(Spring 2012-13)

Minimum time required in tracking cubic splines

We are given θ_{0}, θ_{f}, and the fact that $\dot{\theta}_{0}=\dot{\theta}_{f}=0$. We want to find a cubic segment that will interpolate these states with a guarantee that the velocity and acceleration will stay below some specified values:

$$
|\dot{\theta}(t)| \leq \dot{\theta}_{\max }, \quad|\ddot{\theta}(t)| \leq \ddot{\theta}_{\max }
$$

If we solve $\theta(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ for $\theta(0)=\theta_{0}, \theta\left(t_{f}\right)=\theta_{f}, \dot{\theta}(0)=0$, and $\dot{\theta}\left(t_{f}\right)=0$, we get:

$$
a_{0}=\theta_{0}, \quad a_{1}=0, \quad a_{2}=\frac{3}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right), \quad a_{3}=-\frac{2}{t_{f}^{3}}\left(\theta_{f}-\theta_{0}\right)
$$

The only remaining free variable t_{f}. So we will find a t_{f} that satisfies the $\dot{\theta}_{\max }$ and $\ddot{\theta}_{\max }$ constraints, and then find the coefficients of the spline from the above equations.
In order to satisfy the constraints, we need to examine the extrema of $\dot{\theta}(t)$, and $\ddot{\theta}(t)$. In other words

$$
|\dot{\theta}(t)| \leq\left|\dot{\theta}_{e x}\right| \leq \dot{\theta}_{\max } \text { and }|\ddot{\theta}(t)| \leq\left|\ddot{\theta}_{e x}\right| \leq \ddot{\theta}_{\max }
$$

The velocity is maximized at $t_{f} / 2$, since $\dot{\theta}(t)$ is a parabola with zeroes at 0 and t_{f} :

$$
\begin{aligned}
& \dot{\theta}_{e x}=\left|\dot{\theta}\left(t_{f} / 2\right)\right| \\
\Rightarrow & \left|a_{1}+2 a_{2} \frac{t_{f}}{2}+3 a_{3} \frac{t_{f}^{2}}{4}\right| \leq \dot{\theta}_{\max } \\
\Rightarrow & \left|\frac{3}{t_{f}}\left(\theta_{f}-\theta_{0}\right)-\frac{3}{2 t_{f}}\left(\theta_{f}-\theta_{0}\right)\right| \leq \dot{\theta}_{\max } \\
\Rightarrow & \left|\frac{3}{2 t_{f}}\left(\theta_{f}-\theta_{0}\right)\right| \leq \dot{\theta}_{\max }
\end{aligned}
$$

So the velocity constraint is satisfied if:

$$
t_{f} \geq \frac{3}{2 \dot{\theta}_{\max }}\left|\theta_{f}-\theta_{0}\right|
$$

Similarly, to satisfy the acceleration contstraint, note that $\ddot{\theta}(t)$ is a linear function with extrema at $t=0$ and $t=t_{f}$:

$$
\begin{aligned}
& \left|\ddot{\theta}_{e x}\right|=|\ddot{\theta}(0)| \\
\Rightarrow & \left|2 a_{2}+\left(6 a_{3}\right)(0)\right| \leq \ddot{\theta}_{\max } \\
\Rightarrow & \left|\frac{6}{t_{f}^{2}}\left(\theta_{f}-\theta_{0}\right)\right| \leq \ddot{\theta}_{\max }
\end{aligned}
$$

So the acceleration constraint is satisfied if

$$
t_{f} \geq \sqrt{\frac{6}{\ddot{\theta}_{\max }}\left|\theta_{f}-\theta_{0}\right|}
$$

Putting these two conditions together, the constraint on t_{f} is

$$
t_{f} \geq \max \left(\frac{3}{2 \dot{\theta}_{\max }}\left|\theta_{f}-\theta_{0}\right|, \sqrt{\frac{6}{\ddot{\theta}_{\max }}\left|\theta_{f}-\theta_{0}\right|}\right)
$$

