Source

SCons / doc / user / depends.in

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
<!--

  __COPYRIGHT__

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be included
  in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
  KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
  WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-->

  <para>

  So far we've seen how &SCons; handles one-time builds.
  But one of the main functions of a build tool like &SCons;
  is to rebuild only the necessary things
  when source files change--or, put another way,
  &SCons; should <emphasis>not</emphasis>
  waste time rebuilding things that have already been built.
  You can see this at work simply by re-invoking &SCons;
  after building our simple &hello; example:

  </para>

  <scons_example name="ex1">
    <file name="SConstruct">
    Program('hello.c')
    </file>
    <file name="hello.c">
    int main() { printf("Hello, world!\n"); }
    </file>
  </scons_example>

  <scons_output example="ex1" os="posix">
     <scons_output_command>scons -Q</scons_output_command>
     <scons_output_command>scons -Q</scons_output_command>
  </scons_output>

  <para>

  The second time it is executed,
  &SCons; realizes that the &hello; program
  is up-to-date with respect to the current &hello_c; source file,
  and avoids rebuilding it.
  You can see this more clearly by naming
  the &hello; program explicitly on the command line:

  </para>

  <scons_output example="ex1" os="posix">
     <scons_output_command>scons -Q hello</scons_output_command>
     <scons_output_command>scons -Q hello</scons_output_command>
  </scons_output>

  <para>

  Note that &SCons; reports <literal>"...is up to date"</literal>
  only for target files named explicitly on the command line,
  to avoid cluttering the output.

  </para>

  <section>
  <title>Deciding When an Input File Has Changed:  the &Decider; Function</title>

    <para>

    Another aspect of avoiding unnecessary rebuilds
    is the fundamental build tool behavior
    of <emphasis>rebuilding</emphasis>
    things when an input file changes,
    so that the built software is up to date.
    By default,
    &SCons; keeps track of this through an
    MD5 &signature;, or checksum, of the contents of each file,
    although you can easily configure
    &SCons; to use the
    modification times (or time stamps)
    instead.
    You can even specify your own Python function
    for deciding if an input file has changed.

    </para>

    <section>
    <title>Using MD5 Signatures to Decide if a File Has Changed</title>

      <para>

      By default,
      &SCons; keeps track of whether a file has changed
      based on an MD5 checksum of the file's contents,
      not the file's modification time.
      This means that you may be surprised by the
      default &SCons; behavior if you are used to the
      &Make; convention of forcing
      a rebuild by updating the file's modification time
      (using the &touch; command, for example):

      </para>

      <scons_output example="ex1" os="posix">
         <scons_output_command>scons -Q hello</scons_output_command>
         <scons_output_command>touch hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      Even though the file's modification time has changed,
      &SCons; realizes that the contents of the
      &hello_c; file have <emphasis>not</emphasis> changed,
      and therefore that the &hello; program
      need not be rebuilt.
      This avoids unnecessary rebuilds when,
      for example, someone rewrites the
      contents of a file without making a change.
      But if the contents of the file really do change,
      then &SCons; detects the change
      and rebuilds the program as required:

      </para>

      <scons_output example="ex1" os="posix">
         <scons_output_command>scons -Q hello</scons_output_command>
         <scons_output_command output="    [CHANGE THE CONTENTS OF hello.c]">edit hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      Note that you can, if you wish,
      specify this default behavior
      (MD5 signatures) explicitly
      using the &Decider; function as follows:

      </para>

      <sconstruct>
        Program('hello.c')
        Decider('MD5')
      </sconstruct>

      <para>

      You can also use the string <literal>'content'</literal>
      as a synonym for <literal>'MD5'</literal>
      when calling the &Decider; function.

      </para>

      <section>
      <title>Ramifications of Using MD5 Signatures</title>

        <para>

        Using MD5 Signatures to decide if an input file has changed
        has one surprising benefit:
        if a source file has been changed
        in such a way that the contents of the
        rebuilt target file(s)
        will be exactly the same as the last time
        the file was built,
        then any "downstream" target files
        that depend on the rebuilt-but-not-changed target
        file actually need not be rebuilt.

        </para>

        <para>

        So if, for example,
        a user were to only change a comment in a &hello_c; file,
        then the rebuilt &hello_o; file
        would be exactly the same as the one previously built
        (assuming the compiler doesn't put any build-specific
        information in the object file).
        &SCons; would then realize that it would not
        need to rebuild the &hello; program as follows:

        </para>

        <scons_output example="ex1" os="posix">
           <scons_output_command>scons -Q hello</scons_output_command>
           <scons_output_command output="  [CHANGE A COMMENT IN hello.c]" edit="STRIP CCCOM line">edit hello.c</scons_output_command>
           <scons_output_command>scons -Q hello</scons_output_command>
        </scons_output>

        <para>

        In essence, &SCons;
        "short-circuits" any dependent builds
        when it realizes that a target file
        has been rebuilt to exactly the same file as the last build.
        This does take some extra processing time
        to read the contents of the target (&hello_o;) file,
        but often saves time when the rebuild that was avoided
        would have been time-consuming and expensive.

        </para>

      </section>

    </section>

    <section>
    <title>Using Time Stamps to Decide If a File Has Changed</title>

      <para>

      If you prefer, you can
      configure &SCons; to use the modification time
      of a file, not the file contents,
      when deciding if a target needs to be rebuilt.
      &SCons; gives you two ways to use time stamps
      to decide if an input file has changed
      since the last time a target has been built.

      </para>

      <para>

      The most familiar way to use time stamps
      is the way &Make; does:
      that is, have &SCons; decide
      and target must be rebuilt if
      if a source file's modification time is
      <emphasis>newer</emphasis>
      than the target file.
      To do this, call the &Decider;
      function as follows:

      </para>

      <scons_example name="newer">
        <file name="SConstruct" printme="1">
        Program('hello.c')
        Decider('timestamp-newer')
        </file>
        <file name="hello.c">
        int main() { printf("Hello, world!\n"); }
        </file>
      </scons_example>

      <para>

      This makes &SCons; act like &Make;
      when a file's modification time is updated
      (using the &touch; command, for example):

      </para>

      <scons_output example="newer" os="posix">
         <scons_output_command>scons -Q hello</scons_output_command>
         <scons_output_command>touch hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      And, in fact, because this behavior is the same
      as the behavior of &Make;,
      you can also use the string <literal>'make'</literal>
      as a synonym for <literal>'timestamp-newer'</literal>
      when calling the &Decider; function:

      </para>

      <sconstruct>
        Program('hello.c')
        Decider('make')
      </sconstruct>

      <para>

      One drawback to using times stamps exactly like &Make;
      is that if an input file's modification time suddenly
      becomes <emphasis>older</emphasis> than a target file,
      the target file will not be rebuilt.
      This can happen if an old copy of a source file is restored
      from a backup archive, for example.
      The contents of the restored file will likely be different
      than they were the last time a dependent target was built,
      but the target won't be rebuilt
      because the modification time of the source file
      is not newer than the target.

      </para>

      <para>

      Because &SCons; actually stores information
      about the source files' time stamps whenever a target is built,
      it can handle this situation by checking for
      an exact match of the source file time stamp,
      instead of just whether or not the source file
      is newer than the target file.
      To do this, specify the argument
      <literal>'timestamp-match'</literal>
      when calling the &Decider; function:

      </para>

      <scons_example name="match">
        <file name="SConstruct" printme="1">
        Program('hello.c')
        Decider('timestamp-match')
        </file>
        <file name="hello.c">
        int main() { printf("Hello, world!\n"); }
        </file>
      </scons_example>

      <para>

      When configured this way,
      &SCons; will rebuild a target whenever
      a source file's modification time has changed.
      So if we use the <literal>touch -t</literal>
      option to change the modification time of
      &hello_c; to an old date (January 1, 1989),
      &SCons; will still rebuild the target file:

      </para>

      <scons_output example="match" os="posix">
         <scons_output_command>scons -Q hello</scons_output_command>
         <scons_output_command>touch -t 198901010000 hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      In general, the only reason to prefer
      <literal>timestamp-newer</literal>
      instead of
      <literal>timestamp-match</literal>,
      would be if you have some specific reason
      to require this &Make;-like behavior of 
      not rebuilding a target when an otherwise-modified
      source file is older.

      </para>

    </section>

    <section>
    <title>Deciding If a File Has Changed Using Both MD Signatures and Time Stamps</title>

      <para>

      As a performance enhancement,
      &SCons; provides a way to use
      MD5 checksums of file contents
      but to only read the contents
      whenever the file's timestamp has changed.
      To do this, call the &Decider;
      function with <literal>'MD5-timestamp'</literal>
      argument as follows:

      </para>

      <scons_example name="MD5-timestamp">
        <file name="SConstruct" printme="1">
        Program('hello.c')
        Decider('MD5-timestamp')
        </file>
        <file name="hello.c">
        int main() { printf("Hello, world!\n"); }
        </file>
      </scons_example>

      <para>

      So configured, &SCons will still behave like
      it does when using <literal>Decider('MD5')</literal>:

      </para>

      <scons_output example="MD5-timestamp" os="posix">
         <scons_output_command>scons -Q hello</scons_output_command>
         <scons_output_command>touch hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
       <scons_output_command output="    [CHANGE THE CONTENTS OF hello.c]">edit hello.c</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      However, the second call to &SCons; in the above output,
      when the build is up-to-date,
      will have been performed by simply looking at the
      modification time of the &hello_c; file,
      not by opening it and performing
      an MD5 checksum calcuation on its contents.
      This can significantly speed up many up-to-date builds.

      </para>

      <para>

      The only drawback to using
      <literal>Decider('MD5-timestamp')</literal>
      is that &SCons; will <emphasis>not</emphasis>
      rebuild a target file if a source file was modified
      within one second of the last time &SCons; built the file.
      While most developers are programming,
      this isn't a problem in practice,
      since it's unlikely that someone will have built
      and then thought quickly enought to make a substantive
      change to a source file within one second.
      Certain build scripts or
      continuous integration tools may, however,
      rely on the ability to applying changes to files
      automatically and then rebuild as quickly as possible,
      in which case use of
      <literal>Decider('MD5-timestamp')</literal>
      may not be appropriate.

      </para>

    </section>

    <section>
    <title>Writing Your Own Custom &Decider; Function</title>

      <para>

      The different string values that we've passed to
      the &Decider; function are essentially used by &SCons;
      to pick one of several specific internal functions
      that implement various ways of deciding if a dependency
      (usually a source file)
      has changed since a target file has been built.
      As it turns out,
      you can also supply your own function
      to decide if a dependency has changed.

      </para>

      <para>

      For example, suppose we have an input file
      that contains a lot of data,
      in some specific regular format,
      that is used to rebuild a lot of different target files,
      but each target file really only depends on
      one particular section of the input file.
      We'd like to have each target file depend on
      only its section of the input file.
      However, since the input file may contain a lot of data,
      we only want to open the input file if its timestamp has changed.
      This could done with a custom
      &Decider; function that might look something like this:

      </para>

      <scons_example name="function">
        <file name="SConstruct" printme="1">
        Program('hello.c')
        def decide_if_changed(dependency, target, prev_ni):
            if self.get_timestamp() != prev_ni.timestamp:
                dep = str(dependency)
                tgt = str(target)
                if specific_part_of_file_has_changed(dep, tgt):
                    return True
            return False
        Decider(decide_if_changed)
        </file>
        <file name="hello.c">
        int main() { printf("Hello, world!\n"); }
        </file>
      </scons_example>

      <para>

      Note that in the function definition,
      the <literal>dependency</literal>
      (input file) is the first argument,
      and then the <literal>target</literal>.
      Both of these are passed to the functions as
      SCons &Node; objects,
      which we convert to strings using the Python
      <function>str()</function>.
      The third argument, <literal>prev_ni</literal>,
      is an object that holds the
      signature or timestamp information
      that was recorded about the dependency
      the last time the target was built.

      </para>

      <para>

      Note that ignoring some of the arguments
      in your custom &Decider; function
      is a perfectly normal thing to do,
      if they don't impact the way you want to
      decide if the dependency file has changed.

      </para>

    </section>

    <section>
    <title>Mixing Different Ways of Deciding If a File Has Changed</title>

      <para>

      The previous examples have all demonstrated calling
      the global &Decider; function
      to configure all dependency decisions that &SCons; makes.
      Sometimes, however, you want to be able to configure
      different decision-making for different targets.
      When that's necessary, you can use the
      <function>env.Decider</function>
      method to affect only the configuration
      decisions for targets built with a
      specific construction environment.

      </para>

      <para>

      For example, if we arbitrarily want to build
      one program using MD5 checkums
      and another use file modification times
      from the same source
      we might configure it this way:

      </para>

      <scons_example name="mixing">
        <file name="SConstruct" printme="1">
        env1 = Environment(CPPPATH = ['.'])
        env2 = env1.Clone()
        env2.Decider('timestamp-match')
        env1.Program('prog-MD5', 'program1.c')
        env2.Program('prog-timestamp', 'program2.c')
        </file>
        <file name="program1.c">
        #include "inc.h"
        int main() { printf("Hello, world!\n"); }
        </file>
        <file name="program2.c">
        #include "inc.h"
        int main() { printf("Hello, world!\n"); }
        </file>
        <file name="inc.h">
        #define INC     1
        </file>
      </scons_example>

      <para>

      If both of the programs include the same
      <filename>inc.h</filename> file,
      then updating the modification time of
      <filename>inc.h</filename>
      (using the &touch; command)
      will cause only <filename>prog-timestamp</filename>
      to be rebuilt:

      </para>

      <scons_output example="mixing" os="posix">
         <scons_output_command>scons -Q</scons_output_command>
         <scons_output_command>touch inc.h</scons_output_command>
         <scons_output_command>scons -Q</scons_output_command>
      </scons_output>

    </section>

  </section>

  <section>
  <title>Older Functions for Deciding When an Input File Has Changed</title>

    <para>

    &SCons; still supports two functions that used to be the
    primary methods for configuring the
    decision about whether or not an input file has changed.
    Although they're not officially deprecated yet,
    their use is discouraged,
    mainly because they rely on a somewhat
    confusing distinction between how
    source files and target files are handled.
    These functions are documented here mainly in case you
    encounter them in existing &SConscript; files.

    </para>
  
    <section>
    <title>The &SourceSignatures; Function</title>

      <para>

      The &SourceSignatures; function is fairly straightforward,
      and supports two different argument values
      to configure whether source file changes should be decided
      using MD5 signatures:

      </para>

      <sconstruct>
        Program('hello.c')
        SourceSignatures('MD5')
      </sconstruct>

      <para>

      Or using time stamps:

      </para>

      <sconstruct>
        Program('hello.c')
        SourceSignatures('timestamp')
      </sconstruct>

      <para>

      These are roughly equivalent to specifying
      <function>Decider('MD5')</function>
      or
      <function>Decider('timestamp-match')</function>,
      respectively,
      although it only affects how SCons makes
      decisions about dependencies on
      <emphasis>source</emphasis> files--that is,
      files that are not built from any other files.

      </para>

    </section>

    <section>
    <title>The &TargetSignatures; Function</title>

      <para>

      The &TargetSignatures; function
      specifies how &SCons; decides
      when a target file has changed
      <emphasis>when it is used as a
      dependency of (input to) another target</emphasis>--that is,
      the &TargetSignatures; function configures
      how the signatures of "intermediate" target files
      are used when deciding if a "downstream" target file
      must be rebuilt.
      <footnote><para>
      This easily-overlooked distinction between
      how &SCons; decides if the target itself must be rebuilt
      and how the target is then used to decide if a different
      target must be rebuilt is one of the confusing
      things that has led to the &TargetSignatures;
      and &SourceSignatures; functions being
      replaced by the simpler &Decider; function.
      </para></footnote>

      </para>

      <para>

      The &TargetSignatures; function supports the same
      <literal>'MD5'</literal> and <literal>'timestamp'</literal>
      argument values that are supported by the &SourceSignatures;,
      with the same meanings, but applied to target files.
      That is, in the example:

      </para>

      <sconstruct>
        Program('hello.c')
        TargetSignatures('MD5')
      </sconstruct>

      <para>

      The MD5 checksum of the &hello_o; target file
      will be used to decide if it has changed since the last
      time the "downstream" &hello; target file was built.
      And in the example:
      
      </para>

      <sconstruct>
        Program('hello.c')
        TargetSignatures('timestamp')
      </sconstruct>

      <para>

      The modification time of the &hello_o; target file
      will be used to decide if it has changed since the last
      time the "downstream" &hello; target file was built.

      </para>

      <para>

      The &TargetSignatures; function supports
      two additional argument values:
      <literal>'source'</literal> and <literal>'build'</literal>.
      The <literal>'source'</literal> argument
      specifies that decisions involving
      whether target files have changed
      since a previous build
      should use the same behavior
      for the decisions configured for source files
      (using the &SourceSignatures; function).
      So in the example:

      </para>

      <sconstruct>
        Program('hello.c')
        TargetSignatures('source')
        SourceSignatures('timestamp')
      </sconstruct>

      <para>

      All files, both targets and sources,
      will use modification times
      when deciding if an input file
      has changed since the last
      time a target was built.

      </para>

      <para>

      Lastly, the <literal>'build'</literal> argument
      specifies that &SCons; should examine
      the build status of a target file
      and always rebuild a "downstream" target
      if the target file was itself rebuilt,
      without re-examining the contents or timestamp
      of the newly-built target file.
      If the target file was not rebuilt during
      this &scons; invocation,
      then the target file will be examined
      the same way as configured by
      the &SourceSignature; call
      to decide if it has changed.

      </para>

      <para>

      This mimics the behavior of
      <literal>build signatures</literal>
      in earlier versions of &SCons;.
      A &buildsignature; re-combined
      signatures of all the input files
      that went into making the target file,
      so that the target file itself
      did not need to have its contents read
      to compute an MD5 signature.
      This can improve performance for some configurations,
      but is generally not as effective as using
      <literal>Decider('MD5-timestamp')</literal>.

      </para>

    </section>

  </section>

  <section>
  <title>Implicit Dependencies:  The &cv-CPPPATH; Construction Variable</title>

    <para>

    Now suppose that our "Hello, World!" program
    actually has an <literal>#include</literal> line
    to include the &hello_h; file in the compilation:

    </para>

    <scons_example name="include">
      <file name="SConstruct">
       Program('hello.c', CPPPATH = '.')
      </file>
      <file name="hello.c" printme="1">
       #include &lt;hello.h&gt;
       int
       main()
       {
           printf("Hello, %s!\n", string);
       }
      </file>
      <file name="hello.h">
       #define string    "world"
      </file>
    </scons_example>

    <para>

    And, for completeness, the &hello_h; file looks like this:

    </para>

    <scons_example_file example="include"  name="hello.h">
    </scons_example_file>

    <para>

    In this case, we want &SCons; to recognize that,
    if the contents of the &hello_h; file change,
    the &hello; program must be recompiled.
    To do this, we need to modify the
    &SConstruct; file like so:

    </para>

    <scons_example_file example="include"  name="SConstruct">
    </scons_example_file>

    <para>

    The &cv-link-CPPPATH; value
    tells &SCons; to look in the current directory
    (<literal>'.'</literal>)
    for any files included by C source files
    (<filename>.c</filename> or <filename>.h</filename> files).
    With this assignment in the &SConstruct; file:

    </para>

    <scons_output example="include" os="posix">
       <scons_output_command>scons -Q hello</scons_output_command>
       <scons_output_command>scons -Q hello</scons_output_command>
       <scons_output_command output="    [CHANGE THE CONTENTS OF hello.h]">edit hello.h</scons_output_command>
       <scons_output_command>scons -Q hello</scons_output_command>
    </scons_output>

    <para>

    First, notice that &SCons;
    added the <literal>-I.</literal> argument
    from the &cv-CPPPATH; variable
    so that the compilation would find the
    &hello_h; file in the local directory.

    </para>

    <para>

    Second, realize that &SCons; knows that the &hello;
    program must be rebuilt
    because it scans the contents of
    the &hello_c; file
    for the <literal>#include</literal> lines that indicate
    another file is being included in the compilation.
    &SCons; records these as
    <emphasis>implicit dependencies</emphasis>
    of the target file,
    Consequently,
    when the &hello_h; file changes,
    &SCons; realizes that the &hello_c; file includes it,
    and rebuilds the resulting &hello; program
    that depends on both the &hello_c; and &hello_h; files.

    </para>

    <para>

    Like the &cv-link-LIBPATH; variable,
    the &cv-CPPPATH; variable
    may be a list of directories,
    or a string separated by
    the system-specific path separation character
    (':' on POSIX/Linux, ';' on Windows).
    Either way, &SCons; creates the
    right command-line options
    so that the following example:

    </para>

    <scons_example name="ex5">
      <file name="SConstruct" printme="1">
       Program('hello.c', CPPPATH = ['include', '/home/project/inc'])
      </file>
      <file name="hello.c">
      int main() { printf("Hello, world!\n"); }
      </file>
    </scons_example>

    <para>

    Will look like this on POSIX or Linux:

    </para>

    <scons_output example="ex5" os="posix">
       <scons_output_command>scons -Q hello</scons_output_command>
    </scons_output>

    <para>

    And like this on Windows:

    </para>

    <scons_output example="ex5" os="win32">
       <scons_output_command>scons -Q hello.exe</scons_output_command>
    </scons_output>

  </section>

  <section>
  <title>Caching Implicit Dependencies</title>

    <para>

    Scanning each file for <literal>#include</literal> lines
    does take some extra processing time.
    When you're doing a full build of a large system,
    the scanning time is usually a very small percentage
    of the overall time spent on the build.
    You're most likely to notice the scanning time,
    however, when you <emphasis>rebuild</emphasis>
    all or part of a large system:
    &SCons; will likely take some extra time to "think about"
    what must be built before it issues the
    first build command
    (or decides that everything is up to date
    and nothing must be rebuilt).

 <!--
 Isn't this expensive? The answer is, it depends. If you do a full build of a
 large system, the scanning time is insignificant. If you do a rebuild of a
 large system, then Cons will spend a fair amount of time thinking about it
 before it decides that nothing has to be done (although not necessarily more
 time than make!). The good news is that Cons makes it very easy to
 intelligently subset your build, when you are working on localized changes.
 -->

    </para>

    <para>

    In practice, having &SCons; scan files saves time
    relative to the amount of potential time
    lost to tracking down subtle problems
    introduced by incorrect dependencies.
    Nevertheless, the "waiting time"
    while &SCons; scans files can annoy
    individual developers waiting for their builds to finish.
    Consequently, &SCons; lets you cache
    the implicit dependencies
    that its scanners find,
    for use by later builds.
    You can do this by specifying the
    &implicit-cache; option on the command line:

    </para>

    <scons_output example="ex1">
       <scons_output_command>scons -Q --implicit-cache hello</scons_output_command>
       <scons_output_command>scons -Q hello</scons_output_command>
    </scons_output>

    <para>

    If you don't want to specify &implicit-cache;
    on the command line each time,
    you can make it the default behavior for your build
    by setting the &implicit_cache; option
    in an &SConscript; file:

    </para>

    <sconstruct>
       SetOption('implicit_cache', 1)
    </sconstruct>

    <para>

    &SCons; does not cache implicit dependencies like this by default
    because the &implicit-cache; causes &SCons; to simply use the implicit
    dependencies stored during the last run, without any checking
    for whether or not those dependencies are still correct.
    Specifically, this means &implicit-cache; instructs &SCons;
    to <emphasis>not</emphasis> rebuild "correctly" in the
    following cases:


    </para>

    <itemizedlist>

      <listitem>
        <para>

        When &implicit-cache; is used, &SCons; will ignore any changes that
        may have been made to search paths
        (like &cv-CPPPATH; or &cv-LIBPATH;,).
        This can lead to &SCons; not rebuilding a file if a change to
        &cv-CPPPATH; would normally cause a different, same-named file from
        a different directory to be used.

        </para>
      </listitem>

      <listitem>
        <para>

        When &implicit-cache; is used, &SCons; will not detect if a
        same-named file has been added to a directory that is earlier in
        the search path than the directory in which the file was found
        last time.

        </para>
      </listitem>

    </itemizedlist>

    <section>
    <title>The &implicit-deps-changed; Option</title>

      <para>

      When using cached implicit dependencies,
      sometimes you want to "start fresh"
      and have &SCons; re-scan the files
      for which it previously cached the dependencies.
      For example,
      if you have recently installed a new version of
      external code that you use for compilation,
      the external header files will have changed
      and the previously-cached implicit dependencies
      will be out of date.
      You can update them by
      running &SCons; with the &implicit-deps-changed; option:

      </para>

      <scons_output example="ex1">
         <scons_output_command>scons -Q --implicit-deps-changed hello</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      In this case, &SCons; will re-scan all of the implicit dependencies
      and cache updated copies of the information.

      </para>

    </section>

    <section>
    <title>The &implicit-deps-unchanged; Option</title>

      <para>

      By default when caching dependencies,
      &SCons; notices when a file has been modified
      and re-scans the file for any updated
      implicit dependency information.
      Sometimes, however, you may want
      to force &SCons; to use the cached implicit dependencies,
      even if the source files changed.
      This can speed up a build for example,
      when you have changed your source files
      but know that you haven't changed
      any <literal>#include</literal> lines.
      In this case,
      you can use the &implicit-deps-unchanged; option:

      </para>

      <scons_output example="ex1">
         <scons_output_command>scons -Q --implicit-deps-unchanged hello</scons_output_command>
         <scons_output_command>scons -Q hello</scons_output_command>
      </scons_output>

      <para>

      In this case,
      &SCons; will assume that the cached implicit
      dependencies are correct and
      will not bother to re-scan changed files.
      For typical builds after small,
      incremental changes to source files,
      the savings may not be very big,
      but sometimes every bit of
      improved performance counts.

      </para>

    </section>

    <!--

    <section>
    <title>XXX max drift</title>

      XXX SetOption('max_drift')

    </section>

    -->

  </section>

  <section>
  <title>Explicit Dependencies:  the &Depends; Function</title>

    <para>

    Sometimes a file depends on another file
    that is not detected by an &SCons; scanner.
    For this situation,
    &SCons; allows you to specific explicitly that one file
    depends on another file,
    and must be rebuilt whenever that file changes.
    This is specified using the &Depends; method:

    </para>

    <programlisting>
       hello = Program('hello.c')
       Depends(hello, 'other_file')
    </programlisting>

    <!-- XXX mention that you can use arrays for target and source? -->

    <screen>
       % <userinput>scons -Q hello</userinput>
       cc -c hello.c -o hello.o
       cc -o hello hello.o
       % <userinput>scons -Q hello</userinput>
       scons: `hello' is up to date.
       % <userinput>edit other_file</userinput>
           [CHANGE THE CONTENTS OF other_file]
       % <userinput>scons -Q hello</userinput>
       cc -c hello.c -o hello.o
       cc -o hello hello.o
    </screen>

  </section>

  <section>
  <title>Ignoring Dependencies:  the &Ignore; Function</title>

    <para>

    Sometimes it makes sense
    to not rebuild a program,
    even if a dependency file changes.
    In this case,
    you would tell &SCons; specifically
    to ignore a dependency as follows:

    </para>

    <scons_example name="ignore">
      <file name="SConstruct" printme="1">
      hello = Program('hello.c')
      Ignore(hello, 'hello.h')
      </file>
      <file name="hello.c">
      #include "hello.h"
      int main() { printf("Hello, %s!\n", string); }
      </file>
      <file name="hello.h">
      #define string    "world"
      </file>
    </scons_example>

    <!-- XXX mention that you can use arrays for target and source? -->

    <!--
    <scons_output example="ignore">
      <scons_output_command>scons -Q hello</scons_output_command>
      <scons_output_command>scons -Q hello</scons_output_command>
      <scons_output_command output="    [CHANGE THE CONTENTS OF hello.h]">edit hello.h</scons_output_command>
      <scons_output_command>scons -Q hello</scons_output_command>
      XXX THIS EXAMPLE SHOULD BE UP-TO-DATE! XXX
    </scons_output>
    -->

    <screen>
      % <userinput>scons -Q hello</userinput>
      cc -c -o hello.o hello.c
      cc -o hello hello.o
      % <userinput>scons -Q hello</userinput>
      scons: `hello' is up to date.
      % <userinput>edit hello.h</userinput>
        [CHANGE THE CONTENTS OF hello.h]
      % <userinput>scons -Q hello</userinput>
      scons: `hello' is up to date.
    </screen>

    <para>

    Now, the above example is a little contrived,
    because it's hard to imagine a real-world situation
    where you wouldn't want to rebuild &hello;
    if the &hello_h; file changed.
    A more realistic example
    might be if the &hello;
    program is being built in a
    directory that is shared between multiple systems
    that have different copies of the
    &stdio_h; include file.
    In that case,
    &SCons; would notice the differences between
    the different systems' copies of &stdio_h;
    and would rebuild &hello;
    each time you change systems.
    You could avoid these rebuilds as follows:

    </para>

    <programlisting>
       hello = Program('hello.c')
       Ignore(hello, '/usr/include/stdio.h')
    </programlisting>

  </section>

  <section>
  <title>The &AlwaysBuild; Function</title>

    <para>

    How &SCons; handles dependencies can also be affected
    by the &AlwaysBuild; method.
    When a file is passed to the &AlwaysBuild; method,
    like so:

    </para>

    <scons_example name="AlwaysBuild">
      <file name="SConstruct" printme="1">
      hello = Program('hello.c')
      AlwaysBuild(hello)
      </file>
      <file name="hello.c">
      int main() { printf("Hello, %s!\n", string); }
      </file>
    </scons_example>

    <para>

    Then the specified target file (&hello; in our example)
    will always be considered out-of-date and
    rebuilt whenever that target file is evaluated
    while walking the dependency graph:

    </para>

    <scons_output example="AlwaysBuild">
      <scons_output_command>scons -Q</scons_output_command>
      <scons_output_command>scons -Q</scons_output_command>
    </scons_output>

    <para>

    The &AlwaysBuild; function has a somewhat misleading name,
    because it does not actually mean the target file will
    be rebuilt every single time &SCons; is invoked.
    Instead, it means that the target will, in fact,
    be rebuilt whenever the target file is encountered
    while evaluating the targets specified on
    the command line (and their dependencies).
    So specifying some other target on the command line,
    a target that does <emphasis>not</emphasis>
    itself depend on the &AlwaysBuild; target,
    will still be rebuilt only if it's out-of-date
    with respect to its dependencies:

    </para>

    <scons_output example="AlwaysBuild">
      <scons_output_command>scons -Q</scons_output_command>
      <scons_output_command>scons -Q hello.o</scons_output_command>
    </scons_output>

    <!--

      XXX AlwaysBuild() and Alias Nodes

      XXX AlwaysBuild() and Dir Nodes

      XXX AlwaysBuild() with no sources

    -->

  </section>

  <!--

  <section>
  <title>The &Salt; Method</title>

    <para>

    XXX Salt() (are we going to implement this ?)

        original Cons classic POD documentation:

=head2 The C<Salt> method

The C<Salt> method adds a constant value to the signature calculation
for every derived file.  It is invoked as follows:

  Salt $string;

Changing the Salt value will force a complete rebuild of every derived
file.  This can be used to force rebuilds in certain desired
circumstances.  For example,

  Salt `uname -s`;

Would force a complete rebuild of every derived file whenever the
operating system on which the build is performed (as reported by C<uname
-s>) changes.

    </para>

  </section>

  -->
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.