Communication Patterns for
Interconnecting and Composing Medical Systems

Venkatesh-Prasad Ranganath

Yu Jin Kim

John Hatcliff Robby

{rvprasad, yujin, hatcliff, robby } @k-state.edu
CIS Department, Kansas State University, Manhattan, Kansas, U.S.A.

Abstract— This paper proposes a set of communication pat-
terns to enable the construction of medical systems by compos-
ing devices and apps in Integrated Clinical Environments (ICE).
These patterns abstract away the details of communication
tasks, reduce engineering overhead, and ease compositional
reasoning of the system. The proposed patterns have been
successfully implemented on top of two distinct platforms (i.e.,
RTI Connext and Vert.x) to allow for experimentation.

I. INTRODUCTION

The ability to compose various devices and apps (appli-
cations) into a medical system at point-of-care is similar to
the ability to compose a software system by combining off-
the-shelf software components. As with component-based
approach to software [16], a component-based approach to
medical systems depends on the description of capabilities
and interfaces of devices and apps and the ability to check for
substitutability (e.g., can pulse oximeter X be replaced with
pulse oximeter Y without perturbing the medical system?)
and compatibility (e.g., can pulse oximeter X be composed
with patient monitor app M?) using device and app descrip-
tions. These requirements are necessary to ensure flexible
and correct composition of interoperable devices and apps.

Unlike most day-to-day software, failures in medical
systems can have adverse consequences including loss of
life. Thus, a component-based approach to medical systems
should also provide support to reason about the safety of both
the components (i.e., devices and apps) and the composition
(i.e., composed medical systems).

In this regard, the ASTM F2761 standard proposes an
architecture for integrated clinical environments (ICE) [9]
that enable the composition of devices and apps at point-of-
care into a medical system. Complementing ASTM F2671,
the AAMI-UL JC 2800 effort is developing a family of
standards for safety, security, and essential performance
of interoperable medical systems [4]. The 2800 standards
include safety/security requirements for the ICE architecture,
as well as safety/security process-related requirements for
the development of interoperable systems built from ICE
compliant devices and apps. While these standards recognize
the need of device models — description of the capabilities
and interfaces of devices', there is very little information

This work was supported in part by NSF/FDA Scholar in Residence
grants #1355778 and #1446544, NSF CPS grant #1239543, and by
CIMIT/Massachusetts General Hospital as a sub-contract of a NIH/NIBIB
Quantum grant.

I These models are applicable to apps as well.

about what should constitute a device model. In a recent
effort, driven by the perceived needs of the stakeholders in
ICE and the goals laid out for medical application platforms
(MAP) [10] such as ICE (e.g., device/app-wise regulation,
dynamic composition of devices and apps), we identified a
set of requirements for device models [13].

The description of communication needs of a device was
identified as one of the requirements of the device model.
Consequently, we proposed a set of communication patterns
that can serve as the schema to describe the communica-
tion needs of devices/apps. In this paper, we present these
communication patterns.

II. RATIONALE FOR COMMUNICATION PATTERNS

Before we describe communication patterns, we describe
the rationale for including and excluding various aspects of
communication from the patterns.

Data Type: For a valid connection between two com-
munication endpoints, both need to agree on the types of
the data being communicated. In programming languages
community, there are numerous efforts pertaining to the
design and use of type systems to reason about data types.
Since this knowledge can be reused, the proposed patterns
do not prescribe how to capture or reason about data types.

Quality of Service (QoS): Communications in medical
systems may require and impose strict guarantees, e.g., the
x-ray machine should be stopped after 2 seconds. Such
constraints can impact the behavior of the underlying com-
munication substrate and the communicating components.
Furthermore, violation of such constraints can lead to catas-
trophic results, e.g., the stop command may not reach the x-
ray machine in time and cause harmful prolonged exposure.
Hence, the proposed patterns capture QoS requirements.

Local Control: Not all QoS properties are supported by
all communication substrates. To deal with this possibility,
the proposed patterns breakdown common QoS properties
into finer properties that can be monitored locally (as part
of the client or the service) and from which common QoS
requirements for the underlying communication substrate can
be derived.

Abstraction: In component-based approach to software,
component frameworks abstract away lower-level details of
various aspects, e.g., communication, data persistence. Such
abstraction helps component developers to focus on the core
behavior of components and delegate lower level details

to the framework. Moreover, such abstraction can assist
with modeling and reasoning of the components and their
composites. In a similar spirit, the proposed patterns abstract
the lower-level details of communication substrate (and are
agnostic to communication substrates).

Command-Query Separation: Bertrand Meyer devised
command-query separation (CQS) principle in the context
of Eiffel programming language [15]. This principle states
that every method (function) should either be a command
that performs an action or a query that returns data, but
not both. Such separation aids reasoning about composite
systems by providing clear separation between interactions
in such systems. Hence, the proposed patterns follow the
CQS principle.

IIT. COMMUNICATION PATTERNS

To describe communication patterns, we use the following
terms and assumptions.

1) Both devices and apps are referred as components.

2) Components communicate with each other via a com-
munication substrate (e.g., O/S-level networking level, a
sophisticated middleware) that is responsible for moving
the bits from source to destination.

3) If a component can reach the communication substrate,
then the communication substrate can reach the compo-
nent and vice versa.

4) Components have two sorts of capabilities: provide and
receive data and to perform actions to change the
physical state of the system, e.g., by moving a stepper
motor or updating a display.

5) Parameters can influence actions. To avoid the influence
of change of parameters when a controlled action is in
progress, actions depend on the value of parameters at
the time of initiation.

6) Components expose data interfaces to provide and
access data (including parameters) and action interfaces
to initiate offered actions.

7) Each component (and, consequently, the composite sys-
tem) has a soft (data) state composed of observable data
(i.e., data accessible via data interfaces) and hard (phys-
ical) state composed of physical state of the component
(e.g., the current xy-angle of a robotic arm).

8) Hard states can be modified only via action interfaces
while soft states can be directly modified via data
interfaces and indirectly modified via action interfaces,
e.g., performing an action can change the reported data.

9) Each pattern comprises various roles fulfilled by com-
ponents. Each component can take on multiple roles.

10) Patterns involving data exchanges rely on a sound type
system to ensure the validity of data exchanges.

We describe each pattern in a fixed format that captures
the intent of the pattern, prescribed use of the pattern, QoS
properties supported by the pattern, QoS requirements on the
communication substrate for supporting the pattern, possible
failures in the pattern, an example use of the pattern, and
any challenges in realizing the pattern.

A. Publisher-Subscriber (Producer-Consumer) Pattern

Intent: Decouple publishers (producers) and subscribers
(consumers) of data by focusing on the topic of interest (and
not on the publishers and subscribers).

Description: In this pattern, publisher role publishes data
about a topic and a subscriber role subscribes to data
about a topic. (This pattern is an incarnation of topic-based
communication offered by most publish-subscribe middle-
ware [3].) The topic uniquely identifies the type of the
published/subscribed data. The act of publishing data is asyn-
chronous — the publisher does not wait for the communica-
tion substrate to deliver the message to subscribers. Further,
the subscriber receives messages from every publisher in
the order the messages are published by the publisher (local
order); out of order messages are dropped.

Use: Connect data interfaces not associated with parameters
(that affect actions).

QoS Properties: Figure 1 illustrates the relationship between
the supported QoS properties as the pattern is exercised at
runtime.

e MinimumSeparation (N,,;) between two consecutive
publications. If the duration between two consecutive
publications is less than N, then the second publica-
tion is dropped with fast publication failure.?

o MaximumLatency (L) to accept a publish request. If
the communication substrate fails to accept a publish
request within L,,; time units, then the publication
results in timeout failure.

o MinimumRemainingLifetime (R,.;) of the data upon
publication. If the data arrive at the subscriber after
R, time units since publication, then the data is
treated as stale and the subscriber is notified of stale
data.

o MinimumSeparation (Ng,;) between two consecutive
message arrivals at the subscriber. If the duration be-
tween the arrival of two consecutive messages is less
than Ng,p, then the second message is dropped.

o MaximumSeparation (X,p) between two consecutive
message arrivals at the subscriber. If the duration be-
tween the arrival of two consecutive messages is greater
than X,,p, then the subscriber is notified of slow
publication.?

o MaximumLatency (Lgyp) to consume a message. If the
subscriber fails to consume a message within L, time
units, then the message is considered as an unconsumed
message. After a fixed number of consecutive uncon-
sumed messages (specified by ConsumptionTolerance
sub-property), the subscriber is notified of slow con-
sumption.

o MinimumRemainingLifetime (Rg,,) of the received
data. If the data arrive at the subscriber with remaining
lifetime smaller than R, then the data is considered
stale and the subscriber is notified of stale data.

2This QoS property was proposed by King et al. [14].

msc Publisher-Subscriber Pattern

Publisher

[?]

Subscriber

[s]

Comm Substrate

o]

msc Requester-Responder Pattern

Comm Substrate

o]

Requester

[o]

s
¢

Responder
[s]

request; s

process;.q,

| A
| S L'req L'res >
v response; Q,

I
Nyeq < Y/ response;.s

<
| 2 Rrgq RT‘ES =

piy
]
]
Rv A

requestitl «

P
I
I
I
[2 NTeS
I
|
I
Y4

Process i1«

publish;
A% Aoy
I
| I accepted; \val pub
] T
consume;, p;
< l 3, P;
RPUb - | [2 Npub A A A
| Lsub 2 | ! !
: | v consumed; p, 1 | 1 > Rsup
T |
I
V— 1 . Nsub §7X5ub ZI _v
v publishii1 I
I
consumej+1 *Iv
| | |
Fig. 1. Sequence of message flows and corresponding time periods (time

progressing from top to bottom) in publisher-subscriber pattern.

QoS Requirements: For the data to be delivered with
lifetime of at least R,,;, communication substrate should
ensure maximum message delivery latency (L,,) does not
exceed Rpub - Rsub - Lpu,b > Lm-

Example: A pulse oximeter broadcasts pulse rate data as
a pulse-rate topic and a patient monitor app subscribes to
this topic to get the patient’s pulse rate. Assuming the pulse-
rate topic is well-defined (based on standards such as 11073
[12]) in terms of the data type and its semantic interpretation,
upon switching pulse oximeters, the patient monitor need
not be reconfigured if the new pulse oximeter broadcasts its
measurement as pulse-rate topic.

B. Requester-Responder
Intent: Retrieve data from a specific component.

Description: In this pattern, the requester role requests
some data from a specific responder role and the responder
responds back with the data. In terms of data flow, the data
flows from the service (responder) to the client (requester).
This pattern requires the requester to know the identity of
the responder. This identity uniquely identifies the requested
data and its type, and this enables static validation of the
communication. This pattern is synchronous — the requester
waits for either the arrival of the response, a notification of
failure, or a fixed period, whichever is earlier. Furthermore,
the responder receives requests in the order they are issued by
the requester (local order); out of order requests are dropped.

Use: Connect data interfaces including those associated with
parameters.

QoS Properties: Figure 2 illustrates the relationship between
the supported QoS properties as the pattern is exercised at
runtime.

o MinimumSeparation (N, .q) between consecutive re-
quests. If the duration between two consecutive requests
is less than N,.,, then the second request is dropped
with fast request failure.

Fig. 2. Sequence of message flows and corresponding time periods (time
progressing from top to bottom) in requester-responder pattern.

e MaximumLatency (L,.,) between the sending of a re-
quest and the arrival of the corresponding response. If
the response does not arrive within L,.., time units, then
the request results in fimeout failure.

o MinimumRemainingLifetime (R,.,) of the requested
data. If response arrives at the requester with remaining
lifetime less than R,.,, then the requester is notified of
stale data.

o MinimumSeparation (N,.s) between the arrival of con-
secutive requests. If the duration between the arrival
of two consecutive requests is less than N,.g, then the
request is dropped with excess load failure.

o MaximumLatency (L,.s) between receiving a request
and providing the response to the communication sub-
strate. If the response is not provided within the L,
time units, the request results in timeout failure.

o MinimumRemainingLifetime (R,.s) of retrieved data
(response). If the data with the required remaining
lifetime cannot be provided by the responder, then
request results in data unavailable failure.

QoS Requirements: For response to be delivered with life-
time of at least R,.,, communication substrate should ensure
the sum of maximum latencies to deliver the request to the
responder (L,,,) and the resulting response to the requester
(L},) does not exceed Lycq+Ryeq—Lres—Ryeq > Lim~+L1,.

Possible Failures: In addition to QoS property specific
failures, the pattern can fail with data unavailable failure
when the responder cannot provide the requested data (due
to reasons such as the data are being calculated or the state
of the responder inhibits the provision of the data).

Example: A blood pressure (BP) monitor periodically mea-
sures blood pressure and responds with the current mea-
surement when requested via its uniquely identified data
interface. A patient monitor app requests blood pressure
measurement from the BP monitor via its uniquely identified
data interface. Upon switching the BP monitor, the patient
monitor will have to be reconfigured with the unique identi-
fier of the data interface of the new BP monitor.

C. Sender-Receiver

Intent: Provide data to a specific component.

Description: In this pattern, the sender role sends data to
a specific receiver role and the receiver responds back with
either data accepted or data rejected acknowledgement. In
terms of data flow, the data travels from the client (sender) to
the server (receiver). This pattern requires the sender to know
the identity of the receiver. This identity uniquely identifies
the sent data and the data type; this enables static validation
of the communication. This pattern is synchronous — the
sender waits either for an acknowledgement, a notification of
failure, or a fixed period, whichever is earlier. Furthermore,
the receiver receives data in the order they are sent by the
sender (local order); out of order requests are dropped.

Use: Connect data interfaces associated with parameters.

QoS Properties: Since this pattern facilitate point-to-point
communication, it supports QoS properties similar to those
supported by the requester-responder pattern. However, being
limited to parameters, it supports fewer QoS properties.
Specifically, the sender role supports MinimumSeparation
(Nsen) and MaximumLatency (Lsey,) properties similar to
MinimumSeparation (Ny.,) and MaximumLatency (Lyeq)
properties supported by the requester role with fast send
and timeout failures, respectively. Similarly, the receiver role
supports MinimumSeparation (N,..) and MaximumLatency
(Lyec) properties similar to MinimumSeparation (N,.s) and
MaximumLatency (L,.s) properties supported by the respon-
der role with the same kinds of failures.

QoS Requirements: To support the above QoS properties,
the communication substrate should ensure the sum of max-
imum latencies to deliver the sent data to the receiver (L,,)
and the resulting acknowledgement to the sender (L) does
not exceed Lger, — Lypee > Ly + L.

Example: A BP monitor measures a patient’s blood pressure
at regular interval of 3 minutes. Upon attaching an infusion
pump to the patient, the patient monitor app instructs the BP
monitor to change the measurement interval to 1 minute by
sending the new interval parameter.

D. Initiator-Executor

Intent: Initiate an action in a specific component.

Description: In this pattern, the initiator role requests a
specific executor role to perform an action. Depending on
the successful completion of the action, the executor provides
action succeeded or action failed acknowledgement. If the
action is unavailable, then the executor provides action
unavailable acknowledgement. This pattern requires the ini-
tiator to know the identity of the executor. Since the pattern
does not facilitate flow of parameters, it is safe to combine
this identity with an action identifier provided by the initiator
to uniquely identify the action. This pattern is synchronous
— the initiator waits either for an acknowledgement, a
notification of failure, or a fixed period, whichever is earlier.
Also, the executor receives initiations in the order they are

issued by the initiator; out of order requests are dropped.
Use: Connect action interfaces.

QoS Properties: This pattern supports QoS properties
similar to those supported by the sender-receiver pattern.
Specifically, the initiator role supports MinimumSeparation
(Nin;) and MaximumLatency (L;y,;) properties similar to
MinimumSeparation (Nge,) and MaximumLatency (Lger)
properties supported by sender role but with fast initiation
and timeout failures, respectively. Similarly, the executor role
supports MinimumSeparation (Neze) and MaximumLatency
(Leye) properties similar to MinimumSeparation (N,...) and
MaximumLatency (L,..) properties supported by receiver
role with the same kinds of failures.

QoS Requirements: To support the above QoS properties,
the communication substrate should ensure the sum of max-
imum latencies to deliver the initiation to the executor (L,,)
and the resulting acknowledgement to the initiator (L/) does
not exceed Ljn; — Lege > Ly + L/,

Example: Before capturing a radiograph of a patient hooked
to a ventilator, a coordination app initiates a stop action on
the ventilator attached to the patient being radiographed.

E. Orchestration

Intent: Orchestrate data transfers and actions among devices
and apps to accomplish a task (or achieve a goal).

Description: In this pattern, a component playing the role
of the orchestrator interacts with various components via
different communication patterns in the specified order. So,
unlike previous patterns, the number of participants can vary
in this pattern. The success and failure of orchestration is
dictated by the success and failure of communication patterns
constituting the orchestration. The same is true of the QoS
requirements imposed by the orchestration on the communi-
cation substrate. As for QoS properties, MaximumLatency to
complete an orchestration is the only relevant property and
it too depends on constituting communication patterns.

Example: To capture a radiograph of a patient hooked to
a ventilator, once the patient is in place, the orchestrating
app stops the ventilator, starts the x-ray machine, stops the
x-ray machine, and then restarts the ventilator. If the x-ray
machine fails to start, the app restarts the ventilator.

Challenges: Unlike other patterns that have specific failures,
each orchestration can have different failures stemming from
constituting communication patterns. Further, when an or-
chestration fails after executing few constituting patterns,
it is possible the system can be in an unsafe state, e.g.,
x-ray machine may fail to execute the sftop action. Worse
yet, the system could have performed some action that
cannot be undone, e.g., performed a drug injection amongst
a series of drug injections and a constituting communication
pattern fails. Such concerns are further exacerbated when
orchestrations performed in parallel interfere with each other
as they involve common components.

Above situations are strikingly similar to situations in-
volving concurrent modifications in databases. The ill-effects

N

Client Service
A A

Requester
L))

Service Invoke
Handler

]

...

Client Request
Handler
A

—> Communication Substrate

Fig. 3. Architecture of our implementation of communication patterns.
Solid lines represent flow of data/request from client to service. Dotted
lines represent the flow of data/response from the service to client.

of concurrent modifications (data inconsistency) are avoided
in databases by employing transactions, which provide iso-
lation and atomicity (all-or-nothing) guarantees by relying
on the ability to rollback (undo modifications). So, while
transactions seem to be an obvious solution to safely realize
orchestration in medical systems, the physical aspect of
medical systems limits the ability to undo modifications and,
consequently, the possibility of directly applying the concept
of transactions to medical systems.

To move forward, we need a better understanding of the
sort of orchestration needed in medical systems. Specifically,
we need to understand clinical scenarios that need orches-
tration, characteristics of such scenarios, and requirements
of orchestration in such scenarios in terms of the sort
of orchestrated actions, their effects, possibilities to undo
effects, and admissible failures and their characteristics (i.e.,
nature of failure, criticality). With this understanding, we
can devise and evaluate alternative approaches to support the
desired sorts of orchestrations in a given clinical scenario.

IV. IMPLEMENTATION

To validate the viability of the proposed patterns, we
implemented the patterns on two different platforms in Java
(RTI Connext [7] and Vert.x [8]). The source code of
the implementation is available at http://bitbucket.
org/rvprasad/clinical—-scenarios/.

As the entry point, the implementation exposes a
CommunicationManager interface to configure (e.g., via
InitiatorConfiguration), instantiate, and manage
instances of various roles described in the patterns. Once a
specific role has been instantiated, actions supported by that
role instance can be accessed via a simple interface, e.g.,
Initiator (as shown below).
interface Initiator<T extends Serializable> {

InitiationStatus initiate (T action);

}

Under the hood, we use a layered architecture based on
remoting patterns [17] to implement the patterns. As depicted
in Figure 3, the implementation uses the requester remoting
pattern to encapsulate and hide details specific to client-
side processing pertaining to communication, e.g., check for

maximum service latency. Similarly, the implementation uses
invoker remoting pattern to encapsulate and hide details spe-
cific to service-side processing pertaining to communication,
e.g., to check for minimum separation between consecutive
service requests.

To interface with communication substrates that move bits,
our implementation uses client request handler and service
request handler remoting patterns on client and service sides,
respectively. These remoting patterns allow the implementa-
tion to decouple the details of the proposed patterns from
the low-level details of various substrates. Consequently,
to support the proposed patterns on top of a different
communication substrate, we only need to implement these
handlers on top of the substrate along with a substrate-
specific implementation of CommunicationManager.

We have successfully tested this architecture by imple-
menting a library of these patterns (except orchestration) on
top of RTI Connext and Vert.x. RTI Connext is an implemen-
tation of Data Distribution Service (DDS) [6] that supports
publish-subscribe paradigm. In addition, it also supports
point-to-point communication via request-reply pattern. So,
with RTI Connext, we realized publisher-subscriber pattern
directly via existing support for publish-subscribe pattern and
the rest of the patterns using request-reply pattern. In com-
parison, Vert.x is a lightweight, high performance application
platform for JVM that provides an event bus with support
for point-to-point communication. Consequently, with Vert.x,
we realized every pattern using the event bus.

Besides decoupling the implementation from middleware
and simplifying the application-level communication inter-
face, the architecture allows the implementation to non-
intrusively add logic to collect data about communication.
For example, the architecture allows seamless logging of
data about communication at each role and client/service that
can help with analysis (e.g., diagnostic, forensic) of medical
systems in various clinical scenarios.

V. RELATED WORK

In his master’s thesis, Hoffman proposed a standard for
interoperability of devices and apps in an integrated clinical
environment. This standard supported four types of message
transactions/exchanges between medical devices — get and
set data, initiate action, and notify about events [11]. In
comparison, the proposed patterns are similar to get, set, and
action exchanges. While event exchange is not supported by
a dedicated pattern, it can be trivially realized via publisher-
subscriber pattern or sender-receiver pattern. Also, the pro-
posed patterns support communication QoS properties and
failures relevant in medical systems.

In the ICE community, OpenIlCE [1] uses publish-
subscribe paradigm [3] to facilitate all communications be-
tween medical devices and apps in an ICE system. On the
other hand, OpenSDC [2] embraces service-oriented archi-
tecture via web services and proposes a small set of standard
services (e.g., get, set/action, event report, waveform, PHI
(protected health information)) along with a predefined set of
operations. Furthermore, neither of these efforts capture QoS

http://bitbucket.org/rvprasad/clinical-scenarios/
http://bitbucket.org/rvprasad/clinical-scenarios/

requirements pertaining to communication. In comparison to
OpenICE and OpenSDC, we propose a collection of patterns
with specific and distinct intent to enable unambiguous
description of communication between devices and apps,
including QoS requirements. With such specificity and clarity
in description, we believe reasoning about medical systems
will be easier; specifically, as the community embraces
a model-centric process to develop, certify, approve, and
deploy safe medical devices and apps. Furthermore, as these
patterns abstract away low-level networking details, stake-
holders dealing with device/app code can operate at the same
level of abstraction as stakeholders dealing with device/app
models.

Constrained Application Protocol (CoAP) [5] was recently
proposed as the communication protocol in the context of
Internet of Things (IoT). The proposed patterns are similar to
CoAP — they address the need to describe communication
between entities. However, besides the stark difference of
the patterns being informative and CoAP being normative,
there are few other non-trivial differences. For example, the
proposed patterns specify required features of the underlying
communication substrate while CoAP prescribes specific
transport protocols. Also, unlike CoAP, the patterns directly
embody QoS properties and failures relevant to the safe
operation of medical systems.

VI. ONGOING WORK

Currently, we are implementing few devices and apps
using the above described implementation of the proposed
patterns to realize various clinical scenarios in an artificial
setting. In this exercise, we plan to evaluate the ability of the
proposed patterns to facilitate easy logging and diagnostics of
medical systems composed of apps and devices; specifically,
during forensic analysis of failed clinical scenarios.

In parallel, we are realizing the same clinical scenarios
using traditional publish-subscribe pattern using OpenlCE
[1] and RTI Connext. The goal of this exercise is to com-
pare patterns-based communication to traditional publish-
subscribe paradigm both in terms of ease of development
and forensic analysis of clinical scenarios.

VII. FUTURE WORK

As mentioned in Section III, orchestration is relevant for
effective use of medical systems in many clinical scenarios.
However, the physical aspect of medical systems complicates
the support for orchestration due to the inability to undo
certain actions. So, an open problem in this space is to
identify the kind of orchestration needed in medical systems
and then devise and evaluate alternative approaches to
support such orchestration.

VIII. SUMMARY

In this paper, we have presented reasons for identifying
communication patterns necessary to compose safe and reli-

able medical systems from devices and apps. As a solution,
we have proposed a set of communication patterns (backed

by a proof of concept implementation) that can facilitate
reliable composition of medical systems. While we proposed

orchestration as a communication pattern, we acknowledge
more work is needed to understand and support orchestration
in medical systems.

With this effort, we see an opportunity in the community
to compile and standardize a core set of communication
patterns that enable construction of safe and reliable medical
systems at point-of-care by composing heterogeneous yet
interoperable devices and apps.

ACKNOWLEDGEMENT

We thank Stephen Barrett, Andrew King, Insup Lee, Sam
Procter, and Eugene Vasserman for their feedback during the
discussions of communication patterns.

REFERENCES

[1] OpenICE Prototype: A New, Open, Interoperable Medical Device
Clinical Research Platform. Software available at http: //mdpnp.
org/MD_PnP_Program___OpenICE.html.

[2] OpenSDC Communication Library. Software available at http://
opensdc.sourceforge.net/.

[3] Publish—-Subscribe Pattern. Info at http://en.wikipedia.org/
wiki/Publish%E2%80%93subscribe_pattern.

[4] Scope of UL2800. Info at http://ulstandardsinfonet.ul.
com/stp/\Proposed_Scopes/prop-2800_scope.html.

[5] Constrained Application Protocol (CoAP), June 2014. Info at https:
//datatracker.ietf.org/doc/rfc7252/.

[6] Data Distribution Service (DDS) specification, April 2015. Available
at http://www.omg.org/spec/DDS/1.4/.

[71 RTI Connext, 2015. Available at http://www.rti.com/
products/dds/index.html.

[8] Vert.x, 2015. Available at http://vertx.io/.

[9] ASTM International. ASTM F2761 - Medical Devices and Medical
Systems - Essential safety requirements for equipment comprising the
patient-centric integrated clinical environment (ICE), 2009.

[10] J. Hatcliff, A. King, I. Lee, A. MacDonald, A. Fernando, M. Robkin,
E. Vasserman, S. Weininger, and J. M. Goldman. Rationale and Archi-
tecture Principles for Medical Application Platforms. In International
Conference on Cyber-Physical Systems (ICCPS), pages 3-12, 2012.

[11] R. M. Hofmann. Modeling medical devices for plug-and-play inter-
operability. Master’s thesis, MIT, June 2007.

[12] ISO/IEEE. ISO/IEEE11073-x Medical Health Device Communication
Standards Family. 2004.

[13] Y.J. Kim, J. Hatcliff, V. P. Ranganath, Robby, and S. Weininger. "In-
tegrated Clinical Environment Device Model:Stakeholders and High
Level Requirements”. In Medical Cyber Physical Systems Workshop
(MCPS), 2015.

[14] A. King, S. Chen, and I. Lee. The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with openflow.
In International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pages 133-140, 2014.

[15] B. Meyer. Command Query Separation. Info at http:
//en.wikipedia.org/wiki/Command%E2%80%93query_
separation.

[16] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 2002.

[17] M. Volter, M. Kircher, and U. Zdun. Remoting Patterns. John Wiley
& Sons, Ltd, 2004.

http://mdpnp.org/MD_PnP_Program___OpenICE.html
http://mdpnp.org/MD_PnP_Program___OpenICE.html
http://opensdc.sourceforge.net/
http://opensdc.sourceforge.net/
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://ulstandardsinfonet.ul.com/stp/\Proposed_Scopes/prop-2800_scope.html
http://ulstandardsinfonet.ul.com/stp/\Proposed_Scopes/prop-2800_scope.html
https://datatracker.ietf.org/doc/rfc7252/
https://datatracker.ietf.org/doc/rfc7252/
http://www.omg.org/spec/DDS/1.4/
http://www.rti.com/products/dds/index.html
http://www.rti.com/products/dds/index.html
http://vertx.io/
http://en.wikipedia.org/wiki/Command%E2%80%93query_separation
http://en.wikipedia.org/wiki/Command%E2%80%93query_separation
http://en.wikipedia.org/wiki/Command%E2%80%93query_separation

	Introduction
	Rationale for Communication Patterns
	Communication Patterns
	Publisher-Subscriber (Producer-Consumer) Pattern
	Requester-Responder
	Sender-Receiver
	Initiator-Executor
	Orchestration

	Implementation
	Related Work
	Ongoing Work
	Future Work
	Summary
	References

