A6 force field.
Note that, even if a structure was determined by X-ray crystallography, its conformation

might deviate from the native structure due to packaging artifacts or inaccuracies introduced
during the modeling process. An additional source of error for a homologymodeling-derived
model is the fact that its conformation is often closer to that of the template (or templates)
than to its native structure, which could introduce spots of high energy and increase the
risk of simulation blowup.
Therefore, energy minimization is a necessary step prior to all MD simulations.
As already mentioned, the goal of energy minimization is to find the global minimum

in the examined system’s potential energy surface. A minimum in a derivable function
f is a point where its first derivative f ′ is 0 and its second derivative f ′′ is > 0. Because
the potential energy in the system only depends on the particles’ positions, an analytical
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solution is, in principle, possible. However, due to the fairly complicated nature of modern
force fields’ energy functions—refer to Equation (.) for an illustration—, an analytical
approach is not feasible except for very small systems. Instead, several numerical algorithms
exist, among them the steepest descent and the conjugate gradients algorithms, both of which
are used in the A [] and G [, , , ] programs. When applying these
algorithms, however, one has to keep in mind that both algorithms can only find the nearest
local minimum and are therefore dependent on the starting geometry.

The Steepest Descent Method

The steepest descent method [] is robust, i.e., not susceptible to errors due to a bad starting
point. It is therefore useful when a system is far away from its minimum. However, when
close to a minimum and the chosen step size λ is too large, the algorithmmight not converge
but instead oscillate around the minimum due to continuous overcorrection. The following
steps are repeated until the energy function converges or until a maximum number of steps
is reached:

. The calculation of the direction sk on the energy hypersurface in which to move the
system.

. Finding the energy minimum along the axis sk and obtain the new system coordinates
xk+1.

. Move the system to the new coordinates xk+1.

Step Direction The potential energyV is a function of the 3N coordinates of the system
an can therefore be written asV (x), wherex is a vector of the 3N coordinates.The direction
in which to “walk” on the energy hypersurface is then simply the negative gradient of
V (x)’s first derivative:

s = −
g

|g |
(.)

Here, s is the direction for the steepest descent algorithm and g is the gradient of the
energy functionV (x). By dividing −g by its length, a unit vector is produced.

Step Size Once the direction of the next step has been determined, the actual target
configuration for the system along that axis has to be found. The target configuration is the
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point at which the energy is lowest along this coordinate. As usual, there are several ways
to solve this problem.
One way is to find three points along the axis so that the middle point is smaller than the

end points. Once such a configuration of points has been found, a simple bisection algorithm
could be used to locate the actual minimum; or a quadratic function could be fitted against it.
While this proposal is simple in concept, finding three points that satisfy the condition

can be computationally demanding. Another, much simpler approach is therefore to take
steps of a predetermined length along the vector s and, once the minimum has been crossed,
“backtrack” along the axis by a fraction λ of the step length.

The Conjugate Gradients Energy Minimization Method

This algorithm [] is similar to the previous one in that the basic steps are the same. How-
ever, it doesn’t exhibit the problem of overcorrection and can find the exact solution (within
the given tolerance ϵ) within 3N steps at most, whereN is the number of atoms in the system.
The difference between the steepest descent and conjugate gradients methods are the ways

in which the step direction is found. While the steepest descent algorithm only looks at the
gradient, the conjugate gradients method additionally uses information from the previous
step vector:

sk = −gk + γksk−1 (.)

Here, sk is the direction for the current step, gk is again the gradient at the current step,
and γk is a scalar that is defined as:

γk =
gk · gk

gk−1 · gk−1
(.)

This places several constraints on the step vectors and gradients:

• The gradients of all steps are orthogonal to each other: gi · gj = 0.

• The gradients and direction vectors of all step are orthogonal to each other: gi · sj = 0.

• Each pair of direction vectors is conjugate with respect to the Hessian matrixV′′.

With this algorithm, it is better to use the line search algorithm to determine the step size.
Although either method described in Section .. could be used, the high precision of the
conjugate gradients step direction pairs itself well with that of the line search mechanism.
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Compared to the steepest descent method, the computational complexity for the conjugate
gradients mechanism is higher step-wise, however the CG method compensates by taking
fewer steps to arrive at the minimum. A common approach is therefore to perform a number
of steepest descent minimization steps first and follow up with the conjugate gradients
algorithm.

... Integrators

The earliest simulations of systems of molecules were done with a hard-sphere model where
all collisions were considered elastic and no external forces were applied (Fi = 0 in Equa-
tion (.) []). By applying the principle of conservation of linear momentum, the new ve-
locities and positions could be calculated in a fairly simple way. However, demands evolved
as high-performance computers allowed modeling more sophisticated systems. The require-
ments to simulation accuracy increased, and the simple hard-sphere model of interaction
was not considered sufficient anymore.

In a real system of molecules, due to mutual interactions between all particles in a system,
all manners of forces can act upon a particle. Thus, each particle in the system can be said
to exist in a potential field, and the total force acting upon a particle is a function of the
position of the particle in this field. The coupling of the motions of all particles leads to a
many-body problem that cannot be solved analytically. Instead, a finite difference method is
used to calculate the forces, velocities, and positions of particles at fixed points in time. The
accuracy of this approximation increases as the timestep δt decreases. For the general form
of the finite difference method, see Figure ..

r(t )
v(t )

F (t )

a(t )

r(t + δt )
v(t + δt )

F (t + δt )

a(t + δt )

. . .

t t + δt t + 2δt

Figure .. General structure of the finite difference algorithm. For each particle, the forces
acting upon it are calculated as the vector sum of its interactions with other particles. From the
forces, the accelerations at time t can be computed. The positions, velocities of a particles are then
used to calculate positions and velocities at t + δt .
Over the timestep δt , the forces (and, therefore, the accelerations) are assumed to be constant.
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Several methods exist to integrate the equations of motion that result from placing the
particles in a potential field; some of them shall be described here briefly. All methods
require that the positions, velocities, accelerations etc. can be approximated as Taylor series
expansions:

r(t + δt ) = r(t ) + δtv(t ) +
1
2
δt2a(t ) +

1
6
δt3b(t ) +

1
24
δt4c(t ) + · · · (.)

v(t + δt ) = v(t ) + δta(t ) +
1
2
δt2b(t ) +

1
6
δt3c(t ) + · · · (.)

a(t + δt ) = a(t ) + δtb(t ) +
1
2
δt2c(t ) + · · · (.)

In the following paragraphs, only the family of Verlet algorithms [] will be intro-
duced. More and different algorithms to integrate the equations of motion exist, such as
the predictor-corrector methods first employed by Rahman and later refined by Gear [,
]. However, the Verlet algorithms are used widely today because of their small computa-
tional complexity, their symplecticness (i.e., their ability to preserve the form of the system’s
Hamiltonian). Because of that, they also lend themselves to the introduction of thermo- and
barostats to a system.

The Verlet Algorithm

One of the simplest algorithms is the one proposed by Verlet []. It uses a central difference
approximation of order two: In order to calculate the positions at time t + δt , the positions
and accelerations at t and the positions at t −δt are used. This leads to a significantly smaller
error complared to the simplistic Euler method (it scales with δt4 compared to the Euler
method’s δt ) without a large impact on precision, because the third and fourth Taylor term
cancel out in the addition step but are still implicitly included in the calculation.

r(t + δt ) = r(t ) + δtv(t ) +
1
2
δt2a(t ) + · · · (.)

r(t − δt ) = r(t ) − δtv(t ) +
1
2
δt2a(t ) + · · · (.)

r(t + δt ) = 2r(t ) − r(t − δt ) + δt2a(t ) (.)

The “classic” Verlet algorithm has a number of limitations: The positions are obtained by
adding a small term δt2a(t ) to a much larger term 2r(t ) − r(t − δt ). Due to the limited
accuracy of computer floating point calculations, this might lead to a loss of precision.
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The precision of the algorithm can decrease further because the Taylor series is usually
expanded only up to the acceleration term. However, this can be avoided by choosing a
smaller timestep. Last, the algorithm is not self-starting: The velocities for the current step
v(t ) can only be calculated if the positions for the next step r(t + δt ) are already known.
All of these issues have been addressed in two variations on the Verlet algorithm: The

leap-frog algorithm and the Velocity-Verlet algorithm.

The Leap-Frog Algorithm

With the leap-frog algorithm, the positions and velocities of a particle system are not com-
puted at the same time. Instead, they are shifted by half a timestep:

r(t + δt ) = r(t ) + δv
(
t +

1
2
δt

)
(.)

v

(
t +

1
2
δt

)
= v

(
t −

1
2
δt

)
+ δa(t ) (.)

Knowing r(t ) and v(t + 1
2δt ), the positions r(t + δt ) can be calculated. Thus, the positions

and velocities “leap-frog” over each other on the time axis.
The leap-frog algorithm has two advantages over the conventional Verlet algorithm: It

doesn’t require the calculation of the difference of large numbers, and it explicitly includes
the velocity. However, the positions and velocities are not known at the same time, which
means that potential and kinetic energy contributions cannot be accurately calculated at
the same time either. Instead, the velocity at a given timestep t is approximated using the
following equation:

v(t ) =
1
2

v
(
t +

1
2
δt

)
+ v

(
t −

1
2
δt

)  (.)

The leap-frog algorithm is by default used in the G MD package.

The Velocity-Verlet Algorithm

The Velocity-Verlet algorithm [] solves all these problems. While the positions at t + δt
are calculated as in the Taylor series, the velocities v(t + δt ) are calculated with the average
of the accelerations at timesteps t and t + δt :
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r(t + δt ) = r(t ) + δtv(t ) +
1
2
δa(t + δt ) (.)

v(t + δt ) = v(t ) +
1
2
δt[a(t ) + a(t + δt )] (.)

Because the accelerations a(t + δt ) are not known at the beginning, the Velocity-Verlet
algorithm is implemented as a three-stage procedure, which means that the velocity is
calculated twice—once at timestep t + 1

2δt , using a(t ):

v(t +
1
2
δt ) = v(t ) +

1
2
δta(t ) (.)

Then, after obtaining the forces and accelerations at timestep t + δt :

v(t + δt ) = v

(
t +

1
2
δt

)
+

1
2
δta(t + δt ) (.)

Thus the velocities, accelerations and positions are all known at the same time, enabling
determination of the kinetic energy contribution to the total energy. The Velocity-Verlet
algorithm adds a small overhead as it calculates the velocity twice.This, however, is negligible
in the face of the large computational complexity required by the calculation of the forces.
The Velocity-Verlet algorithm is the standard integrator in the A MD package.

... Constraints

A large timestep is desirable in a simulation as it allows to cover a larger amount of phase
space with a given amount of computational effort. However, the timestep must always be
chosen carefully to avoid instability in the system: Overlaps between atoms might occur
because normally short, localized bond vibrations are sustained over an unnaturally long
period of time. The simulation timestep must therefore be significantly smaller than the
fastest bond vibration in the system, which—for all-atom systems—is usually that of the C-H
bond at 10 fs [].
In G and A, the fastest bond vibrations—which are usually of little biochem-

ical interest anyway—are replaced with constraints. Thus, the use of a larger timestep is
allowed (up to a factor of four []). The constraints are implemented as equations which
must be satisfied without impacting the overall energy of the system (i.e. the constraint
forces may not do any work).
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S

The S algorithm uses N holonomic constraints for a system of N molecules with 3N
cartesian coordinates. A holonomic bond constraint must satisfy the following equality:

σij = (ri − rj )
2 − d2

ij = 0 (.)

This ensures that the distance between atoms i and j is always dij .
The force due to this constraint Fck can be obtained using Lagrange multiplication on the

respective cartesian coordinates between the two atoms [, page ]:

Fckx = λk
∂σk
∂x

(.)

Where x is one of the cartesian coordinates (i.e. it could represent the x ,y, or z axis) of one
if the atoms i or j and λk is the sought-after Lagrange constant for this specific constraint.
The force on either atom is opposite in direction to that of the other atom in order to prevent
the constraint force from doing any net work.
Incorporating the constraint into the Verlet algorithm yields:

rt (t + δt ) = 2ri (t ) − ri (t − δt ) + δt2a(t ) +
∑
k

λkδt
2

mi
rij (t ) (.)

The highlighted part in Equation (.) is identical to the expression in Equation (.):
The coordinates that would be obtained by “normal” means, i.e. without the use of the S
algorithm, are perturbed by the constraints’ impositions.
To satisfy the equation, the Lagrange constants λk have to be determined so that all con-

straints k are satisfied. As the number of bonds in a system increases, this becomes progres-
sively more computationally intensive. In order to calculate the constants in a reasonable
timeframe, the S algorithm iterates over all constraints in turn until all are within a
certain tolerance ϵ .

L

The L algorithm [] attempts to address the following problems that might occur when
using S:

• Since S is iterative and constraints can be coupled to one another, adjusting one
constraint might move another bond so far that the method blows up (“S errors”
in A lingo).
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• Due to its iterative nature, the algorithm is difficult to parallelize.

By setting the second derivatives of the constraints to 0 and introducing appropriate
corrections, Hess et al. managed to reduce the constraint problem to a linear matrix equation.
Applying the constraints дi (r) = 0 to Newton’s equations of motion yields:

−M
d2r
dt2
=
∂

∂r
(V − λ · g) (.)

Here, M is the diagonal mass matrix of all atoms in the system, r are the atoms’ coordi-
nates, V is the potential field, λ are the assorted Langrange multipliers for each constraint,
and g are the constraints themselves. Now, the gradients of д in direction of the coordinate
axes can be written in matrix form:

Bhi =
∂дh
∂ri

(.)

This simplifies Equation (.) to the following matrix equation:

−M
d2r
dt2

+BTλ + f = 0 (.)

Solving this equation is considerably faster than iterating multiple times over the S
constraints while at the same time introducing a negligible error. This also reduces the risk
of introducing instability into the system due to large tilts in coupled bonds.
The L algorithm is used in the G molecular simulation package.

... Simulations Under Constant Temperature and Pressure

By default, simulations are run under the microcanonical (NVE) ensemble—the number
of particles, the volume, and the system’s total energy stay constant. However, running
simulations under different ensembles can have advantages. By adjusting the temperature,
its effects on the system in question can be observed: A protein might unfold, a lipid bilayer
might change its fluidity, or a box of water molecules might spontaneously form a crystal
lattice. Adjusting the temperature is also a necessary requirement for several methods related
to MD, such as simulated annealing or Replica-Exchange MD.

Thermostats

The temperature of a system is a macroscopic property and can only be defined statistically:
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〈K 〉NVT =
3
2
NkBT (.)

Here, 〈K 〉 is the average of the kinetic energy of all particles in a system, N is the number
of particles, kB is the Boltzmann constant, and T is the temperature in K.

Velocity Rescaling Thermostats One way to alter the temperature is to adjust the par-
ticles’ velocities since these directly affect the kinetic energy. The velocities can be adjusted
directly [] or by coupling the system with a heat bath []. By simply multiplying the
velocities of all particles with a scaling factor, the temperature can be kept constant at each
timestep. Using the Berendsen thermostat, the scaling factor λ for the velocities can be ob-
tained like so [, page ]:

λ =

√
1 +

δt

τ

(
Tbath

T (t )
− 1

)
(.)

Here, τ is a parameter that determines how tightly the system and the heat bath are
coupled together, Tbath is the target temperature and the temperature of the coupled heat
bath, and T (t ) is the current temperature. However, this velocity scaling approach might
lead to trouble when a system with two very different groups of molecules, such as a protein
in a water box, is simulated: Over time, the kinetic energy in the system will be distributed
unevenly, leading to the problem of “hot solvent, cold solute” [], also called the “flying ice
cube” effect. While the problem can be worked around by scaling the velocities of solvent
and solute separately, another issue remains: The Berendsen thermostat doesn’t actually
sample from a real NVT ensemble, which makes it unfit for some MD applications. It is,
however, useful for quickly equilibrating a system to a desired target temperature.

Extended System Thermostats The so-called extended system method [, ] used
in the Nosé-Hoover thermostat works by introducing an additional degree of freedom s

to the system, thus modifying its Hamiltonian to conserve temperature instead of total
energy []. This degree of freedom basically serves as a reservoir of potential and kinetic
energy. The magnitude of this reservoir’s energy depends on the system’s desired target
temperature and a coupling constant. Because the additional degree of freedom translates
the system into a “virtual” space, the real coordinates and velocities have to be determined
by translating the system back into real space, leading to an uneven timestep in the process.
The Nosé-Hoover thermostat also samples from the correct NVT ensemble [].
With the Langevin thermostat [], Newton’s equations of motion are switched out with
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Langevin’s equations of motion, leading to the following expression for the force acting
upon a particle:

miai = Fi − γiνi +Ri (t ) (.)

Here,Fi is the force from the potential field acting upon the particle,γiνi is a frictional term
that decreases the velocity and, therefore, the temperature, andRi (t ) is a random force that
adds to the particle’s velocity.The random forceRi (t ) is sampled from aMaxwell-Boltzmann
distribution at the desired temperature and ensures that the system samples from the correct
ensemble.

Barostats

A constant-pressure (NPT ) ensemble is obtained by dynamically adjusting a system’s vol-
ume. This ensemble most closely resembles macroscopic laboratory conditions and is there-
fore the preferred environment in which to conduct MD simulations.
While the temperature is proportional to the kinetic energy of the system and therefore

to its particles’ velocities, the pressure is related to the virial rij dV (rij )/ drij [, page ].
As the product of the force on an atom and the atom’s position, the virial fluctuates much
more than the internal energy—it is not uncommon to see pressure fluctuations of 1000 bar
and more in a simulation.

Box Vector Rescaling Barostats The methods to keep a constant average pressure are
similar to those used to maintain the system’s temperature. The Berendsen barostat [], for
example, couples the system to a “pressure bath” and adjusts the volume by a scaling factor
λ:

λ = 1 − κ
δt

τP
(P − PBath) (.)

Depending on the chosen scaling behavior (isotropic or anisotropic), either the box vectors
are adjusted by λ

1
3 each, or by a scaling factor λx where x can stand for each box vector. Again,

the Berendsen method of scaling doesn’t sample from a known ensemble and is therefore
not suited for all MD simulations.

Parrinello-Rahman Barostat While the Berendsen barostat only scales the volume, the
Parrinello-Rahman barostat changes the cell’s box shape by re-orienting the box vectors
[, ]. The barostat generates an NPH ensemble, which means the enthalpy H = E + pV
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stays constant. By also using the Langevin thermostat (or any thermostat which samples
from NVT ), the generated ensemble is NPT .

... Explicit Solvent Simulations

The most straightforward simulation of a protein is the explicit solvent simulation in which
the molecule is surrounded by a box of solvent molecules.
However, artifacts can occur in such a simple system. The most prominent are due to

interactions with the box walls. Nonbonded interactions are especially susceptible to this
since they are generally the most long-reaching interactions: They can have noticable effects
up to ten molecular diameters or more [, page ]. To remove the effect of the walls on
the system, periodic boundary conditions can be imposed on the simulation. By “wrapping
around” the coordinates and interactions around the box walls, the simulated system is
effectively infinite.

Periodic Boundary Conditions

Only a small number of possible box shapes lend themselves to periodic boundary condi-
tions: The cube, the truncated octahedron, the hexagonal prism, and the rhombic dodeca-
hedron. While the cube is the simplest to use (no transformations have to be applied when
wrapping around the model’s cartesian coordinates), it has a relatively high volume and
therefore requires a larger number of solvent molecules to simulate. The other shapes have a
smaller volume (about 70 % of the cube’s volume) and are well-suited to simulating approx-
imately spherical molecules. However, their implementation in software is more difficult,
and coordinate transformations have to be applied when wrap-around occurs.
While the use of periodic boundary conditions removes wall interaction artifacts, it in-

troduces another potential problem: If any particle in the system is able to interact with its
image in a neighboring cell, the force acting upon it would increase with each time step,
leading to the disruption of the entire system. In other words, the minimum image conven-
tion must be honored: The box size must be large enough that no molecule can interact with
its own image. By adhering to this convention, only the unit cell itself and those images
that directly surround it have to be considered when determining long-range nonbonded
interactions.
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Calculation of Long-Range Forces in an Effectively Infinite System

Calculating long-range interactions can result in substantial computational overhead. Espe-
cially the Coulomb interactions pose a problem because they decay with r−1 (in contrast,
van der Waals interactions decay with r−6). There are several ways to solve this problem,
the simplest of which is the introduction of cutoffs at a distance where the force of the in-
teractions becomes negligible. However, this can introduce artifacts, such as formation of
an ordered lattice of solvent molecules at the cutoff length.
A solution is to split the calculation of nonbonded interactions into a short-range contri-

bution, a long-range contribution, and a constant term []:

ν = νdir + νrec + νconst (.)

νdir is the short-range term and, for the Coulomb potential, is similar to the already es-
tablished Coulomb term in Equation (.). νrec is the long-range term and is modeled as a
Fourier sum.
While the original form of the potential converges slowly (with r−1 in the case of Coulomb

forces), the split terms are made to converge relatively fast in their respective domains. The
speed of the Fourier term calculation has been much improved with the invention of the
fast Fourier transform algorithm [].
The Ewald summation method was later extended to the particle-mesh Ewald (PME)

method of calculating long-range forces [], for which a grid of point charges has to be
computed over the unit cell. The more points are used, the more accurate the reciprocal
space contribution νrec to the long-range potential becomes; however, having to calculate
more point charges at each time step is also more computationally expensive.

... Implicit Solvent Simulations

Even though state-of-the-art MD programs have developed very efficient code paths for the
simulation of bulk solvent, the computational overhead incurred by the addition of a large
number of solvent molecules should not be underestimated. Especially the calculation of
nonbonded interactions can take a large amount of time. One way to alleviate the computa-
tional burden is to forego the addition of (non-catalytic) solvent molecules altogether and
instead use an continuum solvent method to simulate the solvent environment.
Besides the increased computational efficiency, replacing explicit solvent molecules with

a continuum solvent leads to a number of advantages and disadvantages. As no explicit
solvent molecules exist, no equilibration of the solvent phase has to be performed prior to a
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MD run. Also, by removing solvent viscosity from the simulation, the solute can traverse its
phase space more effectively. However, localized contributions by solvent molecules, such
as hydrogen bonds to catalytic solvent molecules, cannot be emulated correctly by implicit
solvent.
Solvation effects can be written in terms of the solvation free energy ∆Gsol, which is the

free energy necessary to transform a solute from vacuum into solvent [, pages –].
Several sources contribute to the overall solvation free energy, which is commonly described
as:

∆Gsol = ∆Gelec + ∆GvdW + ∆Gcav (.)

Here, ∆Gelec is the electrostatic contribution, ∆GvdW is the contribution by the van der
Waals forces, and ∆Gcav is the free energy necessary to form the solute cavity. While ∆Gelec

and ∆GvdW are negative, opening the cavity is work and requires energy, thus making the
term ∆Gcav positive. The ∆Gelec contribution is the most significant one as it is used to model
solvent polarization.

The Generalized Born Equation

The generalized Born equation is a simple model to obtain the electrostatic contribution to
the solvation free energy. In this model, the total electrostatic free energy can be described
as:

Gelec =

N∑
i=1

N∑
j=1;j,i

qiqj

rij
−

(
1 −

1
ϵ

) N∑
i=1

N∑
j=1;j,i

qiqj

rij

−
1
2

(
1 −

1
ϵ

) N∑
i=1

q2
i

ai

(.)

Here, ϵ is the relative permittivity of the implicit solvent, rij is the distance between
the molecules, qi are the molecules’ point charges, and ai are the molecule’s radii. The
highlighted part of the equation is the Coulomb potential from Equation (.). Note that,
since no explicit solvent molecules are present in a GB simulation, the highlighted part is the
Coulomb potential of the system in vacuo. The non-highlighted terms describe the “solvent”
contributions to the electrostatic potential. They comprise the actual GB equation and are
usually combined to:
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∆Gelec = −
1
2

(
1 −

1
ϵ

) N∑
i=1

N∑
j=1;j,i

qiqj

f (rij , aij )
(.)

f (rij , aij ) is a function of the distance between atoms i and j and their Born radii a. Using
the functional term has a few advantages over the “vanilla” form of the generalized Born
equation: It performs well for both charged molecules and dipoles, it is accurate at even long
distances rij , and it is differentiable, allowing to include it in energy minimization methods
and MD simulations.
Calculating the Born radii ai of the atomsworks by iteratively adding layers of increasingly

thick shells around an atom. The first shell that includes all atoms within the molecule is
the effective Born radius.

Nonelectrostatic Contributions

Other contributions to the solvation free energy, ∆GvdW and ∆Gcav, are usually combined
to a single expression:

∆GvdW + ∆Gcav = γA + b (.)

A is the solvent accessible area, γ and b are empirically determined constants. The solvent
accessible surface area calculation can be sped up by using an approximative algorithm that
sums the surface area of all atoms in a molecule and subsequently removes the overlapping
surfaces.
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. Methods

The Python programming language [] was used for scripting and related tasks. The
Matplotlib library was used for all plotting endeavours []. IPython [] was used as
a Python shell. Pandas [], SciPy and NumPy [] were used for data analysis. PyM
[] was used for structure visualization. T [–] and TMalign [] as well as
TMalign’s PyM plugin were used for structural superpositioning.
All modeling steps and MD simulations were carried out on -core virtualized worksta-

tions with 8GiB RAM running Ubuntu GNU/Linux.

.. Template Identification

To identify potential template structures, the HHsearch [] algorithm was used. Searches
were constructed over the C [], PDB [], Pfam [], S [], and S
[] databases. The initial MSA was generated using the HHblits [] algorithm. Apart from
the alterations described, default options were used; see Table ..

Table .. HHsearch settings for template identification

Setting Value

Max. MSA iterations 3
Score secondary structure Yes
Alignment mode local
Realign with MAC algorithm Yes
E-value threshold for MSA generation 10−3
Min. coverage of MSA hits 20
Min. sequence identity of MSA hits with query 0
MAC realignment threshold 0.3
Compositional bias correction Yes

Additionally, manual database searches were conducted in the Pfam, C, S,
and S databases. However, no useful additional results could be found.
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.. Sequence Alignment

The initial alignment between PCSs from several species was taken from Vivares, Arnoux,
and Pignol [, fig. ]. An initial MSA between the target, the template, and other homol-
ogous PCS sequences was created using the TC [, ] program. The TC
server uses multiple methods for alignment and combines their output; for this project, all
multiple alignment methods (sap_pair, TMalign_pair, mustang_pair, pcma_msa, mafft_msa,
clustalw_msa, dialigntx_msa, poa_msa, muscale_msa, probcons_msa, t_coffee_msa, amap_msa,
kalign_msa, fsa_msa, mus4_msa, best_pair4prot, fast_pair, clustalw_pair, lalign_id_pair,
slow_pair, proba_pair) were used. An initial alignment of the CrPCS sequence to this MSA
was generated using TC. The alignment was subsequently refined in JalView []
based on the template’s secondary structure and the target’s predicted secondary structure.
For target secondary structure prediction, the PsiP [, ] was used; to analyze the sec-
ondary structure of the template, the D algorithm was used []. To create the dimeric
sequence alignment, the monomeric sequence alignment was expanded to the second chains
of both 2BTW and 2BU3.

.. Modeling

The M program [] was used to generate the decoys for the target structure. For
both monomer and dimer, 2000 decoys were generated and subsequently clustered1 using
the ptraj tool of A []. The nonaligned N- and C-terminal residues (residues 1 to 6
and 217 to 250) were left out of the clustering process as their large RMSD values could lead
to an adverse effect on the the clustering results by interfering with the RMSD in the main
part of the protein (see Section ..).
To determine the number of clusters with the highest information content, the guidelines

provided by Shao et al. were followed []. Refer to Section .. and Table . for guidelines
regarding the clustering metrics.
After the number of clusters with the highest information content was determined, the best

cluster was selected according to the criteria proposed by Shortle, Simons, and Baker []:
A large number of decoys in a cluster suggests a broad “valley” in the energy hyperplane
which indicates the global minimum and thus the native structure. Therefore, the number
of decoys in a cluster was the main criterion. However, if two clusters had a similar number
of decoys, the average RMSD of a cluster’s decoys to its centroid was used as a secondary

The scripts used for model building and clustering can be found at bitbucket.org/runiq/modeling-clustering
and on the accompanying DVD.



http://pdb.rcsb.org/pdb/explore/explore.do?structureId=2BTW
http://pdb.rcsb.org/pdb/explore/explore.do?structureId=2BU3
https://bitbucket.org/runiq/modeling-clustering


Table .. Guidelines for evaluation of clustering metrics

Metric Criterion for best cluster number

Critical distance “Elbow” criterion: Abrupt change indicates optimal cluster count
pSF Maximum where cluster number is manageably small
DBI Minimum where cluster number is manageably small
SSR/SST “Elbow” criterion: Abrupt change indicates optimal cluster count

criterion. The selected final structure was the cluster’s representative, which is the decoy
with the lowest RMSD to the cluster’s centroid. In order to verify whether the representative
structures were viable and in a near-native state, the scores described in the next section
were used.

The A program [, , ] was used to calculate electrostatic potential surfaces in order
to assess the dimeric interface. P [, ] was used in conjunction with A’s ff99
[] to generate initial charges for atoms.

.. Structure Assessment

To assess the created decoys and the models generated by the modeling servers, a number
of web services were used: The SwissModel structure assessment tool [, , ], which
incorporates the Q score [] and the A [] and G [] scores.
Additionally, models were assessed by D score [], SPro score [], and in

Ramachandran plots according to their Φ and Ψ backbone angles using the R server
and the backbone angle data from Lovell et al. [].
D is a size-normalized “energy” score. As such, lower values indicate lower-“energy”

and therefore better models. Spro is size-normalzed as well and can be in the range of
0 to 1, where a score of  indicates a native model and a score of  a poor one. The Q
Z-score is measured in standard deviations from the average Q score of all native
PDB entries of similar size—a positive score indicates an above-average model, a negative
score indicates a model of less-than-average quality. Due to the nature of the modeling
process, a positive score generally occurs only with one or more high-quality template(s)
and a similarly high-quality alignment.
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.. Molecular Dynamics

The A [] and G [, , , ] MD suites were used to perform MD simu-
lations. Explicit solvent simulations were performed with both packages while simulations
in implicit solvent were only carried out with A; the GROMOS96 53A6 force field does
not supply the parameters necessary for implicit solvent simulations. All simulations were
carried out in a 50m NaCl solution.
An MD simulation consists of the following general steps:

. Solvent energy minimization (EM) (explicit solvent simulations only)

. Whole-system EM

. Restrained NVT equilibration to the target temperature

. Restrained NPT equilibration to the target pressure

. Production run

The basic parameters for these steps can be found in Table . (A) and Table .
(G).

... Model Preparation

After having obtained the models from the clustering process, they had to be prepared for the
dynamics simulations. The H++ server version . [, , ] was used to set the protonation
states of certain amino acids. See Table . for the settings used.

Table .. H++ settings used for protonation

Setting Value

Salinity 50m
Internal Dielectric 4
External Dielectric 80
pH 7
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... A

For the preparation and analysis of A MD runs, ATools version  was used. The
MD runs themselves were carried out using A version . All simulations were done in
the ff03 force field []. The salt concentration in the simulation box was set to 50m; for
explicit solvent simulations the number of ions to add was determined by using n = c ·V ·NA

where n is the number of ions to add, c is the target concentration,V is the box volume, and
NA is the Avogadro constant. The S algorithm was used to constrain H bonds.

Table .. General settings for an A MD simulation

Parameter Value

Timestep δt 2 fs
Thermostat Langevin [] (equilibration)/Berendsen (production)
Barostat (explicit solvent only) Berendsen
τp 1.0 ps−1
γLN 2.0
Target temperature 300 K
Coulomb interactions cutoff 8Å
Van der Waals cutoff 8Å

Energy Minimization For explicit solvent simulations, the minimization was performed
in two steps: First the solvent alone was minimized with the solute being restrained, in
order to remove “holes” in the solvent molecule distribution. For the solvent-only minimiza-
tion, restraints with a force constant of 5 kcal/mol/Å were placed on the solute. All solvent
molecules as well as all counterions were minimized. In a second step, a whole-system mini-
mization step was carried out. After 500 steps of steepest descent minimization, a conjugate
gradients step was done in order to improve convergence. The convergence criterion was
10−4 kcal/mol/Å. The actual input files used in the simulation can be found on the accom-
panying DVD.
For energy minimization in implicit solvent simulations, the solvent minimization step

could be omitted since no dedicated solvent molecules were present.

Explicit Solvent Simulations

Due to the concerns raised against simulations in implicit solvent [], explicit solvent
simulations were performed as well, using the TIPP water model []. All explicit solvent
simulations were carried out in a system with periodic boundary conditions modeled by
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the particle-mesh Ewald approach [] and a nonbonded interactions cutoff of 8.0Å. The
protonated solutes were placed in the middle of a truncated octahedral box, with the smallest
distance to a box face being 11.0Å. The box volume for the monomeric CrPCS structure was
283 621.296Å, which meant that a total of 9 Na+ and 9 Cl– atoms had to be added in order
to achieve a salt concentration of 50m. The dimer’s box volume was 549 156.595Å, so 17
Na+ and 17 Cl– ions had to be added to achieve a 50m salt concentration.

NVT Equilibration Equilibration to the desired temperature was carried out in six steps.
Starting from 0K, at each step, the temperature was raised by 50K and the simulation was
performed for 40 ps so that the system would have enough time to equilibrate. A plot of tem-
perature vs. time was used to monitor whether the temperature had converged to its target
value. For this equilibration, a 5.0 kcal/mol/Å restraint force was placed on all backbone
atoms.

NPT Equilibration In a second step, the system’s pressure was equilibrated. The NPT

ensemble is possibly the most “realistic” one as it most closely mirrors lab conditions. The
restraint force on all backbone atoms was gradually lowered to 2.0, 0.5, and eventually
0.1 kcal/mol/Å. Because the pressure generally equilibrates much slower than the tempera-
ture (cf. Section ..), each step was run for 200 ps. The pressure equilibration process was
monitored by plotting pressure over time.

Production Run All restraints were then removed from the system and the production
run was carried out. The parameters used here are essentially the same as those for the NPT

equilibration step except for the lack of restraints and the usage of the Berendsen thermostat
instead of the Langevin thermostat.

Implicit Solvent Simulations

Simulations using implicit solvent were performed with the GBmodel by Onufriev, Bashford,
and Case []. The van der Waals radii were adjusted accordingly to match the bondi2

parameter set [], and the cutoffs for nonbonded interactions and Born radius calculation
were set to 16Å.

For EM parameters, see Section ...
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NVT Equilibration The NVT equilibration step is almost identical to the explicit solvent
one (cf. Section ..), except for the use of implicit solvent and a timestep δt of 0.5 fs, as per
convention in the lab. A plot of temperature vs. time was used to see if the temperature had
converged to its target value.

Restraint Release As implicit solvent simulations do not have a dedicated box around
the system, NPT equlibration is not necessary. However, the restraints on the system were
loosened gradually so as to not introduce instability into the system, in the same fashion as
described for explicit solvent simulations (Section ..).

Production Run As soon as all restraints had been removed from the system, the produc-
tion simulation started. The parameters are identical to those used for explicit simulations
(Section ..).

... G

G version .. was used to prepare, run, and analyze the MD runs. The force field
used in all G simulations was GROMOS96 53A6 [].
The general steps performed were the same as those for the ff03 force field (cf. Sec-

tion ..). However, the values of some parameters (mainly the electrostatic and van der
Waals interaction cutoffs) were chosen differently to the A parameters, according to
best practices described in the G manual [] and the GROMOS96 53A6 force field pub-
lication by Oostenbrink et al. [].

Energy Minimization G employs steepest descent and conjugate gradients op-
timization algorithms as well, but it handles them differently: Every 1000 steps, a steepest
descent step is included, the rest are conjugate gradients. The minimization stops when ei-
ther 5000 steps have been performed or when the algorithm converges with a maximum
force smaller than 0.01 kJmol−1 nm−1. The step size for the line search algorithm is 0.1 nm.
A grid is constructed for the neighbor list search in order to speed up the simulation. Both
the neighbor list and the Coulomb interaction close-range cutoff are set to 0.9 nm.
The Coulomb interactions are modeled using the PME method of Darden, York, and Ped-

ersen []. A potential shift is used for the cutoff so as to not introduce artifacts at the
border between short- and long-range Coulomb interactions. The van der Waals interac-
tions are modeled using a simple cutoff of 1.4 nm as they drop off quickly with r−6, due to
the Lennard-Jones potential used to model them. A similar potential shift algorithm as for
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Table .. General settings for a G MD simulation

Parameter Value

Timestep δt 2 fs
Thermostat Velocity-Rescaling (equilibration, [])/Berendsen

(production)
τ 0.8
Target temperature 300 K
Target pressure 1.0 bar
Barostat Parrinello-Rahman (NPT step )/Berendsen (NPT

step  and production)
Coupling type Isotropic
τp 1.0 ps−1
Compressibility 4.5 × 10−5 /bar
Neighbor search algorithm Grid
Neighbor list cutoff 0.9 nm
Coulomb interactions cutoff 0.9 nm
Van der Waals cutoff 1.4 nm
Coulomb interactions model Particle-mesh Ewald []
Potential shift at cutoff for
Coulomb interactions

yes

Potential shift at cutoff for van der
Waals interactions

yes

Dispersion correction term pre-
serves…

…energy and pressure

the Coulomb cutoff is used in order to avoid artifacts at the cutoff border. Additionally, in
order to correct for potential artifacts at the van der Waals cutoff, a dispersion correction
term is introduced as suggested by Shirts et al. []. As with the A explicit solvent
simulations, first a solvent-only minimization step is carried out, with the solute restrained.

NVT Equilibration This step is carried out in three distinct parts (in contrast to A’s
six); it has been established that, for presumably stable solutes such as the one modeled in
this project, this is sufficient. At each step, the temperature was raised by 100 K. For the
first NVT step, velocities were generated from a Maxwell-Boltzmann distribution at 1 K.
The p-L algorithm [] was used to place constraints on all bonds which allowed the
timestep to be raised to 2 fs. Every step was performed for 25 000 timesteps à 2 fs, which
makes the entire NVT equilibration take 150 ps. Again, restraints were placed on the solute.
A plot of temperature vs. time was used to see if the temperature had converged to its target
value. The neighbor list was updated every fifth timestep.
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The thermostat used was a velocity-rescaling algorithm. The coupling constant τ was
set to 0.8 [, page ]. The velocity-rescaling group of thermostats are as stable as the
Berendsen thermostat; however, they don’t oscillate once arriving at the target temperature.
Unlike the Berendsen thermostat, they also sample from the correct NVT ensemble.

NPT Equilibration After NVT equilibration was carried out and had successfully con-
verged to the target temperature, the system’s pressure had to be equilibrated. Because the
pressure generally equilibrates much slower than the temperature (cf. Section ..), each
step was run for an entire nanosecond. Analogously to the NVT equilibration process, a
more robust velocity rescaling barostat was first used in order to move close to the target
pressure value of 1 bar, with a τp constant of 1.0 ps−1. Afterwards, the Parrinello-Rahman
barostat [, ] was used to make sure the system also samples from the correct NPT

ensemble. Apart from the use of a barostat and the length of the simulation, all other settings
were the same as in the NVT equilibration step. The pressure equilibration process was
again monitored by plotting pressure over time.

Production Run As with A, the removal of all restraints signals the start of the
actual production run. Additionally, in order to improve performance, the Berendsen ther-
mostat was used instead of the velocity-rescaling algorithm. Apart from these changes, the
parameters for the production run were identical to those for the NPT equilibration.

.. Investigation of Cd+ Binding Sites

Cd+ binding sites were investigated according to Maier et al. [] using the alignment from
Vivares, Arnoux, and Pignol [].
The putative binding sites found by Maier et al. were aligned to their corresponding

residues in the target protein structure and checked for sequence and structure similarities.
It is known that heavy metal ions can have an impact on calcium homeostasis [] and can
block Ca+ channels []. Therefore, the Ca+ binding sites present in the templates 2BTW
and 2BU3 were checked in the same manner.
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. Results and Discussion

It was already known that the target protein was a phytochelatin synthase of C. reinhardtii.
A search against the P database [] resulted in the family PF05023 which lists only
phytochelatin synthase of Nostoc spec. (P IDs 2BTW and 2BU3, UniProtKB ID Q8YY76) as
member structures. The two P entries represent the same protein: Nostoc spec. (UniProtKB
ID Q8YY76), the only experimentally solved structure of a phytochelatin synthase in the P
at the time of writing.
Domain prediction with DomPred [] results in a single domain for CrPCS with no

disorder according to the Disopred server [, ].

.. Modeling

... Template Identification

Manual Template Identification

No motifs have been found in the P database [] or in the Minimotif database [].
However, HHsearch yielded a number of other templates in the 12 % to 15 % range—the best
of those was a staphopaïn, a cysteine protease from Staphylococcus aureus (P ID 1CV8) with
15 % identity and 18% similarity. Due to their low identity and similarity and the possibility
to introduce alignment errors, these structures were not used for model building.
2BTW is a homodimer with a resolution of 2.00Å, an R value of 0.203, and an Rfree value of

0.257. 2BU3 is the same macromolecule with a covalently bound gEC ligand, a resolution of
1.40Å, an R value of 0.174, and an Rfree value of 0.188. The RMSD of 2BTW to 2BU3 is 0.54Å
as reported by TMalign [].
As 2BTW and 2BU3 are feasible templates, they have been chosen by themajority ofmodeling

servers as well. One has to note, however, that there are a number of caveats with regard to
this template:

NsPCS  does not synthesize PCs longer than n = 2 [].
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NsPCS  contains only the catalytical, N-terminal domain of the eukaryotic PCS.

NsPCS  is not activated by heavy metals while CrPCS is.

NsPCS  only has one of the five cysteine residues that confer heavy metal-induced
enzyme activation according toMaier et al. [], while CrPCS has four (see Section .).

Template Identification by Modeling Servers

Since the difference in identity between 2BTW/2BU3 and the next best possible template is so
large, most of the homology servers also identified them as viable templates. For an overview
over the templates chosen, see Table .. The SwissModel server in its automated mode had
identified the chain A of template 2BU3 (hereafter called 2BU3a), but the modeling process
aborted with an error. Subsequently, the server used 3K8Ua as a template, which resulted in
a poor-quality alignment and model (see Figure .).

Table .. Templates chosen by different Modeling Servers

Server Template

GenoD 2BTWa
HHpred 2BU3a
IT 2BTWa (), 2BU3a (), 3K8Ua ()
L 2BU3a, 2BU3b, 2VDCe, 2BTWa, 2BTWb
M 2BU3a
Phyre2 2BTWa, 2BU3a
RaptorX 2BTWa
SwissModel – automated 3K8Ua

... Alignments

Manually Created Alignment

The alignment can be seen in Figure .. The complete alignment between CrPCS and all
other PCSs from Vivares, Arnoux, and Pignol [] can be found in Appendix A..
As apparent from the alignment, the N- and C-termini of the target sequence are not

aligned to the template. This could lead to problems during the modeling process as a)
most template-based modeling methods have to model nonaligned regions using an ab initio
approach, which is governed by different principles and not always compatible to the rest
of the model, and b) termini are difficult to model in general as they are often more or less
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Conf.
PsiPRED I ô̂ôôôôôôôôô ô̂ôôôôôôô ô̂
CrPCS TFYKRKLPSPPAIEFSCPEGRQLFQEALLDGTMTGFFKLMEQFNTQDEPAFCGLA 
BTWa L·SPNLIGFNSNEGEKLLLTSRSR···EDFFPLSMQFVTQVNQAYCGVA 
DSSP I ô̂ôôôôô ô̂ôôôô ô̂ ô̂ô︸        ︷︷        ︸

B-loop

Conf.
PsiPRED ô̂ôôôôôô ô̂ôô ô̂ôôô ô̂ô
CrPCS SLAMTLNALSIDP··RRTWK·····GSWRWFHEAMLDCCRPLDAVKEEGITLYQA 
BTWa SIIMVLNSLGINAPETAQYSPYRVFTQDNFFSNEKTKAVIAPEVVARQGMTLDEL 
DSSP ô̂ôôôôôô ô̂ ô̂ôôô ô̂ôôôô ô̂ô︸                                    ︷︷                                    ︸ ︸︷︷︸

Protruding loop B-loop

Conf.
PsiPRED ô̂ôôô I ô̂ôôôôôôôôô I
CrPCS SCLARCNGARVELVPYGSAGLSLERFRREVEAVCGSGEEHIVVSYSRKAFLQTGD 
BTWa GRLIASYGVKVKVNHASDTN··IEDFRKQVAENLKQDGNFVIVNYLRKEIGQERG 
DSSP ô̂ôô I ô̂ ô̂ôôôôôôôô I ô̂ô︸        ︷︷        ︸

B-loop

Conf.
PsiPRED I I ô̂ôôô
CrPCS GHFSPIGGYHRGRDLVLVLDVARFKYPPHWVPLPMLYHGMSYVDKVTGRPRGYMR 
BTWa GHISPLAAYNEQTDRFLIMDVSRYKYPPVWVKTTDLWKAMNTVDSVSQKTRGFVF 
DSSP I I I ô̂ôôôôô I︸          ︷︷          ︸ ︸      ︷︷      ︸

B-loop B-loop

Conf.
PsiPRED I I ô̂ôôôôôôô
CrPCS LASNPLLDSVLLTCDVRSAPEDWRPAEAFVRSGAAAL 
BTWa VS··································· 
DSSP I

Figure .. Manual alignment of the CrPCS target and the NsPCS template 2BTWA, starting
from the alignment presented by Vivares, Arnoux, and Pignol []. Residues shaded in orange
are part of the active site, those with a gray frame are part of the dimeric interface in 2BTW/2BU3.
The major secondary structure elements of CrPCS as predicted by PsiP (α-helices, β-sheets,
and coils) are shown above the alignment. Above that, PsiP’s confidence score is displayed.
The major secondary structure elements of 2BTWA as identified by the D program (colors as
for PsiP, 310-helices in orange) are shown below the alignment. The light gray residues in the
CrPCS sequence were omitted from the clustering process and subsequent MD simulations, the
light gray residues in the 2BTW template were not present in the 2BU3 structure.
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disordered. Nevertheless, no residues were left out of the modeling process in order to find
out whether the methods used converge towards a single solution. A visual inspection of
several of the created decoys indicated that this was not the case. The residues were then left
out of the clustering process as their large RMSD values could potentially lead to an adverse
effect on the clustering results by interfering with the RMSD in the main part of the protein.
After consulting the advisors, they were also left out of the subsequent MD simulations as
they would induce computational overhead without a clear benefit.
However, according to PsiP, there are secondary structure elements in the C-terminal

nonaligned residues (Figure .). Judging from the stability of the model in MD simulations,
their influence on protein stability is minor; they do also not have any significant sequence
identity to the PCSs of higher plants and therefore do probably not exhibit the functionality
of the C-terminal noncatalytical domain found in PCSs of A. thaliana or S. pombe.

Alignments Created by Modeling Servers

The fingerprints of the alignments generated by modeling servers can be seen in Figure ..
The alignment created manually is included for comparison as well. For the sake of brevity,
the full alignments have been moved to Appendix A.. For an overview over the algorithms
employed by the different modeling servers, see Appendix A.. Two algorithms (IT,
L) use multiple alignments between target and template(s) and use them according to
the predicted alignment quality. For those algorithms, all alignments are shown.
The most complete models were generated by HHpred, IT, M and Phyre2.

These servers all modeled the complete sequence, including the N- and C-terminal regions
without alignment to the template. The shortest, least complete model was generated by the
SwissModel server at 189 residues.
There are two major regions where alignment algorithms disagreed. The first region is

the one corresponding to the “protruding loop” in 2BTW/2BU3 and its adjacent residues [];
the second one is in the range of residues Leu to Ser. The protruding loop sequence is
well-conserved among eukaryotic PCSs but not so in NsPCS (see alignment in Appendix A.).
It is also notably shorter in eukaryotic PCSs which indicates that it does not play the same
role in them as it does in NsPCS. The other region, residues  to , is not well-conserved
among eukaryotic PCSs either, indicating a function different from the one in prokaryotic
PCSs.
The active site residues were those which interacted with the gEC ligand in 2BU3, and

accompanying residues which undergo a conformational change upon gEC binding. These
residues were—in CrPCS—Glu, Pro, Cys, Ile, Arg, Gly, His, Ser, Asp, Ala,
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Figure .. Alignments between manual and server-generated models and their templates. The
CrPCS sequences were not aligned to each other but only to their respective templates; this
alignment serves as a comparison to identify regions where the alignment algorithms had trouble.
Residues which are conserved among more than half of the displayed sequences are dark gray,
residues which are conserved in less than 50 % of all displayed sequences are light gray, gaps are
indicated by lines. In the “manual” sequence, orange residues are part of the active site, green
residues are B-loops.
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Asp, and Arg.
Almost all active site residues (marked orange in Figure .) were aligned equally among

the server-generated alignments. The two exceptions were Ile and Asp, which were
aligned differently in several IT models. However, all models which appeared in the
“top ” (Table .) aligned all active site residues in the same manner.

In addition to the active site residues, the regions corresponding to the “B-loops” men-
tioned by Vivares, Arnoux, and Pignol [] are assumed to play a role in NsPCS’ inability to
produce long PCs. In 2BTW, the loops are – (B-loop ), – (B-loop ), – (B-loop
), and – (B-loop ). These residues correspond to Phe–Phe (B-loop ), Gly–Thr

(B-loop ), Arg–Asp (B-loop ), Leu–Pro (B-loop ), and Ser–Gly (B-loop ).
The B-loops were aligned at least similarly, if not identically throughout all models. Aside
from several IT models and the M model, all “top ” models aligned them
in the same position. A single exception must be made for the B-loop residue Ser, which
was aligned differently in the Phyre2-oo model.
Assuming the manually generated sequence alignment is correct or mostly correct, this

shows that, at 30 % sequence identity, modeling errors resulting from alignment errors should
only occur in non-core regions which are not vital for model stability, and that the automatic
alignment algorithms are good enough for homology modeling at this quality. The addition
of more evolutionally diverse sequences to the alignment could potentially improve the
alignment in regions of poor quality.

... Model Building

All scores (Q Z-score, D, and Spro) were chosen with the ability in mind to
compare and assess models of different lengths. Scores for the manual models have been
calculated with the non-templated N- and C-termini cut off (see Figure . and Appendix A.).
As the automated modeling servers also produced models of various lengths (Figure .),
truncating the termini in this way was considered to be a part of the manual modeling
procedure; which means that the automatically created models were not truncated in the
same fashion, but assessed as-is. This procedure was chosen because the D score loses
its validity when incomplete models are considered.

Manually Created Models

As described in Section ., the generated decoys were clustered according to the guidelines
provided by Shao et al. []. The clustering metrics used for determining the correct cluster
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number can be found in Figure .. The critical distance plot indicates that 3 or 5 would be a
good cluster number, as there are discernable “shoulders” in the graph at these points. The
SSR/SST plot suggests the same cluster numbers. The DBI plot indicates an optimal cluster
count of 2 to 4, while the pSF plot is inconclusive. Eventually, a cluster count of 4 was used.
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Figure .. Clustering metrics for monomeric model. RMSD, root mean square deviation (Å);
DBI, Davies-Bouldin index (dimensionless); pSF, pseudo F-statistic (dimensionless); SSR/SST, ratio
of the sum of squares regression to the total sum of squares (dimensionless).

The clusters were evaluated as described in Sections . and .. Cluster 0 consisted of ,
cluster 1 of , cluster 2 of , and cluster 3 of . The major criterion is in general the number
of decoys in a cluster; therefore, the representative structure of cluster 0 was chosen as the
final model (before subjecting it to a C-terminal truncation as discussed in Section .). The
D, Spro, and Q Z-score of the representative structure of each model can be
found in Table .; they indicate that the representative structure is in a near-native state.
The clustering sizes and metrics for the dimer are shown in Figure .. The critical distance

plot indicates an ideal cluster count of 3 to 5; the DBI plot suggests one of 2, 3, or 7; and the
SSR/SST ration suggests a cluster count of 15. The pSF count is, once again, inconclusive.
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Figure .. Clustering metrics for dimeric model. RMSD, root mean square deviation (Å); DBI,
Davies-Bouldin index (dimensionless); pSF, pseudo F-statistic (dimensionless); SSR/SST, ratio of
the sum of squares regression to the total sum of squares (dimensionless).





From these metrics, a cluster count of 7 was chosen. The structure assessment scores shown
in Table . confirmed cluster  might be close to a near-native structure.

Figure .. Superposition of manual model and templates 2BTWa and 2BU3a. The model is in dark
gray, orange (active site residues), and green (B-loops); the templates are in white.

Several conclusions can be drawn from the large number of decoys in the selected cluster.
For instance, choosing a small cluster number can potentially lead to a large number of false
positives, i.e. structures which are not in the same entropic “valley” as the native structure
but in the same cluster. Since about 96 % of all decoys were in the selected cluster, a cluster
number of 4 was likely too small: By choosing a larger cluster number or working with an
RMSD cutoff instead of an explicit cluster number, this problem could be avoided. However,
a smaller amount of decoys in a cluster also results in false negatives, i.e. decoys which are
in the native structures’ entropic valley but are not in the same cluster. This would result in a
less accurate, less “near-native” choice of the cluster’s average and representative structures.
The dimeric models scored worse than the monomeric ones, for a number of reasons. The

modeling process for dimers is not as elaborate as the one for monomeric models—dimeric
models add another layer of complexity. None of the scores specifically are specifically
developed for dimers. For example, the D score was calibrated with a spherical model
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Table .. D, Spro, and Q Z-scores for monomeric and dimeric M models

Model Cluster ID Number of decoys D Spro Q Z-score

Monomers
manual- 0 1931 −1.52 0.658 −1.196
manual- 1 76 −1.49 0.657 −1.186
manual- 2 2 −1.41 0.626 −0.397
manual- 3 9 −1.36 0.655 −1.086

Dimers
dimer- 0 1980 −1.33 n/a −0.976
dimer- 1 11 −1.15 n/a −1.186
dimer- 2 1 −1.29 n/a −1.741
dimer- 3 3 −1.23 n/a −0.684
dimer- 4 2 −1.29 n/a −1.320
dimer- 5 1 −0.84 n/a −1.328
dimer- 6 1 −1.18 n/a −0.972

and scores according to whether supposedly buried residues are actually buried in the model.
A dimeric model is not necessarily spherical and the “buriedness” of residues at the dimeric
interface is usually not as large as that of actual buried residues. This leads to potential
inaccuracies in the scoring of interface residues, which in turn can lead to a lower score. The
Q Z-score basically scores a model on how well it fits into the group of already solved
native protein structures in the PDB database. Since a large number of PDB structures are,
in fact, small and monomeric, the dimeric CrPCS model does not readily fit into that group.
This will be gradually resolved as larger and more difficult protein models are added to the
PDB database, improving its diversity.
The active site conformation is well-conserved (Figure .). No residues in either the ac-

tive site or the B-loops were in unfavored regions of the Ramachandran plot (Figure .a).
Two residues are in disallowed regions of the Ramachandran plot, Asp and Thr. In gen-
eral, most of the Ramachandran violations in the manually created models occured around
residues 30 to 34 and 80 to 84. The outliers in the 30 to 34-region could be ascribed to a dele-
tion in NsPCS which is not present in eukaryotic PCSs (see Figure . and Appendix A.).
The outliers in the 80 to 84-region can be ascribed to an error in the manual alignment: Com-
pared to NsPCS, the CrPCS protruding loop is significantly shortened. Therefore, the CrPCS
residues should be aligned to the NsPCS residues at the ends of the protruding loop in or-
der to be linked correctly and without strain. However, the automatic alignment placed the
CrPCS residues in the “middle” of the NsPCS protruding loop, which posed some difficulty
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for M: The program could not model the residues at the specified positions without
introducing strain.

(a) Chain A active site (b) Chain B active site

Figure .. Active sites of chains A and B of the manually created dimeric CrPCS model, super-
posed onto the templates 2BTW and 2BU3. The model is in dark gray, orange (active site residues),
and green (B-loops); the templates are in white.

The Ramachandran plots of the manually generated dimers were of a similar quality
(Figures . and .). The favored model, “dimer-”, had four outlier residues and  residues
in allowed regions. Since about 1 % of outlier residues are common in native proteins, this
can be regarded as an indicator for a good model.
There are a number of regions where Ramachandran violations were common. As the

model is a homodimer and the conformations of the templates’ two chains are largely identi-
cal, the locations of Ramachandran violations are mirrored across the two chains of the tar-
get models. They can therefore be separated into four distinct groups: Residues 29 to 34/280
to 284, residues 75 to 88/317 to 329, residues  and / and , and residues  and
/residue 449. Violations at residues 29 to 34/280 to 284 are probably due to insertions not
present in the template, as is the case for the monomeric model. The reason for Ramchan-
dran violations in the 75 to 88-/317 to 329-regions can be attributed to an alignment error
in the protruding loops of the two chains. The Leu/Leu residues are part of a 310 helix,
whose Φ and Ψ angles delimitate the allowed regions in a Ramachandran plot. Thus, small
changes in the Φ/Ψ-angles may easily induce Ramachandran violations. The close proximity
of the Asp/Asp residues to these helices may be the reason for their deviations from
ideal values.
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Figure .. Ramachandran plot overview for dimeric models. Green residues are in allowed
regions, orange ones in outlier regions, light gray ones in favored regions.
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Models Created by Modeling Servers

The models with the fewest outlier residues are the manually created models 1 to 3, the
RaptorX models 1 and 3, the L model 1, and the single M model (Figure .).
The model with the highest relative number of residues in favored regions was manual-
(96.6 %), closely followed bymanual- andmanual- (both 95.7 %), hhpred-myaln (95.2 %), all
Lmodels (94.6 %), and RaptorXmodel  (94.9 %).The ITmodels, while generally of
high quality according to the scores, did not score in the sam manner in the Ramachandran
plots. The best IT models have 87.5 % and 86.3 % residues in favored regions, the rest
of the models are in the 82 % to 83 % range.
Where possible, the use of themanually refined alignment (indicated by the “-myaln” suffix

in Figure .) generally led to fewer outliers and a higher number of residues in the favored
regions, suggesting that the manual refinement of the alignment was successful. The Phyre2

server with its “one to one” workflow allowed the selection of a single template together
with an alignment. Here, the use of the manual alignment together with template 2BU3a did
not lead to an improvement with regard to Phyre2’s “normal” mode. As Phyre2 usually uses
multiple templates for a single target model, this could result from the (comparably) low
number of templates, which might increase the signal-to-noise ratio.
As mentioned in Section .., almost all servers used 2BU3 and/or 2BTW as templates, in

various combinations and alignments. The top ten models for each score can be found in
Table ., the actual scores for all models have been moved to the appendix (Appendix A.).
Additionally, a superposition of the ten best models is shown in Figure ..

Surprisingly, few of the servers which scored high in the Critical Assessment of Methods
of Protein Structure Prediction  (CASP9) [] managed to place a model among the top ten.
Perhaps more surprisingly, the servers that were only included in order to compare them
to the CASP9 servers, GenoD and L, produced some of the highest-ranked models in
silico. In almost all cases, the models built with the manual alignment were better, except
for the one built with SwissModel server: Here, the alignment generated by the server
(“SM-theiraln”) scored much better than the manual one (“SM-myaln”).

While the scores are all well-suited for “complete”monomericmodels—i.e., models without
missing residues and which are not part of a multi-protein complex—, they are not as well
suited for assessing dimeric models. The scores do not correlate very well with each other
(cf., the R2 values in Table .). Despite these drawbacks, the D score tended to agree best
with the ranking of the models obtained by the manual modeling procedure (Appendix A.).
Therefore, the D score is considered to be a good choice for comparative modeling.
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Figure .. Ramachandran plot overview for monomeric models. Green residues are in allowed
regions, orange ones in outlier regions, light gray ones in favored regions.
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Figure .. Maximum-likelihood superpositioning of the best manual- and server-generated
models. Active site residues are orange, B-loops are colored green. The “best” models are those
which are mentioned in Table .. The superpositioning was achieved using an alignment between
all manually- and server-generated models (see Appendix A.), downweighting variable regions,
and correcting for correlations among atoms. This way, regions of the models which are struc-
turally similar are weighted higher than structurally variable regions. All heavy (i.e. non-hydrogen)
atoms were superposed. The alignment was generated using T [].

Table .. Top ten models for each score

Position D Spro Q Z-score

 Manual- Manual- Manual-
 Manual- Manual- L-
 Manual- Manual- and L- L-
 Manual- L- RaptorX-
 L- L- SM-theiraln
 L- RaptorX- Manual-
 RaptorX- Phyre2-oo Phyre2-oo
 GenoD- and SM-

theiraln
Manual- Manual-

 GenoD- GenoD- Manual-
 GenoD- and

GenoD-
IT- SM-myaln
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Table .. R2 correlation between D, Spro, and Q

D Spro Q

D 0.693 0.658
Spro 0.693 0.411
Q 0.658 0.411

.. Molecular Dynamics

Both manually built models, the monomeric M model “manual-” and the dimeric
M model “dimer-” in Table ., were submitted to MD simulations. However, a
visual inspection of the trajectories revealed a different behavior of the A and G
simulationswith respect to the elimination of rotational and translational degrees of freedom:
Apparently, not all suchmovementswere removed from theG simulations.Therefore,
the radii of gyration ($R_{\protect \unhbox \voidb@x \hbox {gyr}}$s) were calculated as well: Both RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ are considered as
measures for the conformational stability of the models. The $R_{\protect \unhbox \voidb@x \hbox {gyr}}$s of all models are similar,
at around 16.6Å for the monomers and 22Å for the dimers (Figures . and .).
Generally, the simulations in explicit solvent seemed to be both more stable and compu-

tationally efficient for this system. While using explicit solvent results in more realistic
conditions, one could argue that a model in an implicit solvent simulation is able to tra-
verse conformational space faster, leading to a net improvement in computational efficiency.
However, in order to see this effect, the simulations would have to be run for a longer time.
Interestingly, the explicit solvent simulations were faster than the implicit solvent ones

for the chosen system. This is mainly due to the different scaling behavior of implicit and
explicit solvent simulation algorithms: While the calculation per solvent molecule is fairly
simple, massively parallelizable, and usually highly optimized in modern MD packages, it
scales poorly with system size. For example, if a macromolecule has an $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ of a, and a
new, larger system has an $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ of 2a, the volume of our larger system’s simulation box has
to increase by a factor of 23 = 8 so as to not violate the minimum image convention (see
Section ..). The calculation of implicit solvent is not as straightforward and not as easily
parallelizable. However, it doesn’t require calculating interactions with countless numbers
of solvent molecules and therefore scales much better with system size. If the chosen model
is small, it allows for a small box size and a relatively small number of solvent molecules.
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(a) G simulation in explicit solvent
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(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. Heavy-atom RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ plots for MD simulations of monomeric models.
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... Monomeric Model MD Simulations

Due to computational and time constraints, not all simulations could be carried out until
stability. From the RMSD plots of the simulations of the monomeric models (Figure .),
it is obvious that both the A and G simulations reached a stable state of the
protein (on the MD timescale). The G simulation in explicit solvent is considered to
be the second most stable. In contrast, no plateau could be achieved in the A simulation
in implicit solvent.
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(a) G simulation in explicit solvent
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(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. Active site-only RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ plots for MD simulations of monomeric models.

The active site residues (Figure .) were stable in the explicit solvent simulations. This is
supported by the rather large root mean square fluctuation (RMSF) value of several active
site residues in the G simulation (Figure .a). The RMSD value was large compared
to the A simulation in explicit solvent. However, as mentioned before, this might be
a consequence of the problems encountered when fitting a G trajectory using the
supplied G tools. In comparison, the A simulation in explicit solvent is remark-
ably stable, with relatively small RMSD, $R_{\protect \unhbox \voidb@x \hbox {gyr}}$, and RMSF values. The A simulation in
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implicit solvent has not yet reached a stable plateau at the very end of the simulation. It
seems to be in the middle of undergoing a conformational change, as indicated by a shift
in both RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$. The catalytically important residue His, which is part of the cat-
alytic triad, flips its side chain around several times at the start of the simulation. The B-loop
 is not stable either, detaching and re-attaching liberally throughout the course of the sim-
ulation.
The main fluctuation in the A simulation in explicit solvent is in the protruding

loop; other regions can be considered stable (Figure .b). It is assumed that the relatively
high RMSF in the protruding loop region is a consequence of the alignment error mentioned
earlier. Additionally, the protruding loop has five residues with long, bulky side chains (Arg,
Arg, Trp, Lys, Trp, Arg, Trp), most of which are solvent-exposed and hence very
flexible. In general, however, the A simulation in explicit solvent can be considered
stable from 24 ns onwards.
Judging from its RMSF, the G simulation was not as stable (Figure .a). It did,

however, result in an RMSD plateau: The slight increase in RMSD at t ≈ 24 ns was the result
of B-loop  (residues 199 to 206) “detaching” from the rest of the protein; it stayed in this
conformation until the end of the simulation. Several loops contributed to the high RMSF
of the simulation, among them the region around residues 30 to 34, where three residues
were inserted compared to the template. Other regions with high RMSF values were the
B-loop , 124 to 126, 137 to 139, and B-loop . The first B-loop’s RMSF is relatively large due
to the difference in secondary structure between the chosen templates and the target: The
template structures have 310-helices at the start of the loop, CrPCS has a proline residue
instead. Since a 310 helix is less stable than an α-helix and proline tends to disrupt helical
structures, the modeled structure is probably not very accurate in this region. The region
around residues Leu to Leu is close to an insert in the original alignment (see Figure .),
and the two leucine residues are solvent-exposed. Additionally, the same situation as in
B-loop  is present: A proline residue in CrPCS is aligned to a region in a 310-helix. B-loop 
has several residues with large, solvent-exposed side chains. A similar situation was found
in the B-loop  region: solvent-exposed arginine and lysine residues contribute to a high
RMSF. A visual inspection of the simulation indicated a stable molecule, except for the
aforementioned conformational change in B-loop .
The A simulation in implicit solvent did not achieve a stable conformation within

the given timeframe, judging from the inability to form an RMSD plateau. Its RMSF plot
also had a high baseline of around 1Å to 1.5Å, compared to the 0.5Å to 1Å baseline of
the simulations in explicit solvent. Several regions changed their conformations over the
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(a) G simulation in explicit solvent
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(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. RMSF plots (left) and pseudo-b-factors (right) of monomeric models. For the sake
of orientation, the locations of active site residues (orange) and B-loops (green) are shown below
each RMSF plot. The b-factors are indicated in the reference structures used for RMSF calculation.
White regions have a small RMSF, green regions have a medium one, and orange regions have
the largest values. The positioning is the same as for the previous figures in this chapter, i.e. the
active site is in front and center.
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course of the trajectory, the most prominent of which are the N-terminus, the 30 to 34 insert
region, the B-loop , the protruding loop and the helix following it, the 310 helix around
residues 116 to 120, B-loop , and B-loop . In B-loop , a flip in the main chain of Phe

results in the entire loop “shifting” at around t = 8 ns, and again at t = 19 ns. In B-loop , the
loop-internal hydrogen bond network is switched, resulting in a different configuration of
hydrogen bonds and a subsequent change in conformation. B-loop  is held in place almost
entirely by electrostatic interactions between the side chains of Tyr (B-loop ) and Lys

(B-loop ), and Lys (B-loop ) and Asp (B-loop ). These interactions cease at around
t = 5 ns, resulting in the loop “detaching” from the rest of the protein. A visual inspection
yielded the same results: The model can not yet be considered stable.

(a) G simulation in ex-
plicit solvent

(b) A simulation in explicit
solvent

(c) A simulation in implicit
solvent

Figure .. Locations of putative secondary substrate binding sites in monomeric reference
structures. Active site residues are orange, B-loop residues are green. For each structure, two
cavities can be seen: The right, deeper one is the primary substrate binding site, the left, more
shallow one is the putative second substrate binding site.

The cavity of a potential second substrate binding site close to the active site is readily
visible in the reference structures of both explicit solvent simulations (Figure .). In the
reference structure of the A simulation in implicit solvent, the cavity adopts a markedly
different structure. This second substrate binding site is much more pronounced than the
one in NsPCS []: While the bound ligand in NsPCS mostly reacts with water, forming
gEC or a derivative compound, the cavity in CrPCS is larger and can therefore accomodate
larger substrates, leading to the formation of PCn. The sites were assessed visually and were
present over the entire trajectories.
In general, care has been taken to submit the models to the same environmental conditions

despite the choice of two different force fields (ff03 and GROMOS96 53A6). However, where





suggestions from the literature indicated differing values for the force fields in order to obtain
realistic results, these values were used instead. Despite these differences, the models can be
considered stable under all explicit solvent conditions. Therefore, the missing C-terminus
has only a minor influence on the general protein stability. However, the shape of the
substrate binding sites fluctuates over the course of the trajectories, as is indicated by the
differently shaped primary and secondary substrate binding sites in Figure .. Because of
that, docking attempts with GSH and CysGSH were inconclusive (data not shown).

... Dimeric Model MD Simulations
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(a) G simulation in explicit solvent

0
1
2
3
4
5
6

RMSD



(Å
)

21.6
21.8
22.0
22.2
22.4
22.6
22.8

$R_{\protect \unhbox \voidb@x \hbox {gyr}}$



(Å
)

(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. Heavy-atom RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ plots for MD simulations of dimeric models.

For the dimeric models, the simulations in explicit solvent can be considered stable (Fig-
ure .). The RMSD of the A simulation in explicit solvent varies around 2.6Å from
6 ns onwards, the RMSD of the G simulation in explicit solvent is stable at about
4Å. The A simulation in implicit solvent did not achieve stability, oscillating around an
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RMSD of about 3.5Å to 4.8Å, with relatively large fluctuations. The G simulation
in explicit solvent was stable according to its RMSD. From RMSF calculations, the stable
period was estimated to start at 8 ns onwards.
The dimeric interface consists of the first two N-terminal α-helices and their adjacent

residues, the B-loop , and part of the protruding loop region. Consequently, the B-loop 
is much more stable in the dimeric models than it is in the monomeric ones. The RMSDs
of the protruding loop regions are higher for all monomers than they are for the dimers,
indicating a larger amount of fluctuation and a less stable structure in these regions. A visual
inspection also suggested that the regions of the inserts (residues 30 to 34 and 280 to 284)
were more stable in the dimers than they were in the monomers.

As evident from Figure ., the active site in the G simulation in explicit solvent
“opens up” in both chains.

This is due to two residues which are also part of the B-loop , Asp and Arg (chain
)/Asp and Arg (chain ), as this loop loses contact to the rest of the protein during
the simulation, resulting in increases in both RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$. The active site of the A
simulation in explicit solvent is completely stable. The B-loop , which loses contact in both
chains in the G simulation, is completely stable here in chain . In chain , it loses
contact, resulting in a noticable RMSD increase, but “reattaches” soon after and keeps its
conformation over the course of the entire trajectory. In the A simulation in implicit
solvent, the most unstable region was the α-helix N-terminally adjacent to the B-loop .This
instability was visible in both chains.
In general, the dimeric models were at least as stable in their MD simulations as the

monomeric ones, if not more so. Therefore, as in the monomeric models, the missing C-
terminus does not impact the general protein stability. However, the RMSF plots show that
the dimeric chains did not generally behave the similarly to each other in all models. This in-
dicates that, if a dimeric form of the protein exists in vivo, its two chains could have different
functions as postulated by Vivares, Arnoux, and Pignol for the dimeric NsPCS []. Again,
the explicit solvent simulations are faster than the implicit ones, even for the increased sys-
tem size relative to the simulations of the monomers. Doing MD simulations of the dimeric
CrPCS system in G seems to strike a good balance between stability and computa-
tional efficiency.
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(a) Full dimer

(b) Chain  (c) Chain 

Figure .. Electrostatic surface potential at the dimeric interface, calculated using A. Or-
ange values are negative, green values are positive. In (a), both dimeric subunits are displayed. In
(b) and (c), the subunits are separated and rotated with the dimeric interface part exposed. It can
be clearly seen that the electrostatic potential is weaker at the dimeric interface than it is on the
rest of the protein, which indicates that these residues might in fact be buried.





0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RMSD



(Å
)

8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5

$R_{\protect \unhbox \voidb@x \hbox {gyr}}$



(Å
)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RMSD



(Å
)

7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5

$R_{\protect \unhbox \voidb@x \hbox {gyr}}$



(Å
)

(a) G simulation in explicit solvent
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(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. Active site RMSD and $R_{\protect \unhbox \voidb@x \hbox {gyr}}$ plots for MD simulations of dimeric models. The first
chain is on top, the second chain on the bottom.
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(a) G simulation in explicit solvent
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(b) A simulation in explicit solvent
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(c) A simulation in implicit solvent

Figure .. RMSF plots (left) and pseudo-b-factors (right) of dimeric models. For the sake of
orientation, the locations of active site residues (orange) and B-loops (green) are pictured below
each RMSF plot (left). The b-factors (right) are overlayed over the reference structures used for
RMSF calculation. White (chain ) or gray (chain ) regions have a small RMSF, green regions have
a medium one, and orange regions have the largest values. Chain  is always the right subunit,
chain  the left one. The viewport is again chosen so that the active site of chain  is front and
center.
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.. Suitability for Crosslinking

Crosslinking will be done by linking the ϵ-amino groups of two solvent-exposed lysine
residues with a linker of predetermined length. The two N-terminal truncated lysines have
been re-added here in order to be able to explore all crosslinking possibilities. No lysines
were present in the truncated C-terminal domain, therefore it is not included in the figures
of this Section.
Depending on the length and flexibility of the spacer, there are a number of residues which

can be used for this (Figure .). Four of those residues are arranged around the active site
in a distinctive pattern; two are on the “back” from the viewport in Figure .a and on the
left of chain  in Figure .b; and two lysines were truncated from the N-terminus during
the modeling process in order to improve modeling quality (see Section . and Figure .).
Crosslinking can potentially also be used to test whether CrPCS occurs as a dimer: At

least one solvent-exposed lysine residue in the monomeric model is buried by the dimeric
interface in the dimeric model. If a dimeric CrPCS would be subjected to crosslinking and
subsequent mass spectrometry analysis, fragments involving this buried residue would not
occur in the analysis because the spacer could not link to this buried lysine residue.
The average values and standard deviations of the lysine distances over all trajectories are

shown in Appendix A...
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(b) Dimeric model

Figure .. ϵ-amino groups of surface-facing lysine residues potentially suitable for crosslink-
ing. The ϵ-amino nitrogens are marked in blue, the active site is marked orange for orientation.
Potential crosslinkings between lysines are marked by dotted lines. The crosslinkings only mea-
sure direct distances between nitrogens; therefore, some lines pass through the surface of the
protein. No direct distances larger than 30Å have been taken into consideration. As both the
lysine sidechains and the linker are usually flexible, this is not necessarily prohibitive as long
as the linker is long enough. In figure (b), chain  is white while chain  is light gray. A similar,
mirrored configuration of lysine residues is on the “back” of the dimer.
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.. Cd+ Binding Sites

Cd+ binding sites were investigated in reference to Maier et al. [], who tested PCSs from
several different organisms for contiguous cysteine-rich metal-binding motifs as these occur
frequently within MTs and CPX-type ATPases []. Among the investigated PCSs, seven
Cd+ bindingmotifs were identified, four of whichwere located in the N-terminus. According
to Maier et al. and Ha et al., only these N-terminal Cd+ binding sites are necessary for
protein function [, ]. While the sequences of the binding motifs vary considerably, their
locations relative to each other are fairly constant.
In order to find out whether Cd+ binding motifs also exist in CrPCS, the alignment gen-

erated for modeling was extended with the sequences for TaPCS and SpPCS, the subjects of
the experiments undertaken by Maier et al. The regions aligned with Cd+ binding sites in
TaPCS or SpPCS were inspected for residues which conferred Cd+ binding ability in TaPCS
and SpPCS: cysteines, aspartates, and glutamates.
The locations of the binding motifs in the PCSs examined by Maier et al. in comparison

to CrPCS are shown in Figure .. Most of the residues are well-conserved in the eukary-
otic CrPCS but not in the prokaryotic NsPCS. The cysteine residues that are responsible for
the binding affinity towards Cd+ are almost completely conserved between the eukaryotic
PCSs. NsPCS has hardly any conserved binding motif in its N-terminus. It is hypothesized
that PCS used to have additional function beside Cd+ detoxification and/or homeostasis
(see Section ..): Zn+ and Pb+ can activate PCS as well [], and due to this relatively low
specificity, Clemens and Peršoh propose that PCS might be responsible for Zn+ detoxifica-
tion as well.
Incidentally, the location of the second and third binding site forms a “cysteine patch” in

the NsPCS template as well. This patch is also visible in the CrPCS model (Figure .).
It is also known that the template 2BTW had a Ca+ atom at a putative Cd+ binding site
(colored gray in Figure .). Cd+ can block Ca+ channels [] and it can displace many
metal cofactors as well, including Ca+, from their binding sites []. This indicates that
some amount of chemical equivalence exists between Cd+ and Ca+, further pointing at a
nonspecific Cd+ or metal binding site at that location. However, the cysteine at the fourth
Cd+ binding site is not visible on the surface (Figure .).
The studies byMaier et al. were performed in vitro at a Cd+ concentration of 10 μwhich is

far from physiological conditions (see Section ..). Cd+ concentrations this high would not
occur in the presence of GSH and/or PCs.Their high Cd+ binding affinities would effectively
lower the concentration of active free Cd+. Additionally, Vatamaniuk et al. and Tsuji et


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50. 55. 60. 80. 85. 90. 100. 105. 110.

CrPCS DEPAFCGLASLAMTLN WRWFHEAMLDCCRPLDAV GITLYQASCLARCNGA ER
NsPCS VNQAYCGVASIIMVLN DNFFSNEKTKAVIAPEVV GMTLDELGRLIASYGV ED
TaPCS SEPAFCGLASLSVVLN WRWFDESMLDCCEPLHKV GITFGKVVCLAHCAGA HD
SpPCS NEPAFCGLGTLCMILN WRWYDQYMLDCCRSLSDI GVTLEEFSCLANCNGL DE

130. 135. 140. 145.

CrPCS FRREVEAVCGSGEEHIVV
NsPCS FRKQVAENLKQDGNFVIV
TaPCS FRAHLTRCASSQDCHLIS
SpPCS FRKDVISCSTIENKIMAI

Figure .. Cd+ binding sites as proposed byMaier et al. []. The last three Cd+ bindingmotifs
found in the sequences of SpPCS and TaPCS have been omitted as they were not homologous to
the CrPCS sequence. Cysteines are highlighted in yellow. The dark gray shaded regions are the
binding motifs as proposed in the paper. The light gray shaded residues in the NsPCS sequence
are located within 5Å of the Ca+ atom in 2BTW.

Figure .. Location of the cysteines of the second and third binding sites in Figure .. The
primary substrate binding site is visible to the left, active site residues are colored orange, B-loops
are green. Cysteines are marked in yellow. The first potential Cd+ binding site shown in Figure .
is the active site. The cysteine residues of the second and third Cd+ binding site form a “patch”
of cysteines. The fourth Cd+ binding site is not visible on the surface of the model.
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al. showed that activation of AtPCS occurs by means of thiol-blocked GSH/PCS molecules
instead of direct binding of Cd+ by the enzyme [, ]. In light of these findings, the
validity of the Maier et al. approach can be called into question.
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. Conclusion

A number of stable D structure models of phytochelatin synthase of Chlamydomonas rein-
hardtii was built, together with protocols to simulate them in recent A and G
force fields. While not complete, the models show that the missing C-terminus has only
a minor influence on the protein stability in general. The presence of a cysteine-rich Cd+

binding site was shown; however, no accurate prediction can be made as to whether it has a
regulatory function. The presence of a putative second acylation site adjacent to the primary
active site was shown as well. This second acylation site could hold a secondary substrate
for the transpeptidase part of the PCS reaction.
The models have a number of lysine residues suitable for crosslinking; four of them are

close to the active site and can be used to verify the validity of the built models by mass
spectrometry. Since two lysines exist in the unmodeled N-terminus of the model, crosslink-
ings between these two N-terminal lysines and those around the active site could allow the
addition of distance restraints to the modeling process, thereby allowing to model the N-
terminus as well.
While experimental data (D. Dobritzsch, personal communication) indicate that CrPCS is

monomeric in vivo, the demonstrated stability of the dimeric complex in silico suggests that
dimeric PCS molecules might in fact exist. Calculation of electrostatic potentials show that
the dimeric interface is fairly-defined and consists mainly of noncharged residues. Since
these residues would be solvent-exposed in a monomeric model, the dimeric model is more
stable due to burying those residues in its core.
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. Outlook

The modeling process can be accelerated by using a cricital distance cutoff instead of cluster-
ing metrics. This approach would be both simpler and lead to the creation of clusters with
fewer false positives. Depending on the size of the protein to be modeled, a cutoff of 1Å
to 2Å should be suitable. A further way to potentially improve the monomeric model is
to include both chains of both 2BTW and 2BU3 as template structures. This could potentially
relieve the stability problems with the protruding loop. Crosslinking between lysines, in-gel
digestion, and subsequent mass spectrometric analysis of the fragments could result in dis-
tance restraints between solvent-exposed lysine residues, which could improve the model
as well. This could be especially helpful for modeling the six missing N-terminal residues, as
they include two lysine residues as well. The most important improvement upon the model,
however, would be to correctly model the missing C-terminus. Unfortunately, no immedi-
ately apparent templates exist and ab initio modeling is futile for twelve residues or more.
Including restraints obtained from small-angle X-ray scattering could improve the predic-
tions. While this would not allow discerning the exact atomic positions, it would reveal the
general shape of the protein and show whether the C-terminal end is disordered or has a
distinct conformation.
All MD simulations could be run for a longer time, which would showwhether the created

models are truly stable. A longer stable period would allow for a better choice of a reference
structure for docking experiments, and also allow for more accurate ligand–protein analyses,
such as molecular mechanics/generalized Born surface area (MM/GBSA).
It is assumed that substrate binding at the second site takes place only in combination

with either substrate binding at the first site, or creation of the acyl-enzyme intermediate.
In order to elucidate the substrate binding at the secondary binding site, additional models
of the acyl-enzyme intermediates at the first acylation site would have to be constructed.
Further MD simulations of the resulting acyl-enzyme could reveal whether conformational
changes are induced due to substrate binding at the first site.
As several potential Cd+ binding sites were found, MD simulations of this model with

bound Cd+ could also lead to further insight into activation of this enzyme.
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A. Appendix

A.. Modi Operandi of Modeling Servers

In this section, the workings of all used modeling servers are described in some detail.

A... HHpred

Taken from [].

. HHsearch to find suitable templates:

a) Creation of HMMs of the query sequence by finding similar sequences using
HHblits or PB

b) Comparing query HMM to HMMs generated for multiple structural databases

. HHsearch also finds remotely homologous templates (since structural similarity is
much more conserved than sequence similarity, these might still be good as templates)

. The multiple alignment created by HHsearch is then fed into M

A... IT

Taken from [, ].

. L, a threading meta-server, finds suitable templates and threads query sequence
onto target structure

. L generates spacial restraints for further use by IT by structural alignment
of conserved sequences

. Building a structural model:

• Aligned fragments are assembled directly





• Non-aligned fragments are built using ab initio modeling

. Minimization using the IT force field, which incorporates:

• Hydrogen bonds

• Knowledge-based energy terms

• Sequence-based contact predictions (using S)

• Spatial restraints collected in step 

. Creation of decoys

. Clustering of decoys to identify possible native folds (using S)

. Creation of representative cluster centroids (only Cα and side-chain center of mass)

. Repeat steps  to  twice

. Creation of full atomic model from cluster centroids

. Refinement of full atomic model by fragment-guided MD

a) H-bond networks

b) Backbone torsion angles

c) Bond lengths

d) Side-chain rotamer orientations

A... RX

Taken from [].

. PB and HHpred to identify homologs, then regression tree-based scoring func-
tion to create sequence profile

. N to evaluate sparsity of alignment: The sparser it is, the more valued is structural
information over sequence alignment

. N is also used to decide whether to use position-specific of context-specific gap
penalty (context-specific depends on:

• Predicted secodary structure type

• Predicted solvent accessibility





• Amino acid identity

• Hydropathy count

• Buriedness)

. Ranking of all templates by predicted query-template alignment

• Neural network-based approach

• Quality of an alignment is defined as the TM-score of the D model built from
this alignment using M

. Selection of mutually similar templates:

a) Exclusion of all but top  templates

b) Exclusion of templates with quality ≥ 10 % less than highest rated template

c) Exclusion of templates whose TM-score with first-ranked template < 0.65

. If there are no templates left, go to last step

. If there are ≥ 2 template left: Creation of initial probabilistic alignment matrices
(PAMs) for target-template pairs (a PAM encodes all possible alignments between two
sequences)

. Creation of structural alignment PAMs using TMalign and/or M

. Iterative adjustment of to maximize consistency among all PAMs (i.e. to improve
alignment quality)

. Create D models from alignment(s) using M

A... Phyre2

Taken from the supplementary material to [].

. HHsearch to find close and remote sequence homologs

. Prediction of query secondary structure by taking the average confidence score of
PsiP, SSPro and JNet prediction methods

. Disorder prediction using Disopred

. Profile creation by combining secondary structure prediction and sequence alignment
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. Profile is scanned against fold library, which is constructed in the following way:

a) Sequences of structures deposited in PDB and SCOP…

b) …are scanned against nonredundant sequence database

c) Profile is constructed and deposited in “fold library”

d) Known and predicted secondary structures are also incorporated in those profiles

. Alignment process returns a score on which which alignments are ranked

. Computation of E-values of ranked alignments

. Top ten highest scoring alignments are used to create full D models

. Missing/inserted regions are repaired using a loop library and reconstruction proce-
dure

. Side chains are placed on the model using a fast graph-based algorithm and side chain
rotamer library

A... M

Taken from [].

. Template identification by three methods and search against in-house databases:

• PB (PSSM)

• HHsearch (HMMs)

• C (profile)

• Sensitive machine learning fold recognition method []

. Ranking of templates according to E-value

. Alignment of query to top  templates using S

. Template combination in order to improve performance []:

a) Query aligned to top template and other templates with E-value ≤ 10 to 20 and
≥ 75 % coverage)

b) Fragments from alignments below E-value/coverage threshold

c) Removal of top template, rinse and repeat
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→ Generation of up to  multiple alignments

. Model generation

• Models with query–template alignment (QTA):

a) M v to create  models

b) Model with minimum M energy is returned as predicted model

• Models without QTA:

a) R to create  models

b) Clustering by R

c) Centroids of several large clusters are returned as predicted models

. Model evaluation using ModelEvaluator; comparison of several model parameters
with values predicted from sequence by means of the S suite

• Secondary structure

• Solvent accessibility

• Contact map

• β-sheet topology

. Calculation of G_ using a support vector machine approach

. Ranking of predicted models using G_

A... SM

Taken from [].

. Creation of EPDB database from PDB

a) Removal of theoretical models

b) Removal of low quality and Cα trace structures

c) Addition of information for template selection to PDB header (e.g. probably qua-
ternary structure, quality indicators such as empirical force field energy, A
mean force potential scores)

. Template selection by PBing query sequence against sequences in EPDB
database
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• If templates cover distinct regions of target sequence (i.e. query has multiple
domains), modeling process will be split into separate independent batches

. Superposition of up to  template structures using an iterative least squares algorithm

. Creation of structural alignment after removing incompatible templates (i.e. omitting
structures with high Cα-RMSD to first template)

. Local pairwise alignment of target sequence to main template structures

• Placement of insertions and deletions optimized considering template structure
context

. Backbone atom positions of template structure are averaged

→ Templates weighted by sequence similarity to target sequence

• Exclusion of significantly deviating atom positions

. Construction of non-aligned regions using constraint space programming

a) Best loop selected using a scoring scheme, which accounts for:

• Force field energy

• Steric hindrance

• Favorable interactions (i.e. hydrogen bond formation)

b) If no suitable loop can be identified, flanking residues are included to allow for
more flexibility

c) For loops >  residues: Selection of loop conformation from loop library derived
from experimental structures

. Side chain modeling based on weighted positions of corresponding residues in tem-
plate structures

a) Starting with conserved residues

b) Iso-sterical replacement with template structure side chains

c) Possible side chain confirmations are selected from backbone dependent rotamer
library

d) Scoring function (accounts for hydrogen bonds, disulfide bridges) applied to
select most likely conformation

. Energy minimization using GROMOS96 force field
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A... GenoD

Taken from [].

. PB against PDB entries to find suitable template and generate a QTA

. User selects templates from list

. Secondary structure is predicted for query and templates

. Secondary structure information is used to recompute QTA

. Calculation of distance and dihedral angle restraints from QTA

. Statistical restraints are used for gaps

. Restraints are used as input for C software

. C produces models that fit these restraints as well as possible

A... L

Taken from [, ].

. Phase I—template identification, using:

• Site-specific residue frequency profile (PB)

• Raw sequence and profile of the template generated from target profile database

• Template secondary structure (S [query]/D [target])

• Exposed surface area of template (S [query]/D [target])

• T contacts between structural sites

→ Combination of those factors to obtain  “features”

. Evaluation of all  features with all known protein structures in the database

. Tree-based approach that returns database hits from one search branch and performs
remaining search branches on the remaining entries template database:

a) PB with  iterations:

i. Rank hits according to SC and return top scoring hits

ii. Remove hits from search database





b) Comparison of all features

i. Rank hits according to SC and return top scoring hits

ii. Remove hits from search database

c) Exactly the same as previous branch

i. Rank hits according to SC and return top scoring hits

ii. Remove hits from search database

d) Comparison of same  features, transformed to a uniform distribution

i. Rank hits according to SC and return top scoring hits

ii. Remove hits from search database

e) Comparison of a quadratic expansion of  uniformly distributed features

i. Rank hits according to SC and return top scoring hits

. Create QTA using S and build models using M

. Clustering and ranking of returned hits according to SC and TM-score

. Phase II—template modeling. Repeat previous branches , , and  (the last one five
times), but also use the following measures for creating scores:

• Z-score (more sensitive, but 100 to 1000 times more computationally intensive)

• E (all-atom potential)

• T (residue-based contact potential)

• F (coarse-grained potential for pair interactions)

• S (assessment score; includes multiple measures; see [, page ])

A.. CrPCS Alignment from Vivares, Arnoux, and Pignol
[]

This is the initial alignment which was used to as a starting point for the manual modeling
process and subsequently refined. As described in Figure ., an orange background indicates
residues in the active site, and gray frames mark residues at the putative dimeric interface.
Light gray regions in the CrPCS sequence were cut out from the resulting model as they had
to be modeled ab initio, light gray regions in the NsPCS sequence were not present in the
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2BU3 template. The locations of these residues are taken from Vivares, Arnoux, and Pignol
[].

CrPCS TFYKRKLPSPPAIEF 
SpPCS MNIVKRAVPELLRGMTNATPNIGLIKNKVVSFEAVGQLKKSFYKRQLP·KQCLAF 
CePCS MSVTAKNFYRRPLP·ETCIEF 
AtPCS MAMASLYRRSLPSPPAIDF 
TaPCS MEVASLYRRVLPSPPAVEF 
NtPCS MAMAGLYRRVLPSPPAVDF 
NsPCS L·SPNLIGF 

CrPCS SCPEGRQLFQEALLDGTMTGFFKLMEQFNTQDEPAFCGLASLAMTLNALSIDP·· 
SpPCS DSSLGKDVFLRALQEGRMENYFSLAQQMVTQNEPAFCGLGTLCMILNSLKVDP·· 
CePCS SSELGKKLFTEALVRGSANIYFKLASQFRTQDEPAYCGLSTLVMVLNALEVDP·· 
AtPCS SSAEGKLIFNEALQKGTMEGFFRLISYFQTQSEPAYCGLASLSVVLNALSIDP·· 
TaPCS ASAEGKRLFAEALQGGTMEGFFNLISYFQTQSEPAFCGLASLSVVLNALAIDP·· 
NtPCS ASTEGKQLFLEAIQNGTMEGFFKLISYFQTQSEPAYCGLASLSMVLNALAIDP·· 
NsPCS NSNEGEKLLLTSRSR···EDFFPLSMQFVTQVNQAYCGVASIIMVLNSLGINAPE ︸        ︷︷        ︸ ︸   ︷︷   ︸

B-loop Protruding loop

CrPCS RRTWK·····GSWRWFHEAMLDCCRPLDAVKEEGITLYQASCLARCNGARVELVP 
SpPCS GRLWK·····GSWRWYDQYMLDCCRSLSDIEKDGVTLEEFSCLANCNGLRTITKC 
CePCS EKVWK·····APWRFYHESMLDCCVPLENIRKSGINLQQFSCLAKCNRLKSTVSY 
AtPCS GRKWK·····GPWRWFDESMLDCCEPLEVVKEKGISFGKVVCLAHCSGAKVEAFR 
TaPCS GRPWK·····GPWRWFDESMLDCCEPLHKVKAEGITFGKVVCLAHCAGARVQSFR 
NtPCS GRKWK·····GPWRWFDESMLDCCEPLEKVKAKGISFGKVVCLAHCAGAKVEAFR 
NsPCS TAQYSPYRVFTQDNFFSNEKTKAVIAPEVVARQGMTLDELGRLIASYGVKVKVNH ︸                         ︷︷                         ︸ ︸︷︷︸

Protruding loop B-loop

CrPCS YGSAGLSLERFRREVEAVCGSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDL 
SpPCS VKDVS··FDEFRKDVISCSTIENKIMAISFCRKVLGQTGDGHFSPVGGFSESDNK 
CePCS GDNSPDFLKKFRTSLVNSVRSDDQVLVASYDRSVLGQTGSGHFSPLAAYHEDSDQ 
AtPCS TSQST··IDDFRKFVVKCTSSENCHMISTYHRGVFKQTGTGHFSPIGGYNAERDM 
TaPCS ADQTT··IHDFRAHLTRCASSQDCHLISSYHRSPFKQTGTGHFSPIGGYHAEKDM 
NtPCS SNHST··IDDFRKQVMACTTSDNCHLISSYHRGLFKQTGSGHFSPIGGYHVGKDM 
NsPCS ASDTN··IEDFRKQVAENLKQDGNFVIVNYLRKEIGQERGGHISPLAAYNEQTDR ︸        ︷︷        ︸

B-loop

CrPCS VLVLDVARFKYPPHWVPLPMLYHGMSYVDKVTGRPRGYMRLASNPL·LDSVL··L 
SpPCS ILILDVARFKYPCYWVDLKLMYESMFPIDKASGQPRGYVLLEPMHI·PLGV·LTV 
CePCS VLIMDVARFKYPPHWVKLETLQKALCSVDVTTKLPRGLVELELKKGTRPLIMYGL 
AtPCS ALILDVARFKYPPHWVPLKLLWEAMDSIDQSTGKRRGFMLISRPHR·EPGLLYTL 
TaPCS ALILDVARFKYPPHWVPLTLLWDAMNTTDEATGLLRGFMLVSRRSS·APSLLYTV 
NtPCS ALILDVARFKYPPHWVPLPLLWEAMNTIDEATGLHRGFMLITKLHR·APALLYTL 
NsPCS FLIMDVSRYKYPPVWVKTTDLWKAMNTVDSVSQKTRGFVFVSKTQD········· ︸          ︷︷          ︸ ︸      ︷︷      ︸

B-loop B-loop
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CrPCS TCDVR··SAPEDWRPAE·AFVRSGAAAL 
SpPCS GLNKY··SWRNVSKHILQQAATVKNADNLAE··ILLS·········INQSSIPLI 
CePCS ··KAYVNINDSDFATSVIS···························WNQFLLCD· 
AtPCS SCKDE··SWIEIAKYLKEDVPRLVSSQHVDSVEKIISVVFKSLPSNFNQFIRWVA 
TaPCS SCGHG··SWKSMAKYCVEDVPNLLKDESLDNVTTLLSRLVESLPANAGDLIKCVI 
NtPCS SCKHE··SWVTISKHLMDDLPVLLSSENVKGIKDVLSTVLSNLPSNFVEFIKWIA 
NsPCS ······················································· 

CrPCS 
SpPCS QERSNSSK····SG········································· 
CePCS ······PLED···························DEEEFQLCCRKFGQC··· 
AtPCS EIRITEDSNQNLSAEEKSRLKLKQLVLKEVHETELFKHINKFL·········STV 
TaPCS EVRRKEEGESSLSKEEKERLFLKEKVLQQIRDTDLFRVVHELQYPKGLCGSCSSS 
NtPCS EVRRQEENGQNLSDEEKGRLAIKEEVLKQVQDTPLYKHVTSILFSKNSICQ SKA 
NsPCS ······················································· 

CrPCS 
SpPCS ·····························DFEHFKECIRST·············· 
CePCS ·······FAPHAMCCTQKTFDADQ·········KNSCTECSTDQNEACKMICSEI 
AtPCS GYEDSLTYAAAKACCQGAEILSGSP·S·KEFCCRETCVKCIKGPDDSEGTVVTGV 
TaPCS SDEDSLAEIAATVCCQGAAFLSGNLVSRDGFCCRETCIKCIEANGDGLKTVISGT 
NtPCS ASDSSLANVAANICCQGAGLFAGRSGSSDRFCCLQTCVRCYRATGGNSATVVSGT 
NsPCS ······················································· 

CrPCS 
SpPCS ·······KTYHLFLKHTN·················TNVEYITMAFWAIFSLPMIQ 
CePCS ···R·RTRFAEVFSSSAVAALLIAWPFEKGYSERSDRIGN··············· 
AtPCS VVRDGNEQKVDLLVPSTQTECECGP······EATYPAGNDVFTALLLALPPQTWS 
TaPCS VVSKGNEQAVDLLLPTSSSKTSLCNSNLKSKIVKYPSSTDVLTVLLLVLQPNTWL 
NtPCS VVNGNGEQGVDVLVPTSLAKTSCCPSGQAGCSPMHPASNDVLTALLLALPPHTWS 
NsPCS ······················································· 

CrPCS 
SpPCS KALPKGVLEEIQSLLKEVEISEI·NTQLTALKKQLDSLTHCCKT·······DTGC 
CePCS ······LAEKYKNEFSAETM·····NEMNQLTTQIRTLISCSKPPVVININKPDA 
AtPCS GIKDQALMHEMKQLISMASLPTLLQEEVLHLRRQLQLLKRCQEN·······K·EE 
TaPCS GIKDENVKAEFQSLVSTDNLPDLLKQEILHLRRQLHYLAGCKGQ·······E·AC 
NtPCS RIKDTKVLQEIENLVSAENLPPLLQEEILHLRGQFLLLKKCKDN K VE 
NsPCS ······················································· 

CrPCS 
SpPCS CSSSCCKN·············T 
CePCS TSNKCCKNKIGQSCACANDVNL 
AtPCS DDLAAPA··············Y 
TaPCS QEPPS················P 
NtPCS EDLAAPP F 
NsPCS ······················ 
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A.. Merged Manual and Automatically Created
Alignments

This is the full alignment whose fingerprint was presented in Figure .. This alignment is
used to compare the accuracy of the automated alignment algorithms used by the different
modeling servers. Some of the servers use several alignments and weigh them according
to predicted accuracy; in those cases, all alignments are reproduced here in order of prece-
dence.As in the previous section, an orange background in the “manual” sequence marks
active site residues, and a green background marks the B-loops.

bua L··S·P·NLIGFNSNEGEKLL···LTS···R···SR·· 
btwb L·S·P·NLIGFNSNEGEKLL···LTS···R···SR·· 
kua 
manual TFYKRK··LPS·P·PAIEFSCPEGRQLF···QEA···L···LDGT 
genod S·P·PAIEFSCPEGRQLFQEALLD···G···TM·· 
hhpred L··PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKRK··L·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKRK·L··PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKR··KL·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKRK·LP·S·P·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKR··KL·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKR··KL·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKRK·L··PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKR··KL·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
itasser TFYKRK·LP·S·P·PAIEFSCPEGRQLF···QEA···L···LDGT 
itasser TFYKR··KL·PSP·PAIEFSCPEGRQLF···QEALLDG···TM·· 
loopp P··S·P·PAIEFSCPEGRQLF···QEALLDG···TM·· 
loopp P··S·P·PAIEFSCPEGRQLF···QEALLDG···TM·· 
loopp P·S·P·PAIEFSCPEGRQLF···QEALLDG···TM·· 
multicom TFYKRKLP··S·P·PAIEFSCPEGRQLF···QEALLDG···TM·· 
phyreint TFYKRK·L··P·SPPAIEFSCPEGRQLF···QEALLDG···TM·· 
phyrenrm TFYKRK·L··P·SPPAIEFSCPEGRQLF···QEALLDG···TM·· 
phyreoo TFYKRK·L··P·SPPAIEFSCPEGRQLF···QEALLDG···TM·· 
raptorx KRKLP··S·P·PAIEFSCPEGRQLF···QEA···LLDGTM·· 
swissmodel L··P·SPPAIEFSCPEGRQLF···QEALLDG···TM·· 
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bua ·EDFFPL·SMQ·FVTQVNQAYC·GVASI·IMVLNSLGINAPETAQ 
btwb ·EDFFPL·SMQ·FVTQVNQAYC·GVASI·IMVLNSLGINAPETAQ 
kua HYK······LVPQIDTRDCGPAVLA·S·VAKHYGSN·YS··· 
manual MTGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDP··RRT 
genod ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSID·PRRTW 
hhpred ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSID·PRRTW 
itasser ·TGFFKL·M·EQFNTQDEPAFCGLASLA·M·TLNALSID·PRRTW 
itasser ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDPRRTWK 
itasser ·TGFFKLME·Q·FNTQDEPAFC·GLASLAM·TLNALSID·PRRTW 
itasser ·TGFFKLME·Q·FNTQDEPAFC·GLASLAM·TLNALSID·PRRTW 
itasser ·TGFFKL·M·EQFNTQDEPAFC·GLASL·A·MTLNALSIDPRRTW 
itasser ·TGFFKL·MEQ·FNTQDEPAFC·GLASLAM·TLNALSID·PRRTW 
itasser ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDPRRTWK 
itasser ·TGFFKL·MEQ·FNTQDEPAFC·GLASLAM·TLNALSID·PRRTW 
itasser MTGFFKLME·Q·FNTQDEPAFC·GLASLAM·TLNALSIDPRRTWK 
itasser ·TGFFKL·M·EQFNTQDEPAFCGLASLA·M·TLNALSID·PRRTW 
loopp ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDPRRTWK 
loopp ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDPRRTWK 
loopp ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDPRRTWK 
multicom ·TGFFKLME·Q·FNTQDEPAFC·GLASLAM·TLNALSIDPRRTWK 
phyreint ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDP····· 
phyrenrm ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDP····· 
phyreoo ·TGFFKL·MEQ·FNTQDEPAFC·GLASLAM·TLNALSIDP····· 
raptorx ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSID·PRRTW 
swissmodel ·TGFFKL·MEQ·FNTQDEPAFC·GLASL·AMTLNALSIDP····· 

bua YSPYRVFTQDNFFSN·EKTK····AVIA·PEVVAR·QGMTLDELG 
btwb YSPYRVFTQDNFFSN·EKTK····AVIA·PEVVAR·QGMTLDELG 
kua ···········IAYL···········RE·LSKTNKQGT·TALGIV 
manual WK·····GSWRWFHE·AMLD····CCRP·LDAVKE·EGITLYQAS 
genod KGSWRWFHE·······AMLD····CCRP·LDAVKE·EGITLYQAS 
hhpred KGSWRWFH·EAMLD··········CCRP·LDAVKE·EGITLYQAS 
itasser KGSWRWFHEAMLDCC···········RP·LDAVKEEGI·TLYQAS 
itasser GS·WRWFH·EAMLD··········CCRP·LDAVKE·EGITLYQAS 
itasser KGSWRWFHEAMLDCC·RPLD····AVKE·E······GI·TLYQAS 
itasser KGSWRWFHEAMLDCC·RPLD··········AVKEE·GI·TLYQAS 
itasser KGSWRWFHEAMLDCC·R·········PL·DAVKEE·GI·TLYQAS 
itasser KGSWRWFHEAMLDCC·RPLD·······A···VKEE·GI·TLYQAS 
itasser GS·WRWFH·EAMLD··········CCRP·LDAVKE·EGITLYQAS 
itasser KGSWRWFHEAMLDCC·RPLD····AVKE·E······GI·TLYQAS 
itasser G·SWRWFHEAMLDCC·RPLD····AVK·······E·EGITLYQAS 
itasser KGSWRWFHEAMLDCC···········RP·LDAVKEEGI·TLYQAS 
loopp GS·WRWF·······H·EAML····DCCRPLDAVKE·EGITLYQAS 
loopp GS·WRWFH········EAML····DCCRPLDAVKE·EGITLYQAS 
loopp GS·WRWF·······H·EAML····DCCRPLDAVKE·EGITLYQAS 
multicom GS·WRWFHEAMLDCC····R····PL···DAVKEE·GI·TLYQAS 
phyreint ···RRTWKGSWRWF····HEAMLDCCRP·LDAVKE·EGITLYQAS 
phyrenrm ···RRTWKGSWRWF····HEAMLDCCRP·LDAVKE·EGITLYQAS 
phyreoo ···RRTWKGSWRWF····HEAMLDCCRP·LDAVKE·EGITLYQAS 
raptorx KGSWRWFHEAMLDCCR···········P·LDAVKE·EGITLYQAS 
swissmodel ···RRTWKGSWRWF····HEAMLDCCRP·LDAVKE·EGITLYQAS 





bua RLIASYGVKVK··V··N··H··A··SDT··N··IEDFRKQVAENL 
btwb RLIASYGVKVK··V··N··H··AS··DT··N··IEDFRKQVAENL 
kua EAAKKLGFETR··S··I··KADMT··LF··D··YNDL········ 
manual CLARCNGARVE··L··V··P··YG··SA··GLSLERFRREVEAVC 
genod CLARCNGARVE··LVPY··G··SA··GL··S··LERFRREVEAVC 
hhpred CLARCNGARVE··L··V··P··Y··GSAGLS··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··VPYG··S··AGL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGS··AGL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
itasser CLARCNGARVE··L··V··PYGSA··GL··S··LERFRREVEAVC 
loopp CLARCNGARVE··L··V··P··Y··GSAGLS··LERFRREVEAVC 
loopp CLARCNGARVE··L··V··P··Y··GSAGLS··LERFRREVEAVC 
loopp CLARCNGARVE··L··V··P··YG··SAGLS··LERFRREVEAVC 
multicom CLARCNGARVELVP··Y··G··S··AGL··S··LERFRREVEAVC 
phyreint CLARCNGARVE··L··V··P··YGSAGL··S··LERFRREVEAVC 
phyrenrm CLARCNGARVE··L··V··P··YGSAGL··S··LERFRREVEAVC 
phyreoo CLARCNGARVE··L··V··P··YGSAGL··S··LERFRREVEAVC 
raptorx CLARCNGARVE··L··V··P··YGSAGL··S··LERFRREVEAVC 
swissmodel CLARCNGARVE··LVPY··G··S··AGL··S··LERFRREVEAVC 

bua KQDGNFVIVNYLRKEIGQERGGHISPLAAYNEQTDRFLIMD·V·S 
btwb KQDGNFVIVNYLRKEIGQERGGHISPLAAYNEQTDRFLIMD·V·S 
kua ···TYPFIVHVIK····GKRLQHYYVVYGSQ··NNQLII·G·DPD 
manual GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
genod GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
hhpred GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD V A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLV·L·DVA 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLV·LDV·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
itasser GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLV·L·DVA 
loopp GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
loopp GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
loopp GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
multicom GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
phyreint GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
phyrenrm GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
phyreoo GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
raptorx GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
swissmodel GSGEEHIVVSYSRKAFLQTGDGHFSPIGGYHRGRDLVLVLD·V·A 
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bua RYKYPPVWVKTTDLWKAMN·TVDSVSQKTRGFVF·VS········ 
btwb RYKYPPVWVKTTDLWKAMN·TVDSVSQKTRGFVF·VS 
kua PSVK·VTRMSKERFQSE·WT··········GLAI·FLAPQ····· 
manual RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LASNPLLDSV 
genod RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LA········ 
hhpred RFKYPPHWVPLPMLYHGMS YVDKVTGRPRGYMRLAS 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LASNPLLDSV 
itasser RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
loopp RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LA········ 
loopp RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LA········ 
loopp RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LA········ 
multicom RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMRLASNPLLDSVL 
phyreint RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR LASNPLLDSV 
phyrenrm RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR LASNPLLDSV 
phyreoo RFKYPPHWVPLPMLYHG·MSYVDKVTGRPRGYMR·LASNPLLDSV 
raptorx RFKYPPHWVPLPMLYHGMS·YVDKVTGRPRGYMR·LASNPLL··· 
swissmodel RFKYPPHWVPLPMLY······························ 

bua ··························· 
btwb 
kua ··························· 
manual LLTCDVRSAPEDWRPAEAFVRSGAAAL 
genod ··························· 
hhpred 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
itasser LLTCDVRSAPEDWRPAEAFVRSGAAAL 
loopp ··························· 
loopp ··························· 
loopp ··························· 
multicom LTCDVRSAPEDWRPAEAFVRSGAAAL 
phyreint LLTCDVRSAPEDWRPAEAFVRSGAAAL 
phyrenrm LLTCDVRSAPEDWRPAEAFVRSGAAAL 
phyreoo LLTCDVRSAPEDWRPAEAFVRSGAAAL 
raptorx ··························· 
swissmodel ··························· 
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A.. D, Spro, and Q Z scores of All
Models

Model D Spro Q Z-score

Manual- −1.52 0.658 −1.196
Manual- −1.49 0.657 −1.186
Manual- −1.41 0.626 −0.397
Manual- −1.36 0.655 −1.086
GenoD- −0.95 0.587 −2.347
GenoD- −0.96 0.574 −2.116
GenoD- −0.98 0.577 −1.413
GenoD- −0.99 0.618 −1.792
GenoD- −0.96 0.576 −2.348
HHpred-myaln −0.20 0.282 −1.772
HHpred-theiraln 0.67 0.291 −2.105
IT- −0.34 0.595 −2.742
IT- −0.43 0.595 −2.501
IT- −0.54 0.570 −2.540
IT- −0.42 0.602 −2.263
IT- −0.36 0.576 −2.523
L- −1.20 0.644 −0.654
L- −1.25 0.645 −0.797
L- 2.20 0.208 −5.045
M 0.02 0.483 −2.032
Phyre2-int −0.42 0.542 −1.988
Phyre2-nor 0.28 0.589 −1.361
Phyre2-oo −0.51 0.631 −1.102
RaptorX- −1.17 0.641 −1.012
RaptorX- 1.32 0.044 −2.766
RaptorX- 1.15 0.004 −3.608
RaptorX- 1.14 0.273 −3.660
RaptorX- 0.81 0.368 −2.942
SM-auto 0.37 0.489 −4.007
SM-myaln −0.02 0.548 −1.275
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SM-theiraln −0.99 0.591 −1.015

A.. Distances Between ϵ-Nitrogens of Solvent-Exposed
Lysine Residues

This section lists the distances of the ϵ-nitrogens of solvent-exposed lysine residues for all
simulations as mean ± standard deviation. All values are in Å.

A... Monomers
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Table A.. Lysine distances in monomer G explicit solvent MD

Residue      


17.5 ± 3.1 27.8 ± 1.6 36.1 ± 1.3 29.6 ± 1.5 41.1 ± 2.6


17.5 ± 3.1 17.0 ± 2.6 36.0 ± 2.0 27.4 ± 3.3 41.6 ± 4.2


27.8 ± 1.6 17.0 ± 2.6 24.1 ± 2.2 19.0 ± 2.8 29.8 ± 4.5


36.1 ± 1.3 36.0 ± 2.0 24.1 ± 2.2 19.6 ± 3.4 10.4 ± 2.6


29.6 ± 1.5 27.4 ± 3.3 19.0 ± 2.8 19.6 ± 3.4 28.3 ± 5.2


41.1 ± 2.6 41.6 ± 4.2 29.8 ± 4.5 10.4 ± 2.6 28.3 ± 5.2

Table A.. Lysine distances in monomer A explicit solvent MD

Residue      


15.5 ± 2.9 31.0 ± 1.8 37.6 ± 1.2 31.7 ± 2.1 36.9 ± 3.1


15.5 ± 2.9 19.0 ± 1.5 32.9 ± 1.7 27.1 ± 3.1 28.7 ± 3.4


31.0 ± 1.8 19.0 ± 1.5 24.1 ± 2.1 17.8 ± 2.8 17.6 ± 4.5


37.6 ± 1.2 32.9 ± 1.7 24.1 ± 2.1 16.1 ± 3.1 10.5 ± 3.0


31.7 ± 2.1 27.1 ± 3.1 17.8 ± 2.8 16.1 ± 3.1 17.9 ± 3.0


36.9 ± 3.1 28.7 ± 3.4 17.6 ± 4.5 10.5 ± 3.0 17.9 ± 3.0
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Table A.. Lysine distances in monomer A implicit solvent MD

Residue      


21.8 ± 3.3 32.8 ± 2.1 38.7 ± 1.4 31.1 ± 1.6 42.2 ± 3.9


21.8 ± 3.3 23.3 ± 2.2 39.6 ± 2.4 29.7 ± 2.1 39.4 ± 4.5


32.8 ± 2.1 23.3 ± 2.2 22.8 ± 3.2 13.9 ± 3.9 22.2 ± 4.8


38.7 ± 1.4 39.6 ± 2.4 22.8 ± 3.2 18.9 ± 2.5 10.2 ± 2.8


31.1 ± 1.6 29.7 ± 2.1 13.9 ± 3.9 18.9 ± 2.5 23.2 ± 5.5


42.2 ± 3.9 39.4 ± 4.5 22.2 ± 4.8 10.2 ± 2.8 23.2 ± 5.5

A... Dimers





Ta
bl
e
A
.
.

Ly
si
ne

di
st
an

ce
s
in

di
m
er

G





ex
pl
ic
it
so
lv
en
t
MD


Re
si
du

e

































8.
6
±
1.
4

26
.1
±
1.
8

36
.2
±
1.
5

30
.6
±
1.
1

43
.7
±
2.
3

27
.3
±
1.
1

25
.5
±
1.
6

29
.7
±
4.
3

26
.1
±
2.
3

14
.8
±
1.
6

36
.0
±
4.
5


8.
6
±
1.
4

20
.8
±
1.
6

36
.7
±
1.
7

31
.0
±
1.
8

43
.5
±
2.
5

29
.9
±
1.
4

24
.0
±
1.
4

24
.3
±
3.
9

23
.7
±
2.
8

8.
9
±
1.
6

33
.4
±
5.
7


26
.1
±
1.
8

20
.8
±
1.
6

27
.1
±
4.
0

21
.2
±
3.
3

32
.7
±
3.
1

28
.9
±
2.
9

15
.7
±
2.
7

21
.8
±
2.
6

35
.9
±
2.
8

22
.6
±
2.
0

42
.7
±
6.
7




36
.2
±
1.
5

36
.7
±
1.
7

27
.1
±
4.
0

19
.6
±
3.
9

12
.2
±
3.
0

33
.0
±
2.
4

28
.7
±
2.
9

45
.9
±
2.
9

56
.2
±
2.
3

42
.8
±
1.
8

64
.0
±
6.
5




30
.6
±
1.
1

31
.0
±
1.
8

21
.2
±
3.
3

19
.6
±
3.
9

29
.0
±
4.
8

15
.9
±
2.
8

12
.7
±
2.
0

32
.6
±
3.
6

43
.9
±
2.
0

34
.0
±
1.
6

50
.1
±
4.
6




43
.7
±
2.
3

43
.5
±
2.
5

32
.7
±
3.
1

12
.2
±
3.
0

29
.0
±
4.
8

43
.1
±
3.
8

37
.5
±
3.
3

53
.1
±
3.
5

64
.3
±
3.
2

50
.0
±
2.
6

72
.4
±
7.
0




27
.3
±
1.
1

29
.9
±
1.
4

28
.9
±
2.
9

33
.0
±
2.
4

15
.9
±
2.
8

43
.1
±
3.
8

14
.5
±
1.
9

30
.3
±
2.
2

35
.7
±
1.
5

30
.8
±
0.
9

41
.2
±
3.
2




25
.5
±
1.
6

24
.0
±
1.
4

15
.7
±
2.
7

28
.7
±
2.
9

12
.7
±
2.
0

37
.5
±
3.
3

14
.5
±
1.
9

20
.7
±
2.
6

33
.0
±
1.
8

24
.4
±
1.
2

39
.0
±
5.
4




29
.7
±
4.
3

24
.3
±
3.
9

21
.8
±
2.
6

45
.9
±
2.
9

32
.6
±
3.
6

53
.1
±
3.
5

30
.3
±
2.
2

20
.7
±
2.
6

21
.0
±
4.
6

18
.0
±
4.
4

24
.7
±
6.
7




26
.1
±
2.
3

23
.7
±
2.
8

35
.9
±
2.
8

56
.2
±
2.
3

43
.9
±
2.
0

64
.3
±
3.
2

35
.7
±
1.
5

33
.0
±
1.
8

21
.0
±
4.
6

16
.1
±
2.
9

12
.2
±
3.
7




14
.8
±
1.
6

8.
9
±
1.
6

22
.6
±
2.
0

42
.8
±
1.
8

34
.0
±
1.
6

50
.0
±
2.
6

30
.8
±
0.
9

24
.4
±
1.
2

18
.0
±
4.
4

16
.1
±
2.
9

25
.4
±
6.
0




36
.0
±
4.
5

33
.4
±
5.
7

42
.7
±
6.
7

64
.0
±
6.
5

50
.1
±
4.
6

72
.4
±
7.
0

41
.2
±
3.
2

39
.0
±
5.
4

24
.7
±
6.
7

12
.2
±
3.
7

25
.4
±
6.
0





Ta
bl
e
A
.
.

Ly
si
ne

di
st
an

ce
s
in

di
m
er

A



ex
pl
ic
it
so
lv
en
t
MD


Re
si
du

e

































13
.4
±
2.
1

32
.8
±
2.
0

36
.2
±
1.
5

32
.3
±
1.
2

37
.7
±
2.
8

28
.4
±
1.
4

26
.6
±
1.
2

35
.2
±
3.
6

30
.1
±
3.
1

19
.5
±
2.
8

33
.2
±
4.
2


13
.4
±
2.
1

23
.0
±
1.
4

34
.8
±
1.
6

28
.7
±
1.
7

33
.5
±
3.
3

29
.0
±
1.
2

22
.3
±
1.
5

23
.2
±
2.
1

25
.2
±
1.
7

11
.3
±
1.
4

26
.1
±
3.
2


32
.8
±
2.
0

23
.0
±
1.
4

23
.9
±
1.
8

18
.5
±
2.
2

18
.4
±
2.
9

34
.3
±
2.
5

21
.5
±
2.
7

23
.1
±
2.
1

42
.9
±
2.
3

30
.7
±
1.
7

41
.0
±
3.
0




36
.2
±
1.
5

34
.8
±
1.
6

23
.9
±
1.
8

12
.7
±
1.
9

10
.8
±
3.
1

33
.1
±
1.
5

25
.1
±
2.
0

43
.1
±
2.
0

57
.3
±
1.
7

45
.1
±
1.
3

57
.1
±
2.
8




32
.3
±
1.
2

28
.7
±
1.
7

18
.5
±
2.
2

12
.7
±
1.
9

17
.1
±
3.
0

23
.3
±
1.
3

13
.5
±
1.
7

32
.9
±
2.
0

48
.1
±
1.
6

37
.4
±
1.
1

47
.3
±
2.
8




37
.7
±
2.
8

33
.5
±
3.
3

18
.4
±
2.
9

10
.8
±
3.
1

17
.1
±
3.
0

38
.9
±
2.
9

28
.3
±
2.
7

40
.4
±
3.
2

56
.9
±
3.
3

43
.8
±
3.
3

56
.2
±
3.
8




28
.4
±
1.
4

29
.0
±
1.
2

34
.3
±
2.
5

33
.1
±
1.
5

23
.3
±
1.
3

38
.9
±
2.
9

13
.3
±
1.
4

33
.6
±
1.
1

37
.4
±
1.
0

32
.6
±
0.
8

37
.8
±
1.
7




26
.6
±
1.
2

22
.3
±
1.
5

21
.5
±
2.
7

25
.1
±
2.
0

13
.5
±
1.
7

28
.3
±
2.
7

13
.3
±
1.
4

24
.8
±
1.
6

36
.5
±
1.
5

28
.2
±
1.
5

35
.7
±
2.
4




35
.2
±
3.
6

23
.2
±
2.
1

23
.1
±
2.
1

43
.1
±
2.
0

32
.9
±
2.
0

40
.4
±
3.
2

33
.6
±
1.
1

24
.8
±
1.
6

26
.7
±
2.
2

21
.3
±
2.
2

22
.6
±
3.
0




30
.1
±
3.
1

25
.2
±
1.
7

42
.9
±
2.
3

57
.3
±
1.
7

48
.1
±
1.
6

56
.9
±
3.
3

37
.4
±
1.
0

36
.5
±
1.
5

26
.7
±
2.
2

14
.6
±
1.
7

7.
1
±
1.
7




19
.5
±
2.
8

11
.3
±
1.
4

30
.7
±
1.
7

45
.1
±
1.
3

37
.4
±
1.
1

43
.8
±
3.
3

32
.6
±
0.
8

28
.2
±
1.
5

21
.3
±
2.
2

14
.6
±
1.
7

15
.9
±
3.
2




33
.2
±
4.
2

26
.1
±
3.
2

41
.0
±
3.
0

57
.1
±
2.
8

47
.3
±
2.
8

56
.2
±
3.
8

37
.8
±
1.
7

35
.7
±
2.
4

22
.6
±
3.
0

7.
1
±
1.
7

15
.9
±
3.
2





Ta
bl
e
A
.
.

Ly
si
ne

di
st
an

ce
s
in

di
m
er

A



im

pl
ic
it
so
lv
en
t
MD


Re
si
du

e

































13
.0
±
1.
8

32
.1
±
2.
1

37
.6
±
1.
4

31
.1
±
1.
5

34
.6
±
3.
0

27
.3
±
1.
6

33
.2
±
1.
3

27
.9
±
2.
7

26
.3
±
2.
4

15
.5
±
2.
0

32
.6
±
2.
9


13
.0
±
1.
8

24
.8
±
2.
1

38
.6
±
1.
5

30
.2
±
2.
1

32
.4
±
3.
8

29
.2
±
1.
5

29
.1
±
1.
8

17
.4
±
2.
9

24
.8
±
1.
8

8.
0
±
1.
7

27
.7
±
3.
1


32
.1
±
2.
1

24
.8
±
2.
1

24
.9
±
2.
8

16
.4
±
3.
0

17
.2
±
3.
5

28
.7
±
3.
1

17
.8
±
2.
7

28
.2
±
3.
1

45
.3
±
2.
7

29
.0
±
3.
4

43
.8
±
3.
6




37
.6
±
1.
4

38
.6
±
1.
5

24
.9
±
2.
8

14
.2
±
1.
9

12
.2
±
2.
8

32
.0
±
2.
3

29
.5
±
2.
6

48
.6
±
2.
8

59
.2
±
1.
7

43
.9
±
2.
5

60
.8
±
3.
3




31
.1
±
1.
5

30
.2
±
2.
1

16
.4
±
3.
0

14
.2
±
1.
9

15
.1
±
3.
4

20
.6
±
2.
3

16
.2
±
2.
4

37
.3
±
2.
4

48
.6
±
1.
6

34
.3
±
3.
3

49
.0
±
2.
7




34
.6
±
3.
0

32
.4
±
3.
8

17
.2
±
3.
5

12
.2
±
2.
8

15
.1
±
3.
4

34
.0
±
3.
2

28
.0
±
2.
6

42
.0
±
3.
5

55
.2
±
3.
7

38
.3
±
4.
7

56
.2
±
4.
0




27
.3
±
1.
6

29
.2
±
1.
5

28
.7
±
3.
1

32
.0
±
2.
3

20
.6
±
2.
3

34
.0
±
3.
2

15
.7
±
2.
2

32
.7
±
1.
9

36
.6
±
1.
3

29
.4
±
2.
1

37
.0
±
2.
5




33
.2
±
1.
3

29
.1
±
1.
8

17
.8
±
2.
7

29
.5
±
2.
6

16
.2
±
2.
4

28
.0
±
2.
6

15
.7
±
2.
2

28
.6
±
1.
8

41
.5
±
1.
4

30
.3
±
2.
8

38
.9
±
2.
3




27
.9
±
2.
7

17
.4
±
2.
9

28
.2
±
3.
1

48
.6
±
2.
8

37
.3
±
2.
4

42
.0
±
3.
5

32
.7
±
1.
9

28
.6
±
1.
8

22
.3
±
2.
8

13
.7
±
3.
0

18
.1
±
3.
0




26
.3
±
2.
4

24
.8
±
1.
8

45
.3
±
2.
7

59
.2
±
1.
7

48
.6
±
1.
6

55
.2
±
3.
7

36
.6
±
1.
3

41
.5
±
1.
4

22
.3
±
2.
8

18
.4
±
2.
3

11
.1
±
2.
6




15
.5
±
2.
0

8.
0
±
1.
7

29
.0
±
3.
4

43
.9
±
2.
5

34
.3
±
3.
3

38
.3
±
4.
7

29
.4
±
2.
1

30
.3
±
2.
8

13
.7
±
3.
0

18
.4
±
2.
3

21
.1
±
3.
5




32
.6
±
2.
9

27
.7
±
3.
1

43
.8
±
3.
6

60
.8
±
3.
3

49
.0
±
2.
7

56
.2
±
4.
0

37
.0
±
2.
5

38
.9
±
2.
3

18
.1
±
3.
0

11
.1
±
2.
6

21
.1
±
3.
5





Statement of Authorship

I declare on oath that I completed this work on my own and that information which has
been directly or indirectly taken from other sources has been noted as such. Neither this,
nor a similar work, has been published or presented to an examination committee.

Halle, October , 





Acknowledgements

“This thought has been buried in my head for the
past seven years, and finally refused to be silenced
about a year ago. Since then, the entire foundation
I had up to that point built my life around has been
crumbling. It’s been a struggle to push through and
try and come to terms with these thoughts, but one
thing … has been sustaining me: People. ”

—CualEsMiNombre

First and foremost, I wouldn’t have managed this feat without my family, who carried me
through all this despite the fact that I was not always (or, in fact, at all) easy on them.
I would also like to thank PD Dr. Thondorf and Dr. Dobritzsch for allowing me to work on

a topic that was—at the beginning—a bit mystifying and—at the end—still fascinating. Their
laid-back mentorship allowed me to pursue my own interests within the limits of the topic,
an opportunity which I exploited shamelessly.
The girls in the Molecular Modeling group always provided snacks, great advice, help

with the sometimes overwhelmingly large suites of programs and (last but not least) coffee.
I probably am eternally indebted to them, for I can naught function at all without coffee.
I’d like to thank my editors, Sarah and Katharina as well as Lucas. The way I picture it,

they could probably only shake their heads while pouring over the mess that I produced
here. Thanks, guys, much appreciated—if I can return the favor, just say so.
I’d also like to thank Thomas Zimmermann, who, when computing resources were on the

verge of growing too small, provided our group with additional servers and allowed me to
administrate them. This was a valuable experience, and I cannot thank him enough for that.
Last but not least, I’d like to thank the people that got my back whenever I fell down and

urged me to get back up again. I won’t name you, because you know who you are. Thanks
a lot, guys, I’m looking forward to DnD, a beer at the pub, and what have you.




	Introduction
	Heavy Metal Detoxification
	PCs
	Phytochelatinsynthase
	Structure
	Functions and Mechanism
	Regulation and Role of the C-Terminus

	Motivation and Goal

	Fundamentals
	Molecular Modeling
	Alignments
	Comparative Modeling
	Clustering

	Molecular Dynamics
	Force Fields
	Energy Minimization
	Integrators
	Constraints
	Constant Temperature and Pressure
	Explicit Solvent Simulations
	Implicit Solvent Simulations


	Methods
	Template Identification
	Sequence Alignment
	Modeling
	Structure Assessment
	Molecular Dynamics
	Model Preparation
	Amber
	Gromacs

	Investigation of Cd2+ Binding Sites

	Results and Discussion
	Modeling
	Template Identification
	Alignments
	Model Building

	Molecular Dynamics
	Monomeric Model MD Simulations
	Dimeric Model MD Simulations

	Suitability for Crosslinking
	Cd2+ Binding Sites

	Conclusion
	Outlook
	Bibliography
	Appendix
	Modi Operandi of Modeling Servers
	HHpred
	I-Tasser
	Raptor-X
	Phyre2
	Multicom
	Swiss-Model
	Geno3D
	Loopp

	CrPCS Alignment from Literature
	Full Modeling Alignment
	Modeling Scores
	Distances Between Solvent-Exposed Lysine Residue -Nitrogens
	Monomers
	Dimers



