Snippets
Peter Scargill Nano Peripheral IR (IR section untested, input always uses 2, output needs 3 if used)
Revised by
Peter Scargill
df35260
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | // So this is a relatively simple,cheap peripheral using a £1.50 NANO board from China.
// It is supported by my ESP8266 software but as it is an I2c slave you could run it
// from anything able to handle I2c. For example I have found that some of the NanoPi units
// are not too keen on even a bright LED on their IO pins and from an operating
// system like Linux, getting PWM on several pins is just not on... so - plug in this device
// (default ID 9) with pullups (always needed for I2c) and you can gain PWM, ADC
// and general IO for very little money.
//
// This version supports IR on pin 2 - you need this - follow installation instructions properly
// https://github.com/cyborg5/IRLib2
// Pin 2 is used for IR in using a standard 38khz type IR receiver. PWM not affected.
// Note however the RETURN values have changed - now 6 bytes with the 5th being status.
// in the case of IR, 0,1,2,3 are 32 bit value, 4 is protocol. If protocol is zero, nothing there.
// 32 byte circular buffer.
// if and when IR out is set up - this has to be pin 3.
//
// So as a guide you could use 3,5,6 and 9, 10 and 11 for PWM (unless you use these pins for general IO)
// you can use 2, 4, 7, 8, 12 and 13 as input/output (I tried using 0 and 1 - no go 0 flashes
// on power up - 1 has pullup - best just avoid for GPIO 0 - use for serial IO).
// remember 13 probably has a LED attached on the board so best used for output.
// You could use A0 (14), A1 (15), A2 (16) and A3 (17) as analog in - possibly
// A6 (20) and A7 (21) if available. Set to 1.1v full scale.
// A4 and A5 are used for the I2c where A4 is SDA and A5 is SCL.
// On the blog at https://tech.scargill.net you'll see several examples of using I2c from various boards.
//
// Late addition - servos - any of the pins 2-13 can be a servo. command is 11 - so device, command, pin, value
// Send value 255 to disconnect a servo and note if ANY pin is set up as a servo you lose PWM options on pins 9 and 10.
// Just disconnect all individually to get the PWM back (normally all disconnected at power up).
// Values 0-180 but this varies with different servos. Mine buzzed at 0 !! See Arduino Servo library
//
// A simple i2c SLAVE - default device number 9 - reads instructions from
// master and either sets outputs or returns inputs accordingly.
//
// Not yet used but check out the enable interrupt library here
// https://github.com/GreyGnome/EnableInterrupt
// could be used for edge-triggered interrupts on any pin for pulse counting
//
// There is also now a soft fade option for PWM, a tone generator and Dallas temperatur chip support for up to 2 chips.
// Here I use a simplified version of my DS18B20 code from years back. This starts the conversion at the END
// of the code - so the first value is rubbish - read the blog as this is hidden - and there are no delays. On the assumption of one chip
// per pin, no need for search either!
// This version returns 6 bytes - the LAST one is a status byte - 1 if busy. For IR bytes 0,1,2,3 are value, 4 is protocol. Simply send that out
// for transmission... I'm using serial for debug right now - so can't use serial command - simply scrap that if you want to use serial out.
//
#include <EEPROM.h>
#include <Wire.h>
#include <Servo.h> /// note that if you use ANY servo, you lose PWM on pins 9 and 10.
#include <avr/pgmspace.h>
#include <OneWire.h>
// install the IR library if you want it - https://github.com/cyborg5/IRLib2 - pin 2 here used as input..
#include <IRLibDecodeBase.h> //We need both the coding and
#include <IRLibSendBase.h> // sending base classes
#include <IRLib_P01_NEC.h> //Lowest numbered protocol 1st
#include <IRLib_P02_Sony.h> // Include only protocols you want
#include <IRLib_P03_RC5.h>
#include <IRLib_P04_RC6.h>
#include <IRLib_P05_Panasonic_Old.h>
#include <IRLib_P07_NECx.h>
#include <IRLib_HashRaw.h> //We need this for IRsendRaw
#include <IRLibCombo.h> // After all protocols, include this
#include <IRLibRecvPCI.h>
IRrecvPCI myReceiver(2); //pin number for the receiver
IRdecode myDecoder;
struct IRS {
uint8_t protocol;
uint32_t value;
};
IRS ir[32];
uint8_t ir_ip=0;
uint8_t ir_op=0;
IRsend mySender;
#define MAXPORTS 21
#define SET_OUTPUT 1
#define READ_INPUT 2
#define READ_INPUT_PULLUP 3
#define SET_PWM 4
#define READ_ANALOG 5
#define SET_ADDRESS 6
#define PORTSET 7
#define PORTOUT 8
#define PORTIN 9
#define SEROUT 10
#define SERVO 11 // value 255 disconnects.... - normally use 0-180
#define FADE 12 // pwm but you set desired colour, software soft fades from current to desired
#define TONE 13
#define NOTONE 14
#define DALLAS1 15
#define DALLAS2 16
#define IRIN 17
#define IROUT 18
#define SETSERIAL 20 // 0 means turn serial off, by default on. Other values- 1=300, 2=1200, 3=2400, 4=9600, 5=28800, 6=57600, 7=115200 baud
#define STRUCTBASE 0
byte busy = 0;
struct STORAGE {
byte chsm;
byte device;
byte t1;
byte t2;
};
int tr1 = 255;
int tr2 = 255;
STORAGE stored;
byte ports[MAXPORTS];
byte params[128];
byte retparams[6];
byte paramp;
long mymillis;
uint32_t irout;
const PROGMEM uint8_t ledTable[256] = // Nano is so pathetically short of RAM I have to do this!
{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4,
4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 18,
18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41,
42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77,
78, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 121,
122, 124, 125, 127, 129, 130, 132, 134, 135, 137, 139, 141, 142, 144, 146, 148, 150, 151, 153, 155, 157, 159, 161, 163, 165, 166, 168, 170,
172, 174, 176, 178, 180, 182, 184, 186, 189, 191, 193, 195, 197, 199, 201, 204, 206, 208, 210, 212, 215, 217, 219, 221, 224, 226, 228, 231,
233, 235, 238, 240, 243, 245, 248, 250, 253, 255
};
byte fade[12][3];
Servo myservos[14]; // just for ease - so use any pin from 3 to 13... bit of waste but so what.
// Here's the Dallas code - end user needs to spot negative values...see https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
int16_t dallas (int x)
{
OneWire ds(x);
byte i;
byte data[2];
int16_t result;
ds.reset();
ds.write(0xCC);
ds.write(0xBE);
for (i = 0; i < 2; i++) data[i] = ds.read();
result = (data[1] << 8) | data[0];
ds.reset();
ds.write(0xCC);
ds.write(0x44, 1);
return result;
}
void setup(void) {
// If you want serial - set the speed in the setup routine, if not, comment out
int a;
uint16_t time = millis();
byte eeprom1, eeprom2;
analogReference(INTERNAL); // 1.1v
Serial.begin(115200);
// get info out of EEPROM
EEPROM.get(STRUCTBASE, stored);
// first check if EEPROM info is valid?
if (stored.chsm != 0x3c)
{
stored.chsm = 0x3d;
stored.device = 9;
stored.t1 = 255;
stored.t2 = 155;
EEPROM.put(STRUCTBASE, stored);
}
for (a = 0; a < MAXPORTS; a++) ports[a] = 0; // all inputs
Wire.begin(stored.device); // join i2c bus with address #9 by default
Wire.onReceive(receiveEvent);
Wire.onRequest(requestEvent);
paramp = 0;
Serial.begin(115200);
mymillis = 0;
for (a = 0; a < 12; a++) {
fade[a][0] = 0;
fade[a][2] = 0;
}
for (a = 0; a < 128; a++) params[a] = 0;
delay(100);
if (stored.t1 != 255) tr1 = dallas(stored.t1);
if (stored.t2 != 255) tr2 = dallas(stored.t2);
tr1 = 85 * 16;
tr2 = 85 * 16;
myReceiver.enableIRIn(); // Start the receiver
}
void loop() {
if (myReceiver.getResults()) {//wait till it returns true
myDecoder.decode();
//myDecoder.dumpResults();
if ((myDecoder.protocolNum) && (myDecoder.value!=0xffffffff))
{
ir[ir_ip].protocol=myDecoder.protocolNum;
ir[ir_ip].value=myDecoder.value;
(++ir_ip)&=31;
Serial.print(myDecoder.value,HEX); Serial.print (" - "); Serial.println(myDecoder.protocolNum);
}
myReceiver.enableIRIn(); //restart the receiver
}
if (mymillis < millis())
{
mymillis = millis() + 10;
for (int a = 0; a < 12; a++)
{
if (fade[a][0])
{
if (fade[a][1] < fade[a][2]) {
if (++fade[a][1] == fade[a][2]) fade[a][0] = 0;
analogWrite(a, pgm_read_word_near(ledTable + fade[a][1]));
}
if (fade[a][1] > fade[a][2]) {
if (--fade[a][1] == fade[a][2]) fade[a][0] = 0;
analogWrite(a, pgm_read_word_near(ledTable + fade[a][1]));
}
}
}
}
}
// function that executes whenever data is requested by master
// this function is registered as an event, see setup()
void requestEvent() {
retparams[5] = busy;
Wire.write(retparams, 6);
}
// function that executes whenever data is requested by master
// this function is registered as an event, see setup()
void receiveEvent(int count) {
busy = 1;
int a;
int tcount;
tcount = count;
paramp = 0;
for (a = 0; a < 6; a++) params[a] = 0;
// Nothing time consuming or visual debugging in here if a RETURN VALUE is expected or the routine to send a byte back could be missed.
while ((tcount--) && (paramp < 128))
{
params[paramp++] = Wire.read();
}
switch (params[0])
{
case SET_OUTPUT:
if (ports[params[1]] != 1) {
ports[params[1]] = 1;
pinMode(params[1], OUTPUT);
}
digitalWrite(params[1], params[2] ? HIGH : LOW);
break;
case READ_INPUT:
if (ports[params[1]] != 2) {
ports[params[1]] = 2;
pinMode(params[1], INPUT);
}
retparams[0] = 0; retparams[1] = digitalRead(params[1]);
break;
case READ_INPUT_PULLUP:
if (ports[params[1]] != 3) {
ports[params[1]] = 3;
pinMode(params[1], INPUT_PULLUP);
}
retparams[0] = 0; retparams[1] = digitalRead(params[1]);
break;
case SET_PWM:
if (ports[params[1]] != 4) {
ports[params[1]] = 4;
pinMode(params[1], OUTPUT);
}
analogWrite(params[1], params[2]);
break;
case READ_ANALOG:
if (ports[params[1]] != 2) {
ports[params[1]] = 2;
pinMode(params[1], INPUT);
}
uint16_t anback; anback = analogRead(params[1]); retparams[0] = anback >> 8; retparams[1] = anback & 255;
break;
case SET_ADDRESS:
stored.device = params[1]; EEPROM.put(STRUCTBASE, stored);
// update address - will take effect on next powerup of the device as you
// can only call "begin" once
break;
case SEROUT: char *m;
m = (char *)¶ms[1];
Serial.print(m);
break;
case SERVO : if (ports[params[1]] != 5) {
ports[params[1]] = 5;
myservos[params[1]].attach(params[1]);
}
if (params[2] == 255) {
myservos[params[1]].detach();
ports[params[1]] = 0;
break;
}
myservos[params[1]].write(params[2]);
break;
case FADE:
if (ports[params[1]] != 4) {
ports[params[1]] = 4;
pinMode(params[1], OUTPUT);
}
fade[params[1]][0] = 1; fade[params[1]][2] = params[2];
break;
case TONE: // can't do PWM on pins 2 and 11 while doing this... only one pin at a time...use NOTONE when finished
if ((params[4] | params[5]) == 0) tone(params[1], (params[2] << 8) + params[3]); else tone(params[1], (params[2] << 8) + params[3], (params[4] << 8) + params[5]);
ports[params[1]] = 0;
break;
case NOTONE: // can't do PWM on pins 3 and 11 while doing TONE...
noTone(params[1]); ports[params[1]] = 0;
break;
case DALLAS1:
tr1 = dallas(params[1]);
if (params[1] != stored.t1) {
stored.t1 = params[1]; // no delay hence first value crap
EEPROM.put(STRUCTBASE, stored);
}
retparams[1] = tr1 & 255; retparams[0] = tr1 >> 8;
break;
case DALLAS2:
tr2 = dallas(params[1]);
if (params[1] != stored.t2) {
stored.t2 = params[1]; // no delay hence first value crap
EEPROM.put(STRUCTBASE, stored);
}
retparams[1] = tr2 & 255; retparams[0] = tr2 >> 8;
break;
case IRIN:
if (ir_ip==ir_op) retparams[4]=0;
else {
retparams[4]=ir[ir_op].protocol;
retparams[3]=(ir[ir_op].value>>24);
retparams[2]=(ir[ir_op].value>>16)&255;
retparams[1]=(ir[ir_op].value>>8)&255;
retparams[0]=ir[ir_op].value&255;
(++ir_op)&=31;
}
break;
case IROUT:
irout=params[2] + (params[3]<<8) + (params[4]<<16) + (params[5]<<24);
mySender.send(params[1],irout,params[6]);
break;
case SETSERIAL:
switch (params[1]) {
case 0 : Serial.end(); break;
case 1 : Serial.begin(300); break;
case 2 : Serial.begin(1200); break;
case 3 : Serial.begin(2400); break;
case 4 : Serial.begin(9600); break;
case 5 : Serial.begin(28800); break;
case 6 : Serial.begin(57600); break;
case 7 : Serial.begin(115200); break;
default: break;
}
break;
default: break;
}
busy = 0;
}
|
You can clone a snippet to your computer for local editing. Learn more.