Commits

php committed 54d7928

add --enable-grisu3 option and use grisu3 strtod then

Comments (0)

Files changed (5)

Zend/zend_strtod.c

-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991 by AT&T.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-/* Please send bug reports to
-   David M. Gay
-   AT&T Bell Laboratories, Room 2C-463
-   600 Mountain Avenue
-   Murray Hill, NJ 07974-2070
-   U.S.A.
-   dmg@research.att.com or research!dmg
-   */
-
-/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
- * broken by the IEEE round-even rule.  Otherwise ties are broken by
- * biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- *	1. We only require IEEE, IBM, or VAX double-precision
- *		arithmetic (not IEEE double-extended).
- *	2. We get by with floating-point arithmetic in a case that
- *		Clinger missed -- when we're computing d * 10^n
- *		for a small integer d and the integer n is not too
- *		much larger than 22 (the maximum integer k for which
- *		we can represent 10^k exactly), we may be able to
- *		compute (d*10^k) * 10^(e-k) with just one roundoff.
- *	3. Rather than a bit-at-a-time adjustment of the binary
- *		result in the hard case, we use floating-point
- *		arithmetic to determine the adjustment to within
- *		one bit; only in really hard cases do we need to
- *		compute a second residual.
- *	4. Because of 3., we don't need a large table of powers of 10
- *		for ten-to-e (just some small tables, e.g. of 10^k
- *		for 0 <= k <= 22).
- */
-
-/*
- * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
- *	significant byte has the lowest address.
- * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
- *	significant byte has the lowest address.
- * #define Long int on machines with 32-bit ints and 64-bit longs.
- * #define Sudden_Underflow for IEEE-format machines without gradual
- *	underflow (i.e., that flush to zero on underflow).
- * #define IBM for IBM mainframe-style floating-point arithmetic.
- * #define VAX for VAX-style floating-point arithmetic.
- * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
- * #define No_leftright to omit left-right logic in fast floating-point
- *	computation of dtoa.
- * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
- * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
- *	that use extended-precision instructions to compute rounded
- *	products and quotients) with IBM.
- * #define ROUND_BIASED for IEEE-format with biased rounding.
- * #define Inaccurate_Divide for IEEE-format with correctly rounded
- *	products but inaccurate quotients, e.g., for Intel i860.
- * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
- *	integer arithmetic.  Whether this speeds things up or slows things
- *	down depends on the machine and the number being converted.
- * #define KR_headers for old-style C function headers.
- * #define Bad_float_h if your system lacks a float.h or if it does not
- *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
- *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
- * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
- *	if memory is available and otherwise does something you deem
- *	appropriate.  If MALLOC is undefined, malloc will be invoked
- *	directly -- and assumed always to succeed.
- */
-
-/* $Id$ */
-
-#include <zend_operators.h>
-#include <zend_strtod.h>
-
-#ifdef ZTS
-#include <TSRM.h>
-#endif
-
-#include <stddef.h>
-#include <stdio.h>
-#include <ctype.h>
-#include <stdarg.h>
-#include <string.h>
-#include <stdlib.h>
-#include <math.h>
-
-#ifdef HAVE_LOCALE_H
-#include <locale.h>
-#endif
-
-#ifdef HAVE_SYS_TYPES_H
-#include <sys/types.h>
-#endif
-
-#if defined(HAVE_INTTYPES_H)
-#include <inttypes.h>
-#elif defined(HAVE_STDINT_H)
-#include <stdint.h>
-#endif
-
-#ifndef HAVE_INT32_T
-# if SIZEOF_INT == 4
-typedef int int32_t;
-# elif SIZEOF_LONG == 4
-typedef long int int32_t;
-# endif
-#endif
-
-#ifndef HAVE_UINT32_T
-# if SIZEOF_INT == 4
-typedef unsigned int uint32_t;
-# elif SIZEOF_LONG == 4
-typedef unsigned long int uint32_t;
-# endif
-#endif
-
-#if (defined(__APPLE__) || defined(__APPLE_CC__)) && (defined(__BIG_ENDIAN__) || defined(__LITTLE_ENDIAN__))
-# if defined(__LITTLE_ENDIAN__)
-#  undef WORDS_BIGENDIAN
-# else 
-#  if defined(__BIG_ENDIAN__)
-#   define WORDS_BIGENDIAN
-#  endif
-# endif
-#endif
-
-#ifdef WORDS_BIGENDIAN
-#define IEEE_BIG_ENDIAN
-#else
-#define IEEE_LITTLE_ENDIAN
-#endif
-
-#if defined(__arm__) && !defined(__VFP_FP__)
-/*
- *  * Although the CPU is little endian the FP has different
- *   * byte and word endianness. The byte order is still little endian
- *    * but the word order is big endian.
- *     */
-#define IEEE_BIG_ENDIAN
-#undef IEEE_LITTLE_ENDIAN
-#endif
-
-#ifdef __vax__
-#define VAX
-#undef IEEE_LITTLE_ENDIAN
-#endif
-
-#if defined(_MSC_VER)
-#define int32_t __int32
-#define uint32_t unsigned __int32
-#define IEEE_LITTLE_ENDIAN
-#endif
-
-#define Long    int32_t
-#define ULong   uint32_t
-
-#ifdef __cplusplus
-#include "malloc.h"
-#include "memory.h"
-#else
-#ifndef KR_headers
-#include "stdlib.h"
-#include "string.h"
-#include "locale.h"
-#else
-#include "malloc.h"
-#include "memory.h"
-#endif
-#endif
-
-#ifdef MALLOC
-#ifdef KR_headers
-extern char *MALLOC();
-#else
-extern void *MALLOC(size_t);
-#endif
-#else
-#define MALLOC malloc
-#endif
-
-#include "ctype.h"
-#include "errno.h"
-
-#ifdef Bad_float_h
-#ifdef IEEE_BIG_ENDIAN
-#define IEEE_ARITHMETIC
-#endif
-#ifdef IEEE_LITTLE_ENDIAN
-#define IEEE_ARITHMETIC
-#endif
-
-#ifdef IEEE_ARITHMETIC
-#define DBL_DIG 15
-#define DBL_MAX_10_EXP 308
-#define DBL_MAX_EXP 1024
-#define FLT_RADIX 2
-#define FLT_ROUNDS 1
-#define DBL_MAX 1.7976931348623157e+308
-#endif
-
-#ifdef IBM
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 75
-#define DBL_MAX_EXP 63
-#define FLT_RADIX 16
-#define FLT_ROUNDS 0
-#define DBL_MAX 7.2370055773322621e+75
-#endif
-
-#ifdef VAX
-#define DBL_DIG 16
-#define DBL_MAX_10_EXP 38
-#define DBL_MAX_EXP 127
-#define FLT_RADIX 2
-#define FLT_ROUNDS 1
-#define DBL_MAX 1.7014118346046923e+38
-#endif
-
-
-#ifndef LONG_MAX
-#define LONG_MAX 2147483647
-#endif
-#else
-#include "float.h"
-#endif
-#ifndef __MATH_H__
-#include "math.h"
-#endif
-
-BEGIN_EXTERN_C()
-
-#ifndef CONST
-#ifdef KR_headers
-#define CONST /* blank */
-#else
-#define CONST const
-#endif
-#endif
-
-#ifdef Unsigned_Shifts
-#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
-#else
-#define Sign_Extend(a,b) /*no-op*/
-#endif
-
-#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
-		    defined(IBM) != 1
-	Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
-	IBM should be defined.
-#endif
-
-	typedef union {
-		    double d;
-			    ULong ul[2];
-	} _double;
-#define value(x) ((x).d)
-#ifdef IEEE_LITTLE_ENDIAN
-#define word0(x) ((x).ul[1])
-#define word1(x) ((x).ul[0])
-#else
-#define word0(x) ((x).ul[0])
-#define word1(x) ((x).ul[1])
-#endif
-
-/* The following definition of Storeinc is appropriate for MIPS processors.
- * An alternative that might be better on some machines is
- * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
- */
-#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
-#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
-		((unsigned short *)a)[0] = (unsigned short)c, a++)
-#else
-#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
-		((unsigned short *)a)[1] = (unsigned short)c, a++)
-#endif
-
-/* #define P DBL_MANT_DIG */
-/* Ten_pmax = floor(P*log(2)/log(5)) */
-/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
-/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
-/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
-
-#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
-#define Exp_shift  20
-#define Exp_shift1 20
-#define Exp_msk1    0x100000
-#define Exp_msk11   0x100000
-#define Exp_mask  0x7ff00000
-#define P 53
-#define Bias 1023
-#define IEEE_Arith
-#define Emin (-1022)
-#define Exp_1  0x3ff00000
-#define Exp_11 0x3ff00000
-#define Ebits 11
-#define Frac_mask  0xfffff
-#define Frac_mask1 0xfffff
-#define Ten_pmax 22
-#define Bletch 0x10
-#define Bndry_mask  0xfffff
-#define Bndry_mask1 0xfffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 1
-#define Tiny0 0
-#define Tiny1 1
-#define Quick_max 14
-#define Int_max 14
-#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
-#else
-#undef  Sudden_Underflow
-#define Sudden_Underflow
-#ifdef IBM
-#define Exp_shift  24
-#define Exp_shift1 24
-#define Exp_msk1   0x1000000
-#define Exp_msk11  0x1000000
-#define Exp_mask  0x7f000000
-#define P 14
-#define Bias 65
-#define Exp_1  0x41000000
-#define Exp_11 0x41000000
-#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
-#define Frac_mask  0xffffff
-#define Frac_mask1 0xffffff
-#define Bletch 4
-#define Ten_pmax 22
-#define Bndry_mask  0xefffff
-#define Bndry_mask1 0xffffff
-#define LSB 1
-#define Sign_bit 0x80000000
-#define Log2P 4
-#define Tiny0 0x100000
-#define Tiny1 0
-#define Quick_max 14
-#define Int_max 15
-#else /* VAX */
-#define Exp_shift  23
-#define Exp_shift1 7
-#define Exp_msk1    0x80
-#define Exp_msk11   0x800000
-#define Exp_mask  0x7f80
-#define P 56
-#define Bias 129
-#define Exp_1  0x40800000
-#define Exp_11 0x4080
-#define Ebits 8
-#define Frac_mask  0x7fffff
-#define Frac_mask1 0xffff007f
-#define Ten_pmax 24
-#define Bletch 2
-#define Bndry_mask  0xffff007f
-#define Bndry_mask1 0xffff007f
-#define LSB 0x10000
-#define Sign_bit 0x8000
-#define Log2P 1
-#define Tiny0 0x80
-#define Tiny1 0
-#define Quick_max 15
-#define Int_max 15
-#endif
-#endif
-
-#ifndef IEEE_Arith
-#define ROUND_BIASED
-#endif
-
-#ifdef RND_PRODQUOT
-#define rounded_product(a,b) a = rnd_prod(a, b)
-#define rounded_quotient(a,b) a = rnd_quot(a, b)
-#ifdef KR_headers
-extern double rnd_prod(), rnd_quot();
-#else
-extern double rnd_prod(double, double), rnd_quot(double, double);
-#endif
-#else
-#define rounded_product(a,b) a *= b
-#define rounded_quotient(a,b) a /= b
-#endif
-
-#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 0xffffffff
-
-#ifndef Just_16
-/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
- *  * This makes some inner loops simpler and sometimes saves work
- *   * during multiplications, but it often seems to make things slightly
- *    * slower.  Hence the default is now to store 32 bits per Long.
- *     */
-#ifndef Pack_32
-#define Pack_32
-#endif
-#endif
-
-#define Kmax 15
-
-struct Bigint {
-	struct Bigint *next;
-	int k, maxwds, sign, wds;
-	ULong x[1];
-};
-
-typedef struct Bigint Bigint;
-
-/* static variables, multithreading fun! */
-static Bigint *freelist[Kmax+1];
-static Bigint *p5s;
-
-static void destroy_freelist(void);
-
-#ifdef ZTS
-
-static MUTEX_T dtoa_mutex;
-static MUTEX_T pow5mult_mutex; 
-
-#define _THREAD_PRIVATE_MUTEX_LOCK(x) tsrm_mutex_lock(x);
-#define _THREAD_PRIVATE_MUTEX_UNLOCK(x) tsrm_mutex_unlock(x);
-
-#else 
-
-#define _THREAD_PRIVATE_MUTEX_LOCK(x)
-#define _THREAD_PRIVATE_MUTEX_UNLOCK(x)
-
-#endif /* ZTS */
-
-ZEND_API int zend_startup_strtod(void) /* {{{ */
-{
-#ifdef ZTS
-	dtoa_mutex = tsrm_mutex_alloc();
-	pow5mult_mutex = tsrm_mutex_alloc();
-#endif
-	return 1;
-}
-/* }}} */
-ZEND_API int zend_shutdown_strtod(void) /* {{{ */
-{
-	destroy_freelist();
-#ifdef ZTS
-	tsrm_mutex_free(dtoa_mutex);
-	dtoa_mutex = NULL;
-
-	tsrm_mutex_free(pow5mult_mutex);
-	pow5mult_mutex = NULL;
-#endif
-	return 1;
-}
-/* }}} */
-
-static Bigint * Balloc(int k)
-{
-	int x;
-	Bigint *rv;
-
-	if (k > Kmax) {
-		zend_error(E_ERROR, "Balloc() allocation exceeds list boundary");
-	}
-
-	_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
-	if ((rv = freelist[k])) {
-		freelist[k] = rv->next;
-	} else {
-		x = 1 << k;
-		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
-		if (!rv) {
-			_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
-			zend_error(E_ERROR, "Balloc() failed to allocate memory");
-		}
-		rv->k = k;
-		rv->maxwds = x;
-	}
-	_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
-	rv->sign = rv->wds = 0;
-	return rv;
-}
-
-static void Bfree(Bigint *v)
-{
-	if (v) {
-		_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
-		v->next = freelist[v->k];
-		freelist[v->k] = v;
-		_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
-	}
-}
-
-#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
-		y->wds*sizeof(Long) + 2*sizeof(int))
-
-/* return value is only used as a simple string, so mis-aligned parts
- * inside the Bigint are not at risk on strict align architectures
- */
-static char * rv_alloc(int i) {
-	int j, k, *r;
-
-	j = sizeof(ULong);
-	for(k = 0;
-			sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
-			j <<= 1) {
-		k++;
-	}
-	r = (int*)Balloc(k);
-	*r = k;
-	return (char *)(r+1);
-}
-
-
-static char * nrv_alloc(char *s, char **rve, int n)
-{
-	char *rv, *t;
-
-	t = rv = rv_alloc(n);
-	while((*t = *s++) !=0) {
-		t++;
-	}
-	if (rve) {
-		*rve = t;
-	}
-	return rv;
-}
-
-static Bigint * multadd(Bigint *b, int m, int a) /* multiply by m and add a */
-{
-	int i, wds;
-	ULong *x, y;
-#ifdef Pack_32
-	ULong xi, z;
-#endif
-	Bigint *b1;
-
-	wds = b->wds;
-	x = b->x;
-	i = 0;
-	do {
-#ifdef Pack_32
-		xi = *x;
-		y = (xi & 0xffff) * m + a;
-		z = (xi >> 16) * m + (y >> 16);
-		a = (int)(z >> 16);
-		*x++ = (z << 16) + (y & 0xffff);
-#else
-		y = *x * m + a;
-		a = (int)(y >> 16);
-		*x++ = y & 0xffff;
-#endif
-	}
-	while(++i < wds);
-	if (a) {
-		if (wds >= b->maxwds) {
-			b1 = Balloc(b->k+1);
-			Bcopy(b1, b);
-			Bfree(b);
-			b = b1;
-		}
-		b->x[wds++] = a;
-		b->wds = wds;
-	}
-	return b;
-}
-
-static int hi0bits(ULong x)
-{
-	int k = 0;
-
-	if (!(x & 0xffff0000)) {
-		k = 16;
-		x <<= 16;
-	}
-	if (!(x & 0xff000000)) {
-		k += 8;
-		x <<= 8;
-	}
-	if (!(x & 0xf0000000)) {
-		k += 4;
-		x <<= 4;
-	}
-	if (!(x & 0xc0000000)) {
-		k += 2;
-		x <<= 2;
-	}
-	if (!(x & 0x80000000)) {
-		k++;
-		if (!(x & 0x40000000)) {
-			return 32;
-		}
-	}
-	return k;
-}
-
-static int lo0bits(ULong *y)
-{
-	int k;
-	ULong x = *y;
-
-	if (x & 7) {
-		if (x & 1) {
-			return 0;
-		}
-		if (x & 2) {
-			*y = x >> 1;
-			return 1;
-		}
-		*y = x >> 2;
-		return 2;
-	}
-	k = 0;
-	if (!(x & 0xffff)) {
-		k = 16;
-		x >>= 16;
-	}
-	if (!(x & 0xff)) {
-		k += 8;
-		x >>= 8;
-	}
-	if (!(x & 0xf)) {
-		k += 4;
-		x >>= 4;
-	}
-	if (!(x & 0x3)) {
-		k += 2;
-		x >>= 2;
-	}
-	if (!(x & 1)) {
-		k++;
-		x >>= 1;
-		if (!(x & 1)) {
-			return 32;
-		}
-	}
-	*y = x;
-	return k;
-}
-
-static Bigint * i2b(int i)
-{
-	Bigint *b;
-
-	b = Balloc(1);
-	b->x[0] = i;
-	b->wds = 1;
-	return b;
-}
-
-static Bigint * mult(Bigint *a, Bigint *b)
-{
-	Bigint *c;
-	int k, wa, wb, wc;
-	ULong carry, y, z;
-	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
-#ifdef Pack_32
-	ULong z2;
-#endif
-
-	if (a->wds < b->wds) {
-		c = a;
-		a = b;
-		b = c;
-	}
-	k = a->k;
-	wa = a->wds;
-	wb = b->wds;
-	wc = wa + wb;
-	if (wc > a->maxwds) {
-		k++;
-	}
-	c = Balloc(k);
-	for(x = c->x, xa = x + wc; x < xa; x++) {
-		*x = 0;
-	}
-	xa = a->x;
-	xae = xa + wa;
-	xb = b->x;
-	xbe = xb + wb;
-	xc0 = c->x;
-#ifdef Pack_32
-	for(; xb < xbe; xb++, xc0++) {
-		if ((y = *xb & 0xffff)) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			do {
-				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
-				carry = z >> 16;
-				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
-				carry = z2 >> 16;
-				Storeinc(xc, z2, z);
-			}
-			while(x < xae);
-			*xc = carry;
-		}
-		if ((y = *xb >> 16)) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			z2 = *xc;
-			do {
-				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
-				carry = z >> 16;
-				Storeinc(xc, z, z2);
-				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
-				carry = z2 >> 16;
-			}
-			while(x < xae);
-			*xc = z2;
-		}
-	}
-#else
-	for(; xb < xbe; xc0++) {
-		if (y = *xb++) {
-			x = xa;
-			xc = xc0;
-			carry = 0;
-			do {
-				z = *x++ * y + *xc + carry;
-				carry = z >> 16;
-				*xc++ = z & 0xffff;
-			}
-			while(x < xae);
-			*xc = carry;
-		}
-	}
-#endif
-	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
-	c->wds = wc;
-	return c;
-}
-
-static Bigint * s2b (CONST char *s, int nd0, int nd, ULong y9)
-{
-	Bigint *b;
-	int i, k;
-	Long x, y;
-
-	x = (nd + 8) / 9;
-	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
-#ifdef Pack_32
-	b = Balloc(k);
-	b->x[0] = y9;
-	b->wds = 1;
-#else
-	b = Balloc(k+1);
-	b->x[0] = y9 & 0xffff;
-	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
-#endif
-
-	i = 9;
-	if (9 < nd0) {
-		s += 9;
-		do b = multadd(b, 10, *s++ - '0');
-		while(++i < nd0);
-		s++;
-	} else {
-		s += 10;
-	}
-	for(; i < nd; i++) {
-		b = multadd(b, 10, *s++ - '0');
-	}
-	return b;
-}
-
-static Bigint * pow5mult(Bigint *b, int k)
-{
-	Bigint *b1, *p5, *p51;
-	int i;
-	static int p05[3] = { 5, 25, 125 };
-
-	_THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
-	if ((i = k & 3)) {
-		b = multadd(b, p05[i-1], 0);
-	}
-
-	if (!(k >>= 2)) {
-		_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
-		return b;
-	}
-	if (!(p5 = p5s)) {
-		/* first time */
-		p5 = p5s = i2b(625);
-		p5->next = 0;
-	}
-	for(;;) {
-		if (k & 1) {
-			b1 = mult(b, p5);
-			Bfree(b);
-			b = b1;
-		}
-		if (!(k >>= 1)) {
-			break;
-		}
-		if (!(p51 = p5->next)) {
-			if (!(p51 = p5->next)) {
-				p51 = p5->next = mult(p5,p5);
-				p51->next = 0;
-			}
-		}
-		p5 = p51;
-	}
-	_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
-	return b;
-}
-
-
-static Bigint *lshift(Bigint *b, int k)
-{
-	int i, k1, n, n1;
-	Bigint *b1;
-	ULong *x, *x1, *xe, z;
-
-#ifdef Pack_32
-	n = k >> 5;
-#else
-	n = k >> 4;
-#endif
-	k1 = b->k;
-	n1 = n + b->wds + 1;
-	for(i = b->maxwds; n1 > i; i <<= 1) {
-		k1++;
-	}
-	b1 = Balloc(k1);
-	x1 = b1->x;
-	for(i = 0; i < n; i++) {
-		*x1++ = 0;
-	}
-	x = b->x;
-	xe = x + b->wds;
-#ifdef Pack_32
-	if (k &= 0x1f) {
-		k1 = 32 - k;
-		z = 0;
-		do {
-			*x1++ = *x << k | z;
-			z = *x++ >> k1;
-		}
-		while(x < xe);
-		if ((*x1 = z)) {
-			++n1;
-		}
-	}
-#else
-	if (k &= 0xf) {
-		k1 = 16 - k;
-		z = 0;
-		do {
-			*x1++ = *x << k  & 0xffff | z;
-			z = *x++ >> k1;
-		}
-		while(x < xe);
-		if (*x1 = z) {
-			++n1;
-		}
-	}
-#endif
-	else do
-		*x1++ = *x++;
-	while(x < xe);
-	b1->wds = n1 - 1;
-	Bfree(b);
-	return b1;
-}
-
-static int cmp(Bigint *a, Bigint *b)
-{
-	ULong *xa, *xa0, *xb, *xb0;
-	int i, j;
-
-	i = a->wds;
-	j = b->wds;
-#ifdef DEBUG
-	if (i > 1 && !a->x[i-1])
-		Bug("cmp called with a->x[a->wds-1] == 0");
-	if (j > 1 && !b->x[j-1])
-		Bug("cmp called with b->x[b->wds-1] == 0");
-#endif
-	if (i -= j)
-		return i;
-	xa0 = a->x;
-	xa = xa0 + j;
-	xb0 = b->x;
-	xb = xb0 + j;
-	for(;;) {
-		if (*--xa != *--xb)
-			return *xa < *xb ? -1 : 1;
-		if (xa <= xa0)
-			break;
-	}
-	return 0;
-}
-
-
-static Bigint * diff(Bigint *a, Bigint *b)
-{
-	Bigint *c;
-	int i, wa, wb;
-	Long borrow, y; /* We need signed shifts here. */
-	ULong *xa, *xae, *xb, *xbe, *xc;
-#ifdef Pack_32
-	Long z;
-#endif
-
-	i = cmp(a,b);
-	if (!i) {
-		c = Balloc(0);
-		c->wds = 1;
-		c->x[0] = 0;
-		return c;
-	}
-	if (i < 0) {
-		c = a;
-		a = b;
-		b = c;
-		i = 1;
-	} else {
-		i = 0;
-	}
-	c = Balloc(a->k);
-	c->sign = i;
-	wa = a->wds;
-	xa = a->x;
-	xae = xa + wa;
-	wb = b->wds;
-	xb = b->x;
-	xbe = xb + wb;
-	xc = c->x;
-	borrow = 0;
-#ifdef Pack_32
-	do {
-		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
-		borrow = y >> 16;
-		Sign_Extend(borrow, y);
-		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
-		borrow = z >> 16;
-		Sign_Extend(borrow, z);
-		Storeinc(xc, z, y);
-	} while(xb < xbe);
-	while(xa < xae) {
-		y = (*xa & 0xffff) + borrow;
-		borrow = y >> 16;
-		Sign_Extend(borrow, y);
-		z = (*xa++ >> 16) + borrow;
-		borrow = z >> 16;
-		Sign_Extend(borrow, z);
-		Storeinc(xc, z, y);
-	}
-#else
-	do {
-		y = *xa++ - *xb++ + borrow;
-		borrow = y >> 16;
-		Sign_Extend(borrow, y);
-		*xc++ = y & 0xffff;
-	} while(xb < xbe);
-	while(xa < xae) {
-		y = *xa++ + borrow;
-		borrow = y >> 16;
-		Sign_Extend(borrow, y);
-		*xc++ = y & 0xffff;
-	}
-#endif
-	while(!*--xc) {
-		wa--;
-	}
-	c->wds = wa;
-	return c;
-}
-
-static double ulp (double _x)
-{
-	volatile _double x;
-	register Long L;
-	volatile _double a;
-
-	value(x) = _x;
-	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
-#ifndef Sudden_Underflow
-	if (L > 0) {
-#endif
-#ifdef IBM
-		L |= Exp_msk1 >> 4;
-#endif
-		word0(a) = L;
-		word1(a) = 0;
-#ifndef Sudden_Underflow
-	}
-	else {
-		L = -L >> Exp_shift;
-		if (L < Exp_shift) {
-			word0(a) = 0x80000 >> L;
-			word1(a) = 0;
-		}
-		else {
-			word0(a) = 0;
-			L -= Exp_shift;
-			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
-		}
-	}
-#endif
-	return value(a);
-}
-
-static double
-b2d
-#ifdef KR_headers
-(a, e) Bigint *a; int *e;
-#else
-(Bigint *a, int *e)
-#endif
-{
-	ULong *xa, *xa0, w, y, z;
-	int k;
-	volatile _double d;
-#ifdef VAX
-	ULong d0, d1;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
-	xa0 = a->x;
-	xa = xa0 + a->wds;
-	y = *--xa;
-#ifdef DEBUG
-	if (!y) Bug("zero y in b2d");
-#endif
-	k = hi0bits(y);
-	*e = 32 - k;
-#ifdef Pack_32
-	if (k < Ebits) {
-		d0 = Exp_1 | y >> (Ebits - k);
-		w = xa > xa0 ? *--xa : 0;
-		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
-		goto ret_d;
-	}
-	z = xa > xa0 ? *--xa : 0;
-	if (k -= Ebits) {
-		d0 = Exp_1 | y << k | z >> (32 - k);
-		y = xa > xa0 ? *--xa : 0;
-		d1 = z << k | y >> (32 - k);
-	}
-	else {
-		d0 = Exp_1 | y;
-		d1 = z;
-	}
-#else
-	if (k < Ebits + 16) {
-		z = xa > xa0 ? *--xa : 0;
-		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
-		w = xa > xa0 ? *--xa : 0;
-		y = xa > xa0 ? *--xa : 0;
-		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
-		goto ret_d;
-	}
-	z = xa > xa0 ? *--xa : 0;
-	w = xa > xa0 ? *--xa : 0;
-	k -= Ebits + 16;
-	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
-	y = xa > xa0 ? *--xa : 0;
-	d1 = w << k + 16 | y << k;
-#endif
-ret_d:
-#ifdef VAX
-	word0(d) = d0 >> 16 | d0 << 16;
-	word1(d) = d1 >> 16 | d1 << 16;
-#else
-#undef d0
-#undef d1
-#endif
-	return value(d);
-}
-
-
-static Bigint * d2b(double _d, int *e, int *bits)
-{
-	Bigint *b;
-	int de, i, k;
-	ULong *x, y, z;
-	volatile _double d;
-#ifdef VAX
-	ULong d0, d1;
-#endif
-
-	value(d) = _d;
-#ifdef VAX
-	d0 = word0(d) >> 16 | word0(d) << 16;
-	d1 = word1(d) >> 16 | word1(d) << 16;
-#else
-#define d0 word0(d)
-#define d1 word1(d)
-#endif
-
-#ifdef Pack_32
-	b = Balloc(1);
-#else
-	b = Balloc(2);
-#endif
-	x = b->x;
-
-	z = d0 & Frac_mask;
-	d0 &= 0x7fffffff;   /* clear sign bit, which we ignore */
-#ifdef Sudden_Underflow
-	de = (int)(d0 >> Exp_shift);
-#ifndef IBM
-	z |= Exp_msk11;
-#endif
-#else
-	if ((de = (int)(d0 >> Exp_shift)))
-		z |= Exp_msk1;
-#endif
-#ifdef Pack_32
-	if ((y = d1)) {
-		if ((k = lo0bits(&y))) {
-			x[0] = y | (z << (32 - k));
-			z >>= k;
-		} else {
-			x[0] = y;
-		}
-		i = b->wds = (x[1] = z) ? 2 : 1;
-	} else {
-#ifdef DEBUG
-		if (!z)
-			Bug("Zero passed to d2b");
-#endif
-		k = lo0bits(&z);
-		x[0] = z;
-		i = b->wds = 1;
-		k += 32;
-	}
-#else
-	if (y = d1) {
-		if (k = lo0bits(&y)) {
-			if (k >= 16) {
-				x[0] = y | z << 32 - k & 0xffff;
-				x[1] = z >> k - 16 & 0xffff;
-				x[2] = z >> k;
-				i = 2;
-			} else {
-				x[0] = y & 0xffff;
-				x[1] = y >> 16 | z << 16 - k & 0xffff;
-				x[2] = z >> k & 0xffff;
-				x[3] = z >> k+16;
-				i = 3;
-			}
-		} else {
-			x[0] = y & 0xffff;
-			x[1] = y >> 16;
-			x[2] = z & 0xffff;
-			x[3] = z >> 16;
-			i = 3;
-		}
-	} else {
-#ifdef DEBUG
-		if (!z)
-			Bug("Zero passed to d2b");
-#endif
-		k = lo0bits(&z);
-		if (k >= 16) {
-			x[0] = z;
-			i = 0;
-		} else {
-			x[0] = z & 0xffff;
-			x[1] = z >> 16;
-			i = 1;
-		}
-		k += 32;
-	}
-	while(!x[i])
-		--i;
-	b->wds = i + 1;
-#endif
-#ifndef Sudden_Underflow
-	if (de) {
-#endif
-#ifdef IBM
-		*e = (de - Bias - (P-1) << 2) + k;
-		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
-#else
-		*e = de - Bias - (P-1) + k;
-		*bits = P - k;
-#endif
-#ifndef Sudden_Underflow
-	} else {
-		*e = de - Bias - (P-1) + 1 + k;
-#ifdef Pack_32
-		*bits = 32*i - hi0bits(x[i-1]);
-#else
-		*bits = (i+2)*16 - hi0bits(x[i]);
-#endif
-	}
-#endif
-	return b;
-}
-#undef d0
-#undef d1
-
-
-static double ratio (Bigint *a, Bigint *b)
-{
-	volatile _double da, db;
-	int k, ka, kb;
-
-	value(da) = b2d(a, &ka);
-	value(db) = b2d(b, &kb);
-#ifdef Pack_32
-	k = ka - kb + 32*(a->wds - b->wds);
-#else
-	k = ka - kb + 16*(a->wds - b->wds);
-#endif
-#ifdef IBM
-	if (k > 0) {
-		word0(da) += (k >> 2)*Exp_msk1;
-		if (k &= 3) {
-			da *= 1 << k;
-		}
-	} else {
-		k = -k;
-		word0(db) += (k >> 2)*Exp_msk1;
-		if (k &= 3)
-			db *= 1 << k;
-	}
-#else
-	if (k > 0) {
-		word0(da) += k*Exp_msk1;
-	} else {
-		k = -k;
-		word0(db) += k*Exp_msk1;
-	}
-#endif
-	return value(da) / value(db);
-}
-
-static CONST double
-tens[] = {
-	1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
-	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
-	1e20, 1e21, 1e22
-#ifdef VAX
-		, 1e23, 1e24
-#endif
-};
-
-#ifdef IEEE_Arith
-static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
-#define n_bigtens 5
-#else
-#ifdef IBM
-static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
-static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
-#define n_bigtens 3
-#else
-static CONST double bigtens[] = { 1e16, 1e32 };
-static CONST double tinytens[] = { 1e-16, 1e-32 };
-#define n_bigtens 2
-#endif
-#endif
-
-
-static int quorem(Bigint *b, Bigint *S)
-{
-	int n;
-	Long borrow, y;
-	ULong carry, q, ys;
-	ULong *bx, *bxe, *sx, *sxe;
-#ifdef Pack_32
-	Long z;
-	ULong si, zs;
-#endif
-
-	n = S->wds;
-#ifdef DEBUG
-	/*debug*/ if (b->wds > n)
-		/*debug*/   Bug("oversize b in quorem");
-#endif
-	if (b->wds < n)
-		return 0;
-	sx = S->x;
-	sxe = sx + --n;
-	bx = b->x;
-	bxe = bx + n;
-	q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
-#ifdef DEBUG
-	/*debug*/ if (q > 9)
-		/*debug*/   Bug("oversized quotient in quorem");
-#endif
-	if (q) {
-		borrow = 0;
-		carry = 0;
-		do {
-#ifdef Pack_32
-			si = *sx++;
-			ys = (si & 0xffff) * q + carry;
-			zs = (si >> 16) * q + (ys >> 16);
-			carry = zs >> 16;
-			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
-			borrow = y >> 16;
-			Sign_Extend(borrow, y);
-			z = (*bx >> 16) - (zs & 0xffff) + borrow;
-			borrow = z >> 16;
-			Sign_Extend(borrow, z);
-			Storeinc(bx, z, y);
-#else
-			ys = *sx++ * q + carry;
-			carry = ys >> 16;
-			y = *bx - (ys & 0xffff) + borrow;
-			borrow = y >> 16;
-			Sign_Extend(borrow, y);
-			*bx++ = y & 0xffff;
-#endif
-		}
-		while(sx <= sxe);
-		if (!*bxe) {
-			bx = b->x;
-			while(--bxe > bx && !*bxe)
-				--n;
-			b->wds = n;
-		}
-	}
-	if (cmp(b, S) >= 0) {
-		q++;
-		borrow = 0;
-		carry = 0;
-		bx = b->x;
-		sx = S->x;
-		do {
-#ifdef Pack_32
-			si = *sx++;
-			ys = (si & 0xffff) + carry;
-			zs = (si >> 16) + (ys >> 16);
-			carry = zs >> 16;
-			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
-			borrow = y >> 16;
-			Sign_Extend(borrow, y);
-			z = (*bx >> 16) - (zs & 0xffff) + borrow;
-			borrow = z >> 16;
-			Sign_Extend(borrow, z);
-			Storeinc(bx, z, y);
-#else
-			ys = *sx++ + carry;
-			carry = ys >> 16;
-			y = *bx - (ys & 0xffff) + borrow;
-			borrow = y >> 16;
-			Sign_Extend(borrow, y);
-			*bx++ = y & 0xffff;
-#endif
-		}
-		while(sx <= sxe);
-		bx = b->x;
-		bxe = bx + n;
-		if (!*bxe) {
-			while(--bxe > bx && !*bxe)
-				--n;
-			b->wds = n;
-		}
-	}
-	return q;
-}
-
-static void destroy_freelist(void)
-{
-	int i;
-	Bigint *tmp;
-
-	_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
-	for (i = 0; i <= Kmax; i++) {
-		Bigint **listp = &freelist[i];
-		while ((tmp = *listp) != NULL) {
-			*listp = tmp->next;
-			free(tmp);
-		}
-		freelist[i] = NULL;
-	}
-	_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
-	
-}
-
-
-ZEND_API void zend_freedtoa(char *s)
-{
-	Bigint *b = (Bigint *)((int *)s - 1);
-	b->maxwds = 1 << (b->k = *(int*)b);
-	Bfree(b);
-}
-
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *  1. Rather than iterating, we use a simple numeric overestimate
- *     to determine k = floor(log10(d)).  We scale relevant
- *     quantities using O(log2(k)) rather than O(k) multiplications.
- *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- *     try to generate digits strictly left to right.  Instead, we
- *     compute with fewer bits and propagate the carry if necessary
- *     when rounding the final digit up.  This is often faster.
- *  3. Under the assumption that input will be rounded nearest,
- *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- *     That is, we allow equality in stopping tests when the
- *     round-nearest rule will give the same floating-point value
- *     as would satisfaction of the stopping test with strict
- *     inequality.
- *  4. We remove common factors of powers of 2 from relevant
- *     quantities.
- *  5. When converting floating-point integers less than 1e16,
- *     we use floating-point arithmetic rather than resorting
- *     to multiple-precision integers.
- *  6. When asked to produce fewer than 15 digits, we first try
- *     to get by with floating-point arithmetic; we resort to
- *     multiple-precision integer arithmetic only if we cannot
- *     guarantee that the floating-point calculation has given
- *     the correctly rounded result.  For k requested digits and
- *     "uniformly" distributed input, the probability is
- *     something like 10^(k-15) that we must resort to the Long
- *     calculation.
- */
-
-ZEND_API char * zend_dtoa(double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
-{
- /* Arguments ndigits, decpt, sign are similar to those
-    of ecvt and fcvt; trailing zeros are suppressed from
-    the returned string.  If not null, *rve is set to point
-    to the end of the return value.  If d is +-Infinity or NaN,
-    then *decpt is set to 9999.
-
-    mode:
-        0 ==> shortest string that yields d when read in
-            and rounded to nearest.
-        1 ==> like 0, but with Steele & White stopping rule;
-            e.g. with IEEE P754 arithmetic , mode 0 gives
-            1e23 whereas mode 1 gives 9.999999999999999e22.
-        2 ==> max(1,ndigits) significant digits.  This gives a
-            return value similar to that of ecvt, except
-            that trailing zeros are suppressed.
-        3 ==> through ndigits past the decimal point.  This
-            gives a return value similar to that from fcvt,
-            except that trailing zeros are suppressed, and
-            ndigits can be negative.
-        4-9 should give the same return values as 2-3, i.e.,
-            4 <= mode <= 9 ==> same return as mode
-            2 + (mode & 1).  These modes are mainly for
-            debugging; often they run slower but sometimes
-            faster than modes 2-3.
-        4,5,8,9 ==> left-to-right digit generation.
-        6-9 ==> don't try fast floating-point estimate
-            (if applicable).
-
-        Values of mode other than 0-9 are treated as mode 0.
-
-        Sufficient space is allocated to the return value
-        to hold the suppressed trailing zeros.
-    */
-
-	int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
-		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
-		spec_case = 0, try_quick;
-	Long L;
-#ifndef Sudden_Underflow
-	int denorm;
-	ULong x;
-#endif
-	Bigint *b, *b1, *delta, *mlo, *mhi, *S, *tmp;
-	double ds;
-	char *s, *s0;
-	volatile _double d, d2, eps;
-
-	value(d) = _d;
-
-	if (word0(d) & Sign_bit) {
-		/* set sign for everything, including 0's and NaNs */
-		*sign = 1;
-		word0(d) &= ~Sign_bit;  /* clear sign bit */
-	}
-	else
-		*sign = 0;
-
-#if defined(IEEE_Arith) + defined(VAX)
-#ifdef IEEE_Arith
-	if ((word0(d) & Exp_mask) == Exp_mask)
-#else
-		if (word0(d)  == 0x8000)
-#endif
-		{
-			/* Infinity or NaN */
-			*decpt = 9999;
-#ifdef IEEE_Arith
-			if (!word1(d) && !(word0(d) & 0xfffff))
-				return nrv_alloc("Infinity", rve, 8);
-#endif
-			return nrv_alloc("NaN", rve, 3);
-		}
-#endif
-#ifdef IBM
-	value(d) += 0; /* normalize */
-#endif
-	if (!value(d)) {
-		*decpt = 1;
-		return nrv_alloc("0", rve, 1);
-	}
-
-	b = d2b(value(d), &be, &bbits);
-#ifdef Sudden_Underflow
-	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
-#else
-	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
-#endif
-		value(d2) = value(d);
-		word0(d2) &= Frac_mask1;
-		word0(d2) |= Exp_11;
-#ifdef IBM
-		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
-			value(d2) /= 1 << j;
-#endif
-
-		/* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
-		 * log10(x)  =  log(x) / log(10)
-		 *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
-		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
-		 *
-		 * This suggests computing an approximation k to log10(d) by
-		 *
-		 * k = (i - Bias)*0.301029995663981
-		 *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
-		 *
-		 * We want k to be too large rather than too small.
-		 * The error in the first-order Taylor series approximation
-		 * is in our favor, so we just round up the constant enough
-		 * to compensate for any error in the multiplication of
-		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
-		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
-		 * adding 1e-13 to the constant term more than suffices.
-		 * Hence we adjust the constant term to 0.1760912590558.
-		 * (We could get a more accurate k by invoking log10,
-		 *  but this is probably not worthwhile.)
-		 */
-
-		i -= Bias;
-#ifdef IBM
-		i <<= 2;
-		i += j;
-#endif
-#ifndef Sudden_Underflow
-		denorm = 0;
-	}
-	else {
-		/* d is denormalized */
-
-		i = bbits + be + (Bias + (P-1) - 1);
-		x = i > 32  ? (word0(d) << (64 - i)) | (word1(d) >> (i - 32))
-			: (word1(d) << (32 - i));
-		value(d2) = x;
-		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
-		i -= (Bias + (P-1) - 1) + 1;
-		denorm = 1;
-	}
-#endif
-	ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
-	k = (int)ds;
-	if (ds < 0. && ds != k)
-		k--;    /* want k = floor(ds) */
-	k_check = 1;
-	if (k >= 0 && k <= Ten_pmax) {
-		if (value(d) < tens[k])
-			k--;
-		k_check = 0;
-	}
-	j = bbits - i - 1;
-	if (j >= 0) {
-		b2 = 0;
-		s2 = j;
-	}
-	else {
-		b2 = -j;
-		s2 = 0;
-	}
-	if (k >= 0) {
-		b5 = 0;
-		s5 = k;
-		s2 += k;
-	}
-	else {
-		b2 -= k;
-		b5 = -k;
-		s5 = 0;
-	}
-	if (mode < 0 || mode > 9)
-		mode = 0;
-	try_quick = 1;
-	if (mode > 5) {
-		mode -= 4;
-		try_quick = 0;
-	}
-	leftright = 1;
-	switch(mode) {
-		case 0:
-		case 1:
-			ilim = ilim1 = -1;
-			i = 18;
-			ndigits = 0;
-			break;
-		case 2:
-			leftright = 0;
-			/* no break */
-		case 4:
-			if (ndigits <= 0)
-				ndigits = 1;
-			ilim = ilim1 = i = ndigits;
-			break;
-		case 3:
-			leftright = 0;
-			/* no break */
-		case 5:
-			i = ndigits + k + 1;
-			ilim = i;
-			ilim1 = i - 1;
-			if (i <= 0)
-				i = 1;
-	}
-	s = s0 = rv_alloc(i);
-
-	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
-		/* Try to get by with floating-point arithmetic. */
-
-		i = 0;
-		value(d2) = value(d);
-		k0 = k;
-		ilim0 = ilim;
-		ieps = 2; /* conservative */
-		if (k > 0) {
-			ds = tens[k&0xf];
-			j = k >> 4;
-			if (j & Bletch) {
-				/* prevent overflows */
-				j &= Bletch - 1;
-				value(d) /= bigtens[n_bigtens-1];
-				ieps++;
-			}
-			for(; j; j >>= 1, i++)
-				if (j & 1) {
-					ieps++;
-					ds *= bigtens[i];
-				}
-			value(d) /= ds;
-		}
-		else if ((j1 = -k)) {
-			value(d) *= tens[j1 & 0xf];
-			for(j = j1 >> 4; j; j >>= 1, i++)
-				if (j & 1) {
-					ieps++;
-					value(d) *= bigtens[i];
-				}
-		}
-		if (k_check && value(d) < 1. && ilim > 0) {
-			if (ilim1 <= 0)
-				goto fast_failed;
-			ilim = ilim1;
-			k--;
-			value(d) *= 10.;
-			ieps++;
-		}
-		value(eps) = ieps*value(d) + 7.;
-		word0(eps) -= (P-1)*Exp_msk1;
-		if (ilim == 0) {
-			S = mhi = 0;
-			value(d) -= 5.;
-			if (value(d) > value(eps))
-				goto one_digit;
-			if (value(d) < -value(eps))
-				goto no_digits;
-			goto fast_failed;
-		}
-#ifndef No_leftright
-		if (leftright) {
-			/* Use Steele & White method of only
-			 * generating digits needed.
-			 */
-			value(eps) = 0.5/tens[ilim-1] - value(eps);
-			for(i = 0;;) {
-				L = value(d);
-				value(d) -= L;
-				*s++ = '0' + (int)L;
-				if (value(d) < value(eps))
-					goto ret1;
-				if (1. - value(d) < value(eps))
-					goto bump_up;
-				if (++i >= ilim)
-					break;
-				value(eps) *= 10.;
-				value(d) *= 10.;
-			}
-		}
-		else {
-#endif
-			/* Generate ilim digits, then fix them up. */
-			value(eps) *= tens[ilim-1];
-			for(i = 1;; i++, value(d) *= 10.) {
-				L = value(d);
-				value(d) -= L;
-				*s++ = '0' + (int)L;
-				if (i == ilim) {
-					if (value(d) > 0.5 + value(eps))
-						goto bump_up;
-					else if (value(d) < 0.5 - value(eps)) {
-						while(*--s == '0');
-						s++;
-						goto ret1;
-					}
-					break;
-				}
-			}
-#ifndef No_leftright
-		}
-#endif
-fast_failed:
-		s = s0;
-		value(d) = value(d2);
-		k = k0;
-		ilim = ilim0;
-	}
-
-	/* Do we have a "small" integer? */
-
-	if (be >= 0 && k <= Int_max) {
-		/* Yes. */
-		ds = tens[k];
-		if (ndigits < 0 && ilim <= 0) {
-			S = mhi = 0;
-			if (ilim < 0 || value(d) <= 5*ds)
-				goto no_digits;
-			goto one_digit;
-		}
-		for(i = 1;; i++) {
-			L = value(d) / ds;
-			value(d) -= L*ds;
-#ifdef Check_FLT_ROUNDS
-			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
-			if (value(d) < 0) {
-				L--;
-				value(d) += ds;
-			}
-#endif
-			*s++ = '0' + (int)L;
-			if (i == ilim) {
-				value(d) += value(d);
-				if (value(d) > ds || (value(d) == ds && (L & 1))) {
-bump_up:
-					while(*--s == '9')
-						if (s == s0) {
-							k++;
-							*s = '0';
-							break;
-						}
-					++*s++;
-				}
-				break;
-			}
-			if (!(value(d) *= 10.))
-				break;
-		}
-		goto ret1;
-	}
-
-	m2 = b2;
-	m5 = b5;
-	mhi = mlo = 0;
-	if (leftright) {
-		if (mode < 2) {
-			i =
-#ifndef Sudden_Underflow
-				denorm ? be + (Bias + (P-1) - 1 + 1) :
-#endif
-#ifdef IBM
-				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
-#else
-			1 + P - bbits;
-#endif
-		}
-		else {
-			j = ilim - 1;
-			if (m5 >= j)
-				m5 -= j;
-			else {
-				s5 += j -= m5;
-				b5 += j;
-				m5 = 0;
-			}
-			if ((i = ilim) < 0) {
-				m2 -= i;
-				i = 0;
-			}
-		}
-		b2 += i;
-		s2 += i;
-		mhi = i2b(1);
-	}
-	if (m2 > 0 && s2 > 0) {
-		i = m2 < s2 ? m2 : s2;
-		b2 -= i;
-		m2 -= i;
-		s2 -= i;
-	}
-	if (b5 > 0) {
-		if (leftright) {
-			if (m5 > 0) {
-				mhi = pow5mult(mhi, m5);
-				b1 = mult(mhi, b);
-				Bfree(b);
-				b = b1;
-			}
-			if ((j = b5 - m5)) {
-				b = pow5mult(b, j);
-			}
-		} else {
-			b = pow5mult(b, b5);
-		}
-	}
-	S = i2b(1);
-	if (s5 > 0)
-		S = pow5mult(S, s5);
-	/* Check for special case that d is a normalized power of 2. */
-
-	if (mode < 2) {
-		if (!word1(d) && !(word0(d) & Bndry_mask)
-#ifndef Sudden_Underflow
-				&& word0(d) & Exp_mask
-#endif
-		   ) {
-			/* The special case */
-			b2 += Log2P;
-			s2 += Log2P;
-			spec_case = 1;
-		} else {
-			spec_case = 0;
-		}
-	}
-
-	/* Arrange for convenient computation of quotients:
-	 * shift left if necessary so divisor has 4 leading 0 bits.
-	 *
-	 * Perhaps we should just compute leading 28 bits of S once
-	 * and for all and pass them and a shift to quorem, so it
-	 * can do shifts and ors to compute the numerator for q.
-	 */
-#ifdef Pack_32
-	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
-		i = 32 - i;
-#else
-	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf))
-		i = 16 - i;
-#endif
-	if (i > 4) {
-		i -= 4;
-		b2 += i;
-		m2 += i;
-		s2 += i;
-	}
-	else if (i < 4) {
-		i += 28;
-		b2 += i;
-		m2 += i;
-		s2 += i;
-	}
-	if (b2 > 0)
-		b = lshift(b, b2);
-	if (s2 > 0)
-		S = lshift(S, s2);
-	if (k_check) {
-		if (cmp(b,S) < 0) {
-			k--;
-			b = multadd(b, 10, 0);  /* we botched the k estimate */
-			if (leftright)
-				mhi = multadd(mhi, 10, 0);
-			ilim = ilim1;
-		}
-	}
-	if (ilim <= 0 && mode > 2) {
-		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
-			/* no digits, fcvt style */
-no_digits:
-			k = -1 - ndigits;
-			goto ret;
-		}
-one_digit:
-		*s++ = '1';
-		k++;
-		goto ret;
-	}
-	if (leftright) {
-		if (m2 > 0)
-			mhi = lshift(mhi, m2);
-
-		/* Compute mlo -- check for special case
-		 * that d is a normalized power of 2.
-		 */
-
-		mlo = mhi;
-		if (spec_case) {
-			mhi = Balloc(mhi->k);
-			Bcopy(mhi, mlo);
-			mhi = lshift(mhi, Log2P);
-		}
-
-		for(i = 1;;i++) {
-			dig = quorem(b,S) + '0';
-			/* Do we yet have the shortest decimal string
-			 * that will round to d?
-			 */
-			j = cmp(b, mlo);
-			delta = diff(S, mhi);
-			j1 = delta->sign ? 1 : cmp(b, delta);
-			Bfree(delta);
-#ifndef ROUND_BIASED
-			if (j1 == 0 && !mode && !(word1(d) & 1)) {
-				if (dig == '9')
-					goto round_9_up;
-				if (j > 0)
-					dig++;
-				*s++ = dig;
-				goto ret;
-			}
-#endif
-			if (j < 0 || (j == 0 && !mode
-#ifndef ROUND_BIASED
-						&& !(word1(d) & 1)
-#endif
-						)) {
-				if (j1 > 0) {
-					b = lshift(b, 1);
-					j1 = cmp(b, S);
-					if ((j1 > 0 || (j1 == 0 && (dig & 1)))
-							&& dig++ == '9')
-						goto round_9_up;
-				}
-				*s++ = dig;
-				goto ret;
-			}
-			if (j1 > 0) {
-				if (dig == '9') { /* possible if i == 1 */
-round_9_up:
-					*s++ = '9';
-					goto roundoff;
-				}
-				*s++ = dig + 1;
-				goto ret;
-			}
-			*s++ = dig;
-			if (i == ilim)
-				break;
-			b = multadd(b, 10, 0);
-			if (mlo == mhi)
-				mlo = mhi = multadd(mhi, 10, 0);
-			else {
-				mlo = multadd(mlo, 10, 0);
-				mhi = multadd(mhi, 10, 0);
-			}
-		}
-	}
-	else
-		for(i = 1;; i++) {
-			*s++ = dig = quorem(b,S) + '0';
-			if (i >= ilim)
-				break;
-			b = multadd(b, 10, 0);
-		}
-
-	/* Round off last digit */
-
-	b = lshift(b, 1);
-	j = cmp(b, S);
-	if (j > 0 || (j == 0 && (dig & 1))) {
-roundoff:
-		while(*--s == '9')
-			if (s == s0) {
-				k++;
-				*s++ = '1';
-				goto ret;
-			}
-		++*s++;
-	}
-	else {
-		while(*--s == '0');
-		s++;
-	}
-ret:
-	Bfree(S);
-	if (mhi) {
-		if (mlo && mlo != mhi)
-			Bfree(mlo);
-		Bfree(mhi);
-	}
-ret1:
-
-	_THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
-	while (p5s) {
-		tmp = p5s;
-		p5s = p5s->next;
-		free(tmp);
-	}
-	_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
-
-	Bfree(b);
-
-	if (s == s0) {              /* don't return empty string */
-		*s++ = '0';
-		k = 0;
-	}
-	*s = 0;
-	*decpt = k + 1;
-	if (rve)
-		*rve = s;
-	return s0;
-}
-
-ZEND_API double zend_strtod (CONST char *s00, CONST char **se)
-{
-	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
-		e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
-	CONST char *s, *s0, *s1;
-	volatile double aadj, aadj1, adj;
-	volatile _double rv, rv0;
-	Long L;
-	ULong y, z;
-	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta, *tmp;
-	double result;
-
-	CONST char decimal_point = '.';
-
-	sign = nz0 = nz = 0;
-	value(rv) = 0.;
-
-
-	for(s = s00; isspace((unsigned char) *s); s++)
-		;
-
-	if (*s == '-') {
-		sign = 1;
-		s++;
-	} else if (*s == '+') {
-		s++;
-	}
-
-	if (*s == '\0') {
-		s = s00;
-		goto ret;
-	}
-
-	if (*s == '0') {
-		nz0 = 1;
-		while(*++s == '0') ;
-		if (!*s)
-			goto ret;
-	}
-	s0 = s;
-	y = z = 0;
-	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
-		if (nd < 9)
-			y = 10*y + c - '0';
-		else if (nd < 16)
-			z = 10*z + c - '0';
-	nd0 = nd;
-	if (c == decimal_point) {
-		c = *++s;
-		if (!nd) {
-			for(; c == '0'; c = *++s)
-				nz++;
-			if (c > '0' && c <= '9') {
-				s0 = s;
-				nf += nz;
-				nz = 0;
-				goto have_dig;
-			}
-			goto dig_done;
-		}
-		for(; c >= '0' && c <= '9'; c = *++s) {
-have_dig:
-			nz++;
-			if (c -= '0') {
-				nf += nz;
-				for(i = 1; i < nz; i++)
-					if (nd++ < 9)
-						y *= 10;
-					else if (nd <= DBL_DIG + 1)
-						z *= 10;
-				if (nd++ < 9)
-					y = 10*y + c;
-				else if (nd <= DBL_DIG + 1)
-					z = 10*z + c;
-				nz = 0;
-			}
-		}
-	}
-dig_done:
-	e = 0;
-	if (c == 'e' || c == 'E') {
-		if (!nd && !nz && !nz0) {
-			s = s00;
-			goto ret;
-		}
-		s00 = s;
-		esign = 0;
-		switch(c = *++s) {
-			case '-':
-				esign = 1;
-			case '+':
-				c = *++s;
-		}
-		if (c >= '0' && c <= '9') {
-			while(c == '0')
-				c = *++s;
-			if (c > '0' && c <= '9') {
-				L = c - '0';
-				s1 = s;
-				while((c = *++s) >= '0' && c <= '9')
-					L = 10*L + c - '0';
-				if (s - s1 > 8 || L > 19999)
-					/* Avoid confusion from exponents
-					 * so large that e might overflow.
-					 */
-					e = 19999; /* safe for 16 bit ints */
-				else
-					e = (int)L;
-				if (esign)
-					e = -e;
-			}
-			else
-				e = 0;
-		}
-		else
-			s = s00;
-	}
-	if (!nd) {
-		if (!nz && !nz0)
-			s = s00;
-		goto ret;
-	}
-	e1 = e -= nf;
-
-	/* Now we have nd0 digits, starting at s0, followed by a
-	 * decimal point, followed by nd-nd0 digits.  The number we're
-	 * after is the integer represented by those digits times
-	 * 10**e */
-
-	if (!nd0)
-		nd0 = nd;
-	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
-	value(rv) = y;
-	if (k > 9)
-		value(rv) = tens[k - 9] * value(rv) + z;
-	bd0 = 0;
-	if (nd <= DBL_DIG
-#ifndef RND_PRODQUOT
-			&& FLT_ROUNDS == 1
-#endif
-	   ) {
-		if (!e)
-			goto ret;
-		if (e > 0) {
-			if (e <= Ten_pmax) {
-#ifdef VAX
-				goto vax_ovfl_check;
-#else
-				/* value(rv) = */ rounded_product(value(rv),
-						tens[e]);
-				goto ret;
-#endif
-			}
-			i = DBL_DIG - nd;
-			if (e <= Ten_pmax + i) {
-				/* A fancier test would sometimes let us do
-				 * this for larger i values.
-				 */
-				e -= i;
-				value(rv) *= tens[i];
-#ifdef VAX
-				/* VAX exponent range is so narrow we must
-				 * worry about overflow here...
-				 */
-vax_ovfl_check:
-				word0(rv) -= P*Exp_msk1;
-				/* value(rv) = */ rounded_product(value(rv),
-						tens[e]);
-				if ((word0(rv) & Exp_mask)
-						> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
-					goto ovfl;
-				word0(rv) += P*Exp_msk1;
-#else
-				/* value(rv) = */ rounded_product(value(rv),
-						tens[e]);
-#endif
-				goto ret;
-			}
-		}
-#ifndef Inaccurate_Divide
-		else if (e >= -Ten_pmax) {
-			/* value(rv) = */ rounded_quotient(value(rv),
-					tens[-e]);
-			goto ret;
-		}
-#endif
-	}
-	e1 += nd - k;
-
-	/* Get starting approximation = rv * 10**e1 */
-
-	if (e1 > 0) {
-		if ((i = e1 & 15))
-			value(rv) *= tens[i];
-		if (e1 &= ~15) {
-			if (e1 > DBL_MAX_10_EXP) {
-ovfl:
-				errno = ERANGE;
-#ifndef Bad_float_h
-				value(rv) = HUGE_VAL;
-#else
-				/* Can't trust HUGE_VAL */
-#ifdef IEEE_Arith
-				word0(rv) = Exp_mask;
-				word1(rv) = 0;
-#else
-				word0(rv) = Big0;
-				word1(rv) = Big1;
-#endif
-#endif
-				if (bd0)
-					goto retfree;
-				goto ret;
-			}