Source

nanocHome / assets / blog / a_simple_bootstrap-based_knitr_template / knitr-minimal.html

Full commit
<!DOCTYPE html>
<html>
  <head>
    <title>knitr with bootstrap</title>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <!-- Latest compiled and minified CSS -->
    <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">
    
    <!-- Optional theme -->
    <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap-theme.min.css">

    <!-- Latest compiled and minified JavaScript -->
    <script src="http://netdna.bootstrapcdn.com/bootstrap/3.0.2/js/bootstrap.min.js"></script>
    <script src="http://yandex.st/highlightjs/7.3/highlight.min.js"></script>
    <script src="http://yandex.st/highlightjs/7.3/languages/r.min.js"></script>
    <script>hljs.initHighlightingOnLoad();</script>
    <link rel="stylesheet" href="http://yandex.st/highlightjs/7.3/styles/default.min.css">
    <!-- MathJax scripts -->
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

    
  </head>

  <body>
    <div class="container">
      <div class="row">
	<h1>A Minimal Example for Markdown</h1>

<p>This is a minimal example of using <strong>knitr</strong> to produce an <em>HTML</em> page from <em>Markdown</em>.</p>

<h2>R code chunks</h2>

<pre><code class="r"># set global chunk options: images will be 7x5 inches
opts_chunk$set(fig.width = 7, fig.height = 5)
</code></pre>

<p>Now we write some code chunks in this markdown file:</p>

<pre><code class="r">x &lt;- 1 + 1  # a simple calculator
set.seed(123)
rnorm(5)  # boring random numbers
</code></pre>

<pre><code>## [1] -0.56048 -0.23018  1.55871  0.07051  0.12929
</code></pre>

<p>We can also produce plots:</p>

<pre><code class="r">par(mar = c(4, 4, 0.1, 0.1))
with(mtcars, {
    plot(mpg ~ hp, pch = 20, col = &quot;darkgray&quot;)
    lines(lowess(hp, mpg))
})
</code></pre>

<p><img src="" alt="plot of chunk graphics"/> </p>

<h2>Inline code</h2>

<p>Inline R code is also supported, e.g. the value of <code>x</code> is 2, and 2 &times; &pi;
= 6.2832.</p>

<h2>Math</h2>

<p>LaTeX math as usual: \(f(\alpha, \beta) \propto x^{\alpha-1}(1-x)^{\beta-1}\).</p>

<h2>Misc</h2>

<p>You can indent code chunks so they can nest within other environments such as lists.</p>

<ol>
<li><p>the area of a circle with radius x</p>

<pre><code class="r">pi * x^2
</code></pre>

<pre><code>## [1] 12.57
</code></pre></li>
<li><p>OK, that is great</p></li>
</ol>

<p>To compile me, use</p>

<pre><code class="r">library(knitr)
knit(&quot;knitr-minimal.Rmd&quot;)
</code></pre>

<h2>Conclusion</h2>

<p>Markdown is super easy to write. Go to <strong>knitr</strong> <a href="http://yihui.name/knitr">homepage</a> for details.</p>

      </div>
    </div>
  </body>
</html>