Commits

Shlomi Fish  committed 5e30e8e

Integrated kaz_tree.c and kaz_tree.h. Tests don't succeed yet.

We integrated kaz_tree.c and kaz_tree.h from kazlib. It now compiles as such,
but the tests were not verified to run and apparently hanged my computer.

git-svn-id: file:///home/shlomif/Backup/svn-dumps/google-code/svnsync-repos/fc-solve/branches/kazlib-tree-integration@3375 e7e8a897-7ba4-4ee7-b36f-f4c66519b19a

  • Participants
  • Parent commits 2db8bd6
  • Branches kazlib-tree-integration, kazlib-tree-integration@3680 3
    1. mdv-hang-2010-12-18
    2. mdv-hang-2010-12-18@3375
    3. mdv-hang-2010-12-18@3680

Comments (0)

Files changed (8)

File fc-solve/source/CMakeLists.txt

     SET (FCS_STACK_STORAGE "FCS_STACK_STORAGE_NULL")
 ENDIF (NOT (${STATES_TYPE} STREQUAL "INDIRECT_STACK_STATES"))
 
-# Add the fcs_hash.c if (and only if) it is being used.
+# Add the fcs_hash.c module if (and only if) it is being used.
 #
 IF ((${FCS_STATE_STORAGE} STREQUAL "FCS_STATE_STORAGE_INTERNAL_HASH") OR
     (${FCS_STACK_STORAGE} STREQUAL "FCS_STACK_STORAGE_INTERNAL_HASH"))
 ENDIF ((${FCS_STATE_STORAGE} STREQUAL "FCS_STATE_STORAGE_INTERNAL_HASH") OR
     (${FCS_STACK_STORAGE} STREQUAL "FCS_STACK_STORAGE_INTERNAL_HASH"))
 
+# Add the kaz_tree.c module if (and only if) it is being used.
+#
+IF (${FCS_STATE_STORAGE} STREQUAL "FCS_STATE_STORAGE_KAZ_TREE")
+
+    LIST(APPEND FREECELL_SOLVER_LIB_MODULES kaz_tree.c)
+
+ENDIF (${FCS_STATE_STORAGE} STREQUAL "FCS_STATE_STORAGE_KAZ_TREE")
+
 
 # Add the google_hash.cpp if (and only if) it is being used.
 #

File fc-solve/source/Tatzer

     },
     'c|cols=s' => \$stack_storage,
     'p|pos=s' => \$state_storage,
+    'kazlib' => sub { $state_storage = "KAZ_TREE"; },
     'libavl2-p=s' => \$state_storage_libavl2_tree,
     'libavl2-c=s' => \$stack_storage_libavl2_tree,
     'prefix=s' => \$prefix,

File fc-solve/source/check_and_add_state.c

             );
     is_state_new = ((*existing_state_val) == new_state_val);
 
+#elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE)
+    instance->tree_new_state_key = new_state_key;
+    instance->tree_new_state = new_state;
+
+    if ((*existing_state = (fcs_collectible_state_t *)
+        dict_alloc_insert(instance->tree, new_state, NULL))
+            == NULL
+       )
+    {
+        on_state_new(instance, hard_thread, new_state);
+        return TRUE;
+    }
+    else
+    {
+        return FALSE;
+    }
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE)
     instance->tree_new_state_key = new_state_key;
     instance->tree_new_state = new_state;

File fc-solve/source/config.h.in

 #define FCS_STATE_STORAGE_DB_FILE 6
 #define FCS_STATE_STORAGE_JUDY 7
 #define FCS_STATE_STORAGE_GOOGLE_DENSE_HASH 8
+#define FCS_STATE_STORAGE_KAZ_TREE 9
 
 #define FCS_STACK_STORAGE_NULL (-1)
 #define FCS_STACK_STORAGE_INTERNAL_HASH 0

File fc-solve/source/instance.c

 
 #ifdef FCS_RCS_STATES
 
-#if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE)
+#if ((FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE) || (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE))
 
 static GCC_INLINE fcs_state_t * rcs_states_get_state(
     fc_solve_instance_t * instance,
     instance->tree = fcs_libavl2_states_tree_create(fc_solve_state_compare_with_context, NULL, NULL);
 #endif
 
+#elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE)
+
+#ifdef FCS_RCS_STATES
+    instance->tree = dict_create(ULONG_MAX,
+            fc_solve_rcs_states_compare,
+            instance
+            );
+#else
+#error Not implemented.
+    instance->tree = fcs_libavl2_states_tree_create(fc_solve_state_compare_with_context, NULL, NULL);
+#endif
+
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_GLIB_TREE)
     instance->tree = g_tree_new(fc_solve_state_compare);
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_JUDY)
 
     instance->indirect_prev_states = NULL;
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_INTERNAL_HASH)
-    /* Do nothing because it is freed elsewhere. */
+    /* Do nothing because it is allocated elsewhere. */
 #else
 #error not defined
 #endif
     rbdestroy(instance->tree);
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE)
     fcs_libavl2_states_tree_destroy(instance->tree, NULL);
+#elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE)
+    dict_free(instance->tree);
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_GLIB_TREE)
     g_tree_destroy(instance->tree);
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_JUDY)

File fc-solve/source/instance.h

 
 #endif
 
+#if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE)
+
+#include "kaz_tree.h"
+
+#endif
+
 #if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_DB_FILE)
 #include <sys/types.h>
 #include <limits.h>
     fcs_libavl2_states_tree_table_t * tree;
 #elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_GLIB_TREE)
     GTree * tree;
+#elif (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE)
+    dict_t * tree;
 #endif
 
     /*
 #ifdef FCS_RCS_STATES
     fcs_lru_cache_t rcs_states_cache;
 
-#if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE)
+#if ((FCS_STATE_STORAGE == FCS_STATE_STORAGE_LIBAVL2_TREE) || (FCS_STATE_STORAGE == FCS_STATE_STORAGE_KAZ_TREE))
     fcs_state_t * tree_new_state_key;
     fcs_collectible_state_t * tree_new_state;
 #endif

File fc-solve/source/kaz_tree.c

+/* Copyright 2009
+ * Kaz Kylheku <kkylheku@gmail.com>
+ * Vancouver, Canada
+ * All rights reserved.
+ *
+ * BSD License:
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   1. Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *   2. Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in
+ *      the documentation and/or other materials provided with the
+ *      distribution.
+ *   3. The name of the author may not be used to endorse or promote
+ *      products derived from this software without specific prior
+ *      written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+ */
+
+#include <stdlib.h>
+#include <stddef.h>
+#include <assert.h>
+#define DICT_IMPLEMENTATION
+#include "kaz_tree.h"
+
+/*
+ * These macros provide short convenient names for structure members,
+ * which are embellished with dict_ prefixes so that they are
+ * properly confined to the documented namespace. It's legal for a
+ * program which uses dict to define, for instance, a macro called ``parent''.
+ * Such a macro would interfere with the dnode_t struct definition.
+ * In general, highly portable and reusable C modules which expose their
+ * structures need to confine structure member names to well-defined spaces.
+ * The resulting identifiers aren't necessarily convenient to use, nor
+ * readable, in the implementation, however!
+ */
+
+#define left dict_left
+#define right dict_right
+#define parent dict_parent
+#define color dict_color
+#define key dict_key
+#define data dict_data
+
+#define nilnode dict_nilnode
+#define nodecount dict_nodecount
+#define maxcount dict_maxcount
+#define compare dict_compare
+#define allocnode dict_allocnode
+#define freenode dict_freenode
+#define context dict_context
+#define dupes dict_dupes
+
+#define dictptr dict_dictptr
+
+#define dict_root(D) ((D)->nilnode.left)
+#define dict_nil(D) (&(D)->nilnode)
+#define DICT_DEPTH_MAX 64
+
+/* Removes self-checks. See the kazlib's README for more information. */
+#define NDEBUG
+
+static dnode_t *dnode_alloc(void *context);
+static void dnode_free(dnode_t *node, void *context);
+
+/*
+ * Perform a ``left rotation'' adjustment on the tree.  The given node P and
+ * its right child C are rearranged so that the P instead becomes the left
+ * child of C.   The left subtree of C is inherited as the new right subtree
+ * for P.  The ordering of the keys within the tree is thus preserved.
+ */
+
+static void rotate_left(dnode_t *upper)
+{
+    dnode_t *lower, *lowleft, *upparent;
+
+    lower = upper->right;
+    upper->right = lowleft = lower->left;
+    lowleft->parent = upper;
+
+    lower->parent = upparent = upper->parent;
+
+    /* don't need to check for root node here because root->parent is
+       the sentinel nil node, and root->parent->left points back to root */
+
+    if (upper == upparent->left) {
+        upparent->left = lower;
+    } else {
+        assert (upper == upparent->right);
+        upparent->right = lower;
+    }
+
+    lower->left = upper;
+    upper->parent = lower;
+}
+
+/*
+ * This operation is the ``mirror'' image of rotate_left. It is
+ * the same procedure, but with left and right interchanged.
+ */
+
+static void rotate_right(dnode_t *upper)
+{
+    dnode_t *lower, *lowright, *upparent;
+
+    lower = upper->left;
+    upper->left = lowright = lower->right;
+    lowright->parent = upper;
+
+    lower->parent = upparent = upper->parent;
+
+    if (upper == upparent->right) {
+        upparent->right = lower;
+    } else {
+        assert (upper == upparent->left);
+        upparent->left = lower;
+    }
+
+    lower->right = upper;
+    upper->parent = lower;
+}
+
+#if 0
+/*
+ * Do a postorder traversal of the tree rooted at the specified
+ * node and free everything under it.  Used by dict_free().
+ */
+
+static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
+{
+    if (node == nil)
+        return;
+    free_nodes(dict, node->left, nil);
+    free_nodes(dict, node->right, nil);
+    dict->freenode(node, dict->context);
+}
+#endif
+
+/*
+ * This procedure performs a verification that the given subtree is a binary
+ * search tree. It performs an inorder traversal of the tree using the
+ * dict_next() successor function, verifying that the key of each node is
+ * strictly lower than that of its successor, if duplicates are not allowed,
+ * or lower or equal if duplicates are allowed.  This function is used for
+ * debugging purposes.
+ */
+
+static int verify_bintree(dict_t *dict)
+{
+    dnode_t *first, *next;
+
+    first = dict_first(dict);
+
+    if (dict->dupes) {
+        while (first && (next = dict_next(dict, first))) {
+            if (dict->compare(first->key, next->key, dict->context) > 0)
+                return 0;
+            first = next;
+        }
+    } else {
+        while (first && (next = dict_next(dict, first))) {
+            if (dict->compare(first->key, next->key, dict->context) >= 0)
+                return 0;
+            first = next;
+        }
+    }
+    return 1;
+}
+
+
+/*
+ * This function recursively verifies that the given binary subtree satisfies
+ * three of the red black properties. It checks that every red node has only
+ * black children. It makes sure that each node is either red or black. And it
+ * checks that every path has the same count of black nodes from root to leaf.
+ * It returns the blackheight of the given subtree; this allows blackheights to
+ * be computed recursively and compared for left and right siblings for
+ * mismatches. It does not check for every nil node being black, because there
+ * is only one sentinel nil node. The return value of this function is the
+ * black height of the subtree rooted at the node ``root'', or zero if the
+ * subtree is not red-black.
+ */
+
+static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
+{
+    unsigned height_left, height_right;
+
+    if (root != nil) {
+        height_left = verify_redblack(nil, root->left);
+        height_right = verify_redblack(nil, root->right);
+        if (height_left == 0 || height_right == 0)
+            return 0;
+        if (height_left != height_right)
+            return 0;
+        if (root->color == dnode_red) {
+            if (root->left->color != dnode_black)
+                return 0;
+            if (root->right->color != dnode_black)
+                return 0;
+            return height_left;
+        }
+        if (root->color != dnode_black)
+            return 0;
+        return height_left + 1;
+    }
+    return 1;
+}
+
+/*
+ * Compute the actual count of nodes by traversing the tree and
+ * return it. This could be compared against the stored count to
+ * detect a mismatch.
+ */
+
+static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
+{
+    if (root == nil)
+        return 0;
+    else
+        return 1 + verify_node_count(nil, root->left)
+            + verify_node_count(nil, root->right);
+}
+
+/*
+ * Verify that the tree contains the given node. This is done by
+ * traversing all of the nodes and comparing their pointers to the
+ * given pointer. Returns 1 if the node is found, otherwise
+ * returns zero. It is intended for debugging purposes.
+ */
+
+static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
+{
+    if (root != nil) {
+        return root == node
+                || verify_dict_has_node(nil, root->left, node)
+                || verify_dict_has_node(nil, root->right, node);
+    }
+    return 0;
+}
+
+
+/*
+ * Dynamically allocate and initialize a dictionary object.
+ */
+
+dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp, void * context)
+{
+    dict_t *dict = (dict_t *) malloc(sizeof *dict);
+
+    if (dict)
+        dict_init(dict, maxcount, comp);
+
+    dict->context = context;
+
+    return dict;
+}
+
+/*
+ * Select a different set of node allocator routines.
+ */
+
+void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
+        dnode_free_t fr, void *context)
+{
+    assert (dict_count(dict) == 0);
+    assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
+
+    dict->allocnode = al ? al : dnode_alloc;
+    dict->freenode = fr ? fr : dnode_free;
+    dict->context = context;
+}
+
+/*
+ * Iterative bottom-up (postorder) traversal utility,
+ * which allows the callback to destroy the node.
+ */
+static void safe_traverse(dict_t *dict, void (*func)(dnode_t *, void *))
+{
+    dnode_t *nil = dict_nil(dict), *current = dict_root(dict);
+    enum { from_parent, from_left, from_right } came_from = from_parent;
+
+    while (current != nil) {
+        dnode_t *next = nil; /* Initialized to shut up gcc warning. */
+
+        switch (came_from) {
+        case from_parent:
+            if (current->left != nil) {
+                next = current->left;
+            } else 
+        case from_left:
+            if (current->right != nil) {
+                came_from = from_parent;
+                next = current->right;
+            } else 
+        case from_right:
+            {
+                came_from = (current == current->parent->left) 
+                            ? from_left : from_right;
+                next = current->parent;
+                func(current, dict->context);
+            }
+            break;
+        }
+
+        current = next;
+    }
+}
+
+/*
+ * Free a dynamically allocated dictionary object. Removing the nodes
+ * from the tree before deleting it is required.
+ */
+void dict_destroy(dict_t *dict)
+{
+    assert (dict_isempty(dict));
+    free(dict);
+}
+
+/*
+ * Free all the nodes in the dictionary by using the dictionary's
+ * installed free routine. The dictionary is emptied.
+ */
+
+void dict_free_nodes(dict_t *dict)
+{
+    safe_traverse(dict, dict->freenode);
+    dict->nodecount = 0;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+}
+
+/*
+ * Obsolescent function, equivalent to dict_free_nodes
+ */
+
+void dict_free(dict_t *dict)
+{
+#ifdef KAZLIB_OBSOLESCENT_DEBUG
+    assert ("call to obsolescent function dict_free()" && 0);
+#endif
+    dict_free_nodes(dict);
+}
+
+/*
+ * Initialize a user-supplied dictionary object.
+ */
+
+dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
+{
+    dict->compare = comp;
+    dict->allocnode = dnode_alloc;
+    dict->freenode = dnode_free;
+    dict->context = NULL;
+    dict->nodecount = 0;
+    dict->maxcount = maxcount;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    dict->nilnode.color = dnode_black;
+    dict->dupes = 0;
+    return dict;
+}
+
+/*
+ * Initialize a dictionary in the likeness of another dictionary
+ */
+
+void dict_init_like(dict_t *dict, const dict_t *orig)
+{
+    dict->compare = orig->compare;
+    dict->allocnode = orig->allocnode;
+    dict->freenode = orig->freenode;
+    dict->context = orig->context;
+    dict->nodecount = 0;
+    dict->maxcount = orig->maxcount;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    dict->nilnode.color = dnode_black;
+    dict->dupes = orig->dupes;
+
+    assert (dict_similar(dict, orig));
+}
+
+/*
+ * Initialize with allocator
+ */
+extern dict_t *dict_init_alloc(dict_t *dict, dictcount_t maxcount,
+                               dict_comp_t comp, dnode_alloc_t al,
+                               dnode_free_t fr, void *context)
+{
+    dict->compare = comp;
+    dict->allocnode = al;
+    dict->freenode = fr;
+    dict->context = context;
+    dict->nodecount = 0;
+    dict->maxcount = maxcount;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    dict->nilnode.color = dnode_black;
+    dict->dupes = 0;
+    return dict;
+}
+
+/*
+ * Remove all nodes from the dictionary (without freeing them in any way).
+ */
+
+static void dict_clear(dict_t *dict)
+{
+    dict->nodecount = 0;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    assert (dict->nilnode.color == dnode_black);
+}
+
+
+/*
+ * Verify the integrity of the dictionary structure.  This is provided for
+ * debugging purposes, and should be placed in assert statements.   Just because
+ * this function succeeds doesn't mean that the tree is not corrupt. Certain
+ * corruptions in the tree may simply cause undefined behavior.
+ */
+
+int dict_verify(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+
+    /* check that the sentinel node and root node are black */
+    if (root->color != dnode_black)
+        return 0;
+    if (nil->color != dnode_black)
+        return 0;
+    if (nil->right != nil)
+        return 0;
+    /* nil->left is the root node; check that its parent pointer is nil */
+    if (nil->left->parent != nil)
+        return 0;
+    /* perform a weak test that the tree is a binary search tree */
+    if (!verify_bintree(dict))
+        return 0;
+    /* verify that the tree is a red-black tree */
+    if (!verify_redblack(nil, root))
+        return 0;
+    if (verify_node_count(nil, root) != dict_count(dict))
+        return 0;
+    return 1;
+}
+
+/*
+ * Determine whether two dictionaries are similar: have the same comparison and
+ * allocator functions, and same status as to whether duplicates are allowed.
+ */
+
+int dict_similar(const dict_t *left, const dict_t *right)
+{
+    if (left->compare != right->compare)
+        return 0;
+
+    if (left->allocnode != right->allocnode)
+        return 0;
+
+    if (left->freenode != right->freenode)
+        return 0;
+
+    if (left->context != right->context)
+        return 0;
+
+    if (left->dupes != right->dupes)
+        return 0;
+
+    return 1;
+}
+
+/*
+ * Locate a node in the dictionary having the given key.
+ * If the node is not found, a null a pointer is returned (rather than
+ * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
+ * located node is returned.
+ */
+
+dnode_t *dict_lookup(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *saved;
+    int result;
+
+    /* simple binary search adapted for trees that contain duplicate keys */
+
+    while (root != nil) {
+        result = dict->compare(key, root->key, dict->context);
+        if (result < 0)
+            root = root->left;
+        else if (result > 0)
+            root = root->right;
+        else {
+            if (!dict->dupes) { /* no duplicates, return match          */
+                return root;
+            } else {            /* could be dupes, find leftmost one    */
+                do {
+                    saved = root;
+                    root = root->left;
+                    while (root != nil && dict->compare(key, root->key, dict->context))
+                        root = root->right;
+                } while (root != nil);
+                return saved;
+            }
+        }
+    }
+
+    return NULL;
+}
+
+/*
+ * Look for the node corresponding to the lowest key that is equal to or
+ * greater than the given key.  If there is no such node, return null.
+ */
+
+dnode_t *dict_lower_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+        int result = dict->compare(key, root->key, dict->context);
+
+        if (result > 0) {
+            root = root->right;
+        } else if (result < 0) {
+            tentative = root;
+            root = root->left;
+        } else {
+            if (!dict->dupes) {
+                return root;
+            } else {
+                tentative = root;
+                root = root->left;
+            }
+        }
+    }
+
+    return tentative;
+}
+
+/*
+ * Look for the node corresponding to the greatest key that is equal to or
+ * lower than the given key.  If there is no such node, return null.
+ */
+
+dnode_t *dict_upper_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+        int result = dict->compare(key, root->key, dict->context);
+
+        if (result < 0) {
+            root = root->left;
+        } else if (result > 0) {
+            tentative = root;
+            root = root->right;
+        } else {
+            if (!dict->dupes) {
+                return root;
+            } else {
+                tentative = root;
+                root = root->right;
+            }
+        }
+    }
+
+    return tentative;
+}
+
+/*
+ * Look for the node corresponding to the lowest key that
+ * is greater than the given key.
+ */
+dnode_t *dict_strict_lower_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+        int result = dict->compare(key, root->key, dict->context);
+
+        if (result >= 0) {
+            root = root->right;
+        } else {
+            tentative = root;
+            root = root->left;
+        }
+    }
+
+    return tentative;
+}
+
+/*
+ * Look for the node corresponding to the grestest key that
+ * is lower than the given key.
+ */
+dnode_t *dict_strict_upper_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+        int result = dict->compare(key, root->key, dict->context);
+
+        if (result <= 0) {
+            root = root->left;
+        } else {
+            tentative = root;
+            root = root->right;
+        }
+    }
+
+    return tentative;
+}
+
+/*
+ * Insert a node into the dictionary. The node should have been
+ * initialized with a data field. All other fields are ignored.
+ *
+ * If a matching key was found - return it. Else - return NULL to indicate
+ * that the new key was added.
+ * 
+ * The behavior is undefined if the user attempts to insert into
+ * a dictionary that is already full (for which the dict_isfull()
+ * function returns true).
+ */
+
+const void * dict_insert(dict_t *dict, dnode_t *node, const void *key)
+{
+    dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
+    dnode_t *parent = nil, *uncle, *grandpa;
+    int result = -1;
+
+    node->key = key;
+
+    assert (!dict_isfull(dict));
+    assert (!dict_contains(dict, node));
+    assert (!dnode_is_in_a_dict(node));
+
+    /* basic binary tree insert */
+
+    while (where != nil) {
+        parent = where;
+        result = dict->compare(key, where->key, dict->context);
+
+        /* We are remming it out because instead of duplicating the key
+         * we return the existing key. -- Shlomi Fish, fc-solve.
+         * */
+#if 0
+        /* trap attempts at duplicate key insertion unless it's explicitly allowed */
+        assert (dict->dupes || result != 0);
+#endif
+        if (result == 0)
+        {
+            return where->dict_key;
+        }
+        else if (result < 0)
+        {
+            where = where->left;
+        }
+        else
+        {
+            where = where->right;
+        }
+    }
+
+    assert (where == nil);
+
+    if (result < 0)
+        parent->left = node;
+    else
+        parent->right = node;
+
+    node->parent = parent;
+    node->left = nil;
+    node->right = nil;
+
+    dict->nodecount++;
+
+    /* red black adjustments */
+
+    node->color = dnode_red;
+
+    while (parent->color == dnode_red) {
+        grandpa = parent->parent;
+        if (parent == grandpa->left) {
+            uncle = grandpa->right;
+            if (uncle->color == dnode_red) {    /* red parent, red uncle */
+                parent->color = dnode_black;
+                uncle->color = dnode_black;
+                grandpa->color = dnode_red;
+                node = grandpa;
+                parent = grandpa->parent;
+            } else {                            /* red parent, black uncle */
+                if (node == parent->right) {
+                    rotate_left(parent);
+                    parent = node;
+                    assert (grandpa == parent->parent);
+                    /* rotation between parent and child preserves grandpa */
+                }
+                parent->color = dnode_black;
+                grandpa->color = dnode_red;
+                rotate_right(grandpa);
+                break;
+            }
+        } else {        /* symmetric cases: parent == parent->parent->right */
+            uncle = grandpa->left;
+            if (uncle->color == dnode_red) {
+                parent->color = dnode_black;
+                uncle->color = dnode_black;
+                grandpa->color = dnode_red;
+                node = grandpa;
+                parent = grandpa->parent;
+            } else {
+                if (node == parent->left) {
+                    rotate_right(parent);
+                    parent = node;
+                    assert (grandpa == parent->parent);
+                }
+                parent->color = dnode_black;
+                grandpa->color = dnode_red;
+                rotate_left(grandpa);
+                break;
+            }
+        }
+    }
+
+    dict_root(dict)->color = dnode_black;
+
+    assert (dict_verify(dict));
+
+    return NULL;
+}
+
+/*
+ * Delete the given node from the dictionary. If the given node does not belong
+ * to the given dictionary, undefined behavior results.  A pointer to the
+ * deleted node is returned.
+ */
+
+dnode_t *dict_delete(dict_t *dict, dnode_t *target)
+{
+    dnode_t *nil = dict_nil(dict), *child, *delparent = target->parent;
+
+    /* basic deletion */
+
+    assert (!dict_isempty(dict));
+    assert (dict_contains(dict, target));
+
+    /*
+     * If the node being deleted has two children, then we replace it with its
+     * successor (i.e. the leftmost node in the right subtree.) By doing this,
+     * we avoid the traditional algorithm under which the successor's key and
+     * value *only* move to the deleted node and the successor is spliced out
+     * from the tree. We cannot use this approach because the user may hold
+     * pointers to the successor, or nodes may be inextricably tied to some
+     * other structures by way of embedding, etc. So we must splice out the
+     * node we are given, not some other node, and must not move contents from
+     * one node to another behind the user's back.
+     */
+
+    if (target->left != nil && target->right != nil) {
+        dnode_t *next = dict_next(dict, target);
+        dnode_t *nextparent = next->parent;
+        dnode_color_t nextcolor = next->color;
+
+        assert (next != nil);
+        assert (next->parent != nil);
+        assert (next->left == nil);
+
+        /*
+         * First, splice out the successor from the tree completely, by
+         * moving up its right child into its place.
+         */
+
+        child = next->right;
+        child->parent = nextparent;
+
+        if (nextparent->left == next) {
+            nextparent->left = child;
+        } else {
+            assert (nextparent->right == next);
+            nextparent->right = child;
+        }
+
+        /*
+         * Now that the successor has been extricated from the tree, install it
+         * in place of the node that we want deleted.
+         */
+
+        next->parent = delparent;
+        next->left = target->left;
+        next->right = target->right;
+        next->left->parent = next;
+        next->right->parent = next;
+        next->color = target->color;
+        target->color = nextcolor;
+
+        if (delparent->left == target) {
+            delparent->left = next;
+        } else {
+            assert (delparent->right == target);
+            delparent->right = next;
+        }
+
+    } else {
+        assert (target != nil);
+        assert (target->left == nil || target->right == nil);
+
+        child = (target->left != nil) ? target->left : target->right;
+
+        child->parent = delparent = target->parent;
+
+        if (target == delparent->left) {
+            delparent->left = child;
+        } else {
+            assert (target == delparent->right);
+            delparent->right = child;
+        }
+    }
+
+    target->parent = NULL;
+    target->right = NULL;
+    target->left = NULL;
+
+    dict->nodecount--;
+
+    assert (verify_bintree(dict));
+
+    /* red-black adjustments */
+
+    if (target->color == dnode_black) {
+        dnode_t *parent, *sister;
+
+        dict_root(dict)->color = dnode_red;
+
+        while (child->color == dnode_black) {
+            parent = child->parent;
+            if (child == parent->left) {
+                sister = parent->right;
+                assert (sister != nil);
+                if (sister->color == dnode_red) {
+                    sister->color = dnode_black;
+                    parent->color = dnode_red;
+                    rotate_left(parent);
+                    sister = parent->right;
+                    assert (sister != nil);
+                }
+                if (sister->left->color == dnode_black
+                        && sister->right->color == dnode_black) {
+                    sister->color = dnode_red;
+                    child = parent;
+                } else {
+                    if (sister->right->color == dnode_black) {
+                        assert (sister->left->color == dnode_red);
+                        sister->left->color = dnode_black;
+                        sister->color = dnode_red;
+                        rotate_right(sister);
+                        sister = parent->right;
+                        assert (sister != nil);
+                    }
+                    sister->color = parent->color;
+                    sister->right->color = dnode_black;
+                    parent->color = dnode_black;
+                    rotate_left(parent);
+                    break;
+                }
+            } else {    /* symmetric case: child == child->parent->right */
+                assert (child == parent->right);
+                sister = parent->left;
+                assert (sister != nil);
+                if (sister->color == dnode_red) {
+                    sister->color = dnode_black;
+                    parent->color = dnode_red;
+                    rotate_right(parent);
+                    sister = parent->left;
+                    assert (sister != nil);
+                }
+                if (sister->right->color == dnode_black
+                        && sister->left->color == dnode_black) {
+                    sister->color = dnode_red;
+                    child = parent;
+                } else {
+                    if (sister->left->color == dnode_black) {
+                        assert (sister->right->color == dnode_red);
+                        sister->right->color = dnode_black;
+                        sister->color = dnode_red;
+                        rotate_left(sister);
+                        sister = parent->left;
+                        assert (sister != nil);
+                    }
+                    sister->color = parent->color;
+                    sister->left->color = dnode_black;
+                    parent->color = dnode_black;
+                    rotate_right(parent);
+                    break;
+                }
+            }
+        }
+
+        child->color = dnode_black;
+        dict_root(dict)->color = dnode_black;
+    }
+
+    assert (dict_verify(dict));
+
+    return target;
+}
+
+/*
+ * Allocate a node using the dictionary's allocator routine, give it
+ * the data item.
+ */
+
+const void * dict_alloc_insert(dict_t *dict, const void *key, void *data)
+{
+    dnode_t *node = dict->allocnode(dict->context);
+
+    if (node) {
+        const void * ret;
+
+        dnode_init(node, data);
+        ret = dict_insert(dict, node, key);
+
+        if (ret)
+        {
+            dict->freenode(node, dict->context);
+        }
+        return ret;
+    }
+    return NULL;
+}
+
+void dict_delete_free(dict_t *dict, dnode_t *node)
+{
+    dict_delete(dict, node);
+    dict->freenode(node, dict->context);
+}
+
+/*
+ * Return the node with the lowest (leftmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_first(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
+
+    if (root != nil)
+        while ((left = root->left) != nil)
+            root = left;
+
+    return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the node with the highest (rightmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_last(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
+
+    if (root != nil)
+        while ((right = root->right) != nil)
+            root = right;
+
+    return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the given node's successor node---the node which has the
+ * next key in the the left to right ordering. If the node has
+ * no successor, a null pointer is returned rather than a pointer to
+ * the nil node.
+ */
+
+dnode_t *dict_next(dict_t *dict, dnode_t *curr)
+{
+    dnode_t *nil = dict_nil(dict), *parent, *left;
+
+    if (curr->right != nil) {
+        curr = curr->right;
+        while ((left = curr->left) != nil)
+            curr = left;
+        return curr;
+    }
+
+    parent = curr->parent;
+
+    while (parent != nil && curr == parent->right) {
+        curr = parent;
+        parent = curr->parent;
+    }
+
+    return (parent == nil) ? NULL : parent;
+}
+
+/*
+ * Return the given node's predecessor, in the key order.
+ * The nil sentinel node is returned if there is no predecessor.
+ */
+
+dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
+{
+    dnode_t *nil = dict_nil(dict), *parent, *right;
+
+    if (curr->left != nil) {
+        curr = curr->left;
+        while ((right = curr->right) != nil)
+            curr = right;
+        return curr;
+    }
+
+    parent = curr->parent;
+
+    while (parent != nil && curr == parent->left) {
+        curr = parent;
+        parent = curr->parent;
+    }
+
+    return (parent == nil) ? NULL : parent;
+}
+
+void dict_allow_dupes(dict_t *dict)
+{
+    dict->dupes = 1;
+}
+
+#undef dict_count
+#undef dict_isempty
+#undef dict_isfull
+#undef dnode_get
+#undef dnode_put
+#undef dnode_getkey
+
+dictcount_t dict_count(dict_t *dict)
+{
+    return dict->nodecount;
+}
+
+int dict_isempty(dict_t *dict)
+{
+    return dict->nodecount == 0;
+}
+
+int dict_isfull(dict_t *dict)
+{
+    return dict->nodecount == dict->maxcount;
+}
+
+int dict_contains(dict_t *dict, dnode_t *node)
+{
+    return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
+}
+
+static dnode_t *dnode_alloc(void *context)
+{
+    return (dnode_t *) malloc(sizeof *dnode_alloc(NULL));
+}
+
+static void dnode_free(dnode_t *node, void *context)
+{
+    free(node);
+}
+
+dnode_t *dnode_create(void *data)
+{
+    dnode_t *dnode = (dnode_t *) malloc(sizeof *dnode);
+    if (dnode) {
+        dnode->data = data;
+        dnode->parent = NULL;
+        dnode->left = NULL;
+        dnode->right = NULL;
+    }
+    return dnode;
+}
+
+dnode_t *dnode_init(dnode_t *dnode, void *data)
+{
+    dnode->data = data;
+    dnode->parent = NULL;
+    dnode->left = NULL;
+    dnode->right = NULL;
+    return dnode;
+}
+
+void dnode_destroy(dnode_t *dnode)
+{
+    assert (!dnode_is_in_a_dict(dnode));
+    free(dnode);
+}
+
+void *dnode_get(dnode_t *dnode)
+{
+    return dnode->data;
+}
+
+const void *dnode_getkey(dnode_t *dnode)
+{
+    return dnode->key;
+}
+
+void dnode_put(dnode_t *dnode, void *data)
+{
+    dnode->data = data;
+}
+
+int dnode_is_in_a_dict(dnode_t *dnode)
+{
+    return (dnode->parent && dnode->left && dnode->right);
+}
+
+void dict_process(dict_t *dict, void *context, dnode_process_t function)
+{
+    dnode_t *node = dict_first(dict), *next;
+
+    while (node != NULL) {
+        /* check for callback function deleting */
+        /* the next node from under us          */
+        assert (dict_contains(dict, node));
+        next = dict_next(dict, node);
+        function(dict, node, context);
+        node = next;
+    }
+}
+
+static void load_begin_internal(dict_load_t *load, dict_t *dict)
+{
+    load->dictptr = dict;
+    load->nilnode.left = &load->nilnode;
+    load->nilnode.right = &load->nilnode;
+}
+
+void dict_load_begin(dict_load_t *load, dict_t *dict)
+{
+    assert (dict_isempty(dict));
+    load_begin_internal(load, dict);
+}
+
+void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
+{
+    dict_t *dict = load->dictptr;
+    dnode_t *nil = &load->nilnode;
+
+    assert (!dnode_is_in_a_dict(newnode));
+    assert (dict->nodecount < dict->maxcount);
+
+    #ifndef NDEBUG
+    if (dict->nodecount > 0) {
+        if (dict->dupes)
+            assert (dict->compare(nil->left->key, key) <= 0);
+        else
+            assert (dict->compare(nil->left->key, key) < 0);
+    }
+    #endif
+
+    newnode->key = key;
+    nil->right->left = newnode;
+    nil->right = newnode;
+    newnode->left = nil;
+    dict->nodecount++;
+}
+
+void dict_load_end(dict_load_t *load)
+{
+    dict_t *dict = load->dictptr;
+    dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
+    dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
+    dnode_t *complete = 0;
+    dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
+    dictcount_t botrowcount;
+    unsigned baselevel = 0, level = 0, i;
+
+    assert (dnode_red == 0 && dnode_black == 1);
+
+    while (fullcount >= nodecount && fullcount)
+        fullcount >>= 1;
+
+    botrowcount = nodecount - fullcount;
+
+    for (curr = loadnil->left; curr != loadnil; curr = next) {
+        next = curr->left;
+
+        if (complete == NULL && botrowcount-- == 0) {
+            assert (baselevel == 0);
+            assert (level == 0);
+            baselevel = level = 1;
+            complete = tree[0];
+
+            if (complete != 0) {
+                tree[0] = 0;
+                complete->right = dictnil;
+                while (tree[level] != 0) {
+                    tree[level]->right = complete;
+                    complete->parent = tree[level];
+                    complete = tree[level];
+                    tree[level++] = 0;
+                }
+            }
+        }
+
+        if (complete == NULL) {
+            curr->left = dictnil;
+            curr->right = dictnil;
+            curr->color = (dnode_color_t) (level % 2);
+            complete = curr;
+
+            assert (level == baselevel);
+            while (tree[level] != 0) {
+                tree[level]->right = complete;
+                complete->parent = tree[level];
+                complete = tree[level];
+                tree[level++] = 0;
+            }
+        } else {
+            curr->left = complete;
+            curr->color = (dnode_color_t) ((level + 1) % 2);
+            complete->parent = curr;
+            tree[level] = curr;
+            complete = 0;
+            level = baselevel;
+        }
+    }
+
+    if (complete == NULL)
+        complete = dictnil;
+
+    for (i = 0; i < DICT_DEPTH_MAX; i++) {
+        if (tree[i] != 0) {
+            tree[i]->right = complete;
+            complete->parent = tree[i];
+            complete = tree[i];
+        }
+    }
+
+    dictnil->color = dnode_black;
+    dictnil->right = dictnil;
+    complete->parent = dictnil;
+    complete->color = dnode_black;
+    dict_root(dict) = complete;
+
+    assert (dict_verify(dict));
+}
+
+void dict_merge(dict_t *dest, dict_t *source)
+{
+    dict_load_t load;
+    dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
+
+    assert (dict_similar(dest, source));
+
+    if (source == dest)
+        return;
+
+    dest->nodecount = 0;
+    load_begin_internal(&load, dest);
+
+    for (;;) {
+        if (leftnode != NULL && rightnode != NULL) {
+            if (dest->compare(leftnode->key, rightnode->key, source->context) < 0)
+                goto copyleft;
+            else
+                goto copyright;
+        } else if (leftnode != NULL) {
+            goto copyleft;
+        } else if (rightnode != NULL) {
+            goto copyright;
+        } else {
+            assert (leftnode == NULL && rightnode == NULL);
+            break;
+        }
+
+    copyleft:
+        {
+            dnode_t *next = dict_next(dest, leftnode);
+            #ifndef NDEBUG
+            leftnode->left = NULL;      /* suppress assertion in dict_load_next */
+            #endif
+            dict_load_next(&load, leftnode, leftnode->key);
+            leftnode = next;
+            continue;
+        }
+
+    copyright:
+        {
+            dnode_t *next = dict_next(source, rightnode);
+            #ifndef NDEBUG
+            rightnode->left = NULL;
+            #endif
+            dict_load_next(&load, rightnode, rightnode->key);
+            rightnode = next;
+            continue;
+        }
+    }
+
+    dict_clear(source);
+    dict_load_end(&load);
+}
+
+#ifdef KAZLIB_TEST_MAIN
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <stdarg.h>
+
+typedef char input_t[256];
+
+static int tokenize(char *string, ...)
+{
+    char **tokptr;
+    va_list arglist;
+    int tokcount = 0;
+
+    va_start(arglist, string);
+    tokptr = va_arg(arglist, char **);
+    while (tokptr) {
+        while (*string && isspace((unsigned char) *string))
+            string++;
+        if (!*string)
+            break;
+        *tokptr = string;
+        while (*string && !isspace((unsigned char) *string))
+            string++;
+        tokptr = va_arg(arglist, char **);
+        tokcount++;
+        if (!*string)
+            break;
+        *string++ = 0;
+    }
+    va_end(arglist);
+
+    return tokcount;
+}
+
+static int comparef(const void *key1, const void *key2)
+{
+    return strcmp((const char *) key1, (const char *) key2);
+}
+
+static char *dupstring(char *str)
+{
+    int sz = strlen(str) + 1;
+    char *dup = (char *) malloc(sz);
+    if (dup)
+        memcpy(dup, str, sz);
+    return dup;
+}
+
+static dnode_t *new_node(void *c)
+{
+    static dnode_t few[5];
+    static int count;
+
+    if (count < 5)
+        return few + count++;
+
+    return NULL;
+}
+
+static void del_node(dnode_t *n, void *c)
+{
+}
+
+static int prompt = 0;
+
+static void construct(dict_t *d)
+{
+    input_t in;
+    int done = 0;
+    dict_load_t dl;
+    dnode_t *dn;
+    char *tok1, *tok2, *val;
+    const char *key;
+    char *help =
+        "p                      turn prompt on\n"
+        "q                      finish construction\n"
+        "a <key> <val>          add new entry\n";
+
+    if (!dict_isempty(d))
+        puts("warning: dictionary not empty!");
+
+    dict_load_begin(&dl, d);
+
+    while (!done) {
+        if (prompt)
+            putchar('>');
+        fflush(stdout);
+
+        if (!fgets(in, sizeof(input_t), stdin))
+            break;
+
+        switch (in[0]) {
+            case '?':
+                puts(help);
+                break;
+            case 'p':
+                prompt = 1;
+                break;
+            case 'q':
+                done = 1;
+                break;
+            case 'a':
+                if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+                    puts("what?");
+                    break;
+                }
+                key = dupstring(tok1);
+                val = dupstring(tok2);
+                dn = dnode_create(val);
+
+                if (!key || !val || !dn) {
+                    puts("out of memory");
+                    free((void *) key);
+                    free(val);
+                    if (dn)
+                        dnode_destroy(dn);
+                }
+
+                dict_load_next(&dl, dn, key);
+                break;
+            default:
+                putchar('?');
+                putchar('\n');
+                break;
+        }
+    }
+
+    dict_load_end(&dl);
+}
+
+int main(void)
+{
+    input_t in;
+    dict_t darray[10];
+    dict_t *d = &darray[0];
+    dnode_t *dn;
+    size_t i;
+    char *tok1, *tok2, *val;
+    const char *key;
+
+    char *help =
+        "a <key> <val>          add value to dictionary\n"
+        "d <key>                delete value from dictionary\n"
+        "l <key>                lookup value in dictionary\n"
+        "( <key>                lookup lower bound\n"
+        ") <key>                lookup upper bound\n"
+        "< <key>                lookup strict lower bound\n"
+        "> <key>                lookup strict upper bound\n"
+        "# <num>                switch to alternate dictionary (0-9)\n"
+        "j <num> <num>          merge two dictionaries\n"
+        "f                      free the whole dictionary\n"
+        "k                      allow duplicate keys\n"
+        "c                      show number of entries\n"
+        "t                      dump whole dictionary in sort order\n"
+        "m                      make dictionary out of sorted items\n"
+        "p                      turn prompt on\n"
+        "s                      switch to non-functioning allocator\n"
+        "q                      quit";
+
+    for (i = 0; i < sizeof darray / sizeof *darray; i++)
+        dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
+
+    for (;;) {
+        if (prompt)
+            putchar('>');
+        fflush(stdout);
+
+        if (!fgets(in, sizeof(input_t), stdin))
+            break;
+
+        switch(in[0]) {
+            case '?':
+                puts(help);
+                break;
+            case 'a':
+                if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+                    puts("what?");
+                    break;
+                }
+                key = dupstring(tok1);
+                val = dupstring(tok2);
+
+                if (!key || !val) {
+                    puts("out of memory");
+                    free((void *) key);
+                    free(val);
+                }
+
+                if (!dict_alloc_insert(d, key, val)) {
+                    puts("dict_alloc_insert failed");
+                    free((void *) key);
+                    free(val);
+                    break;
+                }
+                break;
+            case 'd':
+                if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+                    puts("what?");
+                    break;
+                }
+                dn = dict_lookup(d, tok1);
+                if (!dn) {
+                    puts("dict_lookup failed");
+                    break;
+                }
+                val = (char *) dnode_get(dn);
+                key = (char *) dnode_getkey(dn);
+                dict_delete_free(d, dn);
+
+                free(val);
+                free((void *) key);
+                break;
+            case 'f':
+                dict_free_nodes(d);
+                break;
+            case 'l':
+            case '(':
+            case ')':
+            case '<':
+            case '>':
+                if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+                    puts("what?");
+                    break;
+                }
+                dn = 0;
+                switch (in[0]) {
+                case 'l':
+                    dn = dict_lookup(d, tok1);
+                    break;
+                case '(':
+                    dn = dict_lower_bound(d, tok1);
+                    break;
+                case ')':
+                    dn = dict_upper_bound(d, tok1);
+                    break;
+                case '<':
+                    dn = dict_strict_lower_bound(d, tok1);
+                    break;
+                case '>':
+                    dn = dict_strict_upper_bound(d, tok1);
+                    break;
+                }
+                if (!dn) {
+                    puts("lookup failed");
+                    break;
+                }
+                val = (char *) dnode_get(dn);
+                puts(val);
+                break;
+            case 'm':
+                construct(d);
+                break;
+            case 'k':
+                dict_allow_dupes(d);
+                break;
+            case 'c':
+                printf("%lu\n", (unsigned long) dict_count(d));
+                break;
+            case 't':
+                for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
+                    printf("%s\t%s\n", (char *) dnode_getkey(dn),
+                            (char *) dnode_get(dn));
+                }
+                break;
+            case 'q':
+                exit(0);
+                break;
+            case '\0':
+                break;
+            case 'p':
+                prompt = 1;
+                break;
+            case 's':
+                dict_set_allocator(d, new_node, del_node, NULL);
+                break;
+            case '#':
+                if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+                    puts("what?");
+                    break;
+                } else {
+                    int dictnum = atoi(tok1);
+                    if (dictnum < 0 || dictnum > 9) {
+                        puts("invalid number");
+                        break;
+                    }
+                    d = &darray[dictnum];
+                }
+                break;
+            case 'j':
+                if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+                    puts("what?");
+                    break;
+                } else {
+                    int dict1 = atoi(tok1), dict2 = atoi(tok2);
+                    if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
+                        puts("invalid number");
+                        break;
+                    }
+                    dict_merge(&darray[dict1], &darray[dict2]);
+                }
+                break;
+            default:
+                putchar('?');
+                putchar('\n');
+                break;
+        }
+    }
+
+    return 0;
+}
+
+#endif

File fc-solve/source/kaz_tree.h

+/* Copyright 2009
+ * Kaz Kylheku <kkylheku@gmail.com>
+ * Vancouver, Canada
+ * All rights reserved.
+ *
+ * BSD License:
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   1. Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *   2. Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in
+ *      the documentation and/or other materials provided with the
+ *      distribution.
+ *   3. The name of the author may not be used to endorse or promote
+ *      products derived from this software without specific prior
+ *      written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+ */
+/*
+ * Adapted from kazlib's dict.h by Shlomi Fish for Freecell Solver:
+ *
+ * http://git.savannah.gnu.org/cgit/kazlib.git/
+ *
+ * */
+#ifndef FC_SOLVE__KAZ_TREE_H
+#define FC_SOLVE__KAZ_TREE_H
+
+#include <limits.h>
+#ifdef KAZLIB_SIDEEFFECT_DEBUG
+#include "sfx.h"
+#endif
+
+/*
+ * Blurb for inclusion into C++ translation units
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned long dictcount_t;
+#define DICTCOUNT_T_MAX ULONG_MAX
+
+/*
+ * The dictionary is implemented as a red-black tree
+ */
+
+typedef enum { dnode_red, dnode_black } dnode_color_t;
+
+typedef struct dnode_t {
+    #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+    struct dnode_t *dict_left;
+    struct dnode_t *dict_right;
+    struct dnode_t *dict_parent;
+    dnode_color_t dict_color;
+    const void *dict_key;
+    void *dict_data;
+    #else
+    int dict_dummy;
+    #endif
+} dnode_t;
+
+typedef int (*dict_comp_t)(const void *, const void *, void *);
+typedef dnode_t *(*dnode_alloc_t)(void *);
+typedef void (*dnode_free_t)(dnode_t *, void *);
+
+typedef struct dict_t {
+    #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+    dnode_t dict_nilnode;
+    dictcount_t dict_nodecount;
+    dictcount_t dict_maxcount;
+    dict_comp_t dict_compare;
+    dnode_alloc_t dict_allocnode;
+    dnode_free_t dict_freenode;
+    void *dict_context;
+    int dict_dupes;
+    #else
+    int dict_dummmy;
+    #endif
+} dict_t;
+
+typedef void (*dnode_process_t)(dict_t *, dnode_t *, void *);
+
+typedef struct dict_load_t {
+    #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+    dict_t *dict_dictptr;
+    dnode_t dict_nilnode;
+    #else
+    int dict_dummmy;
+    #endif
+} dict_load_t;
+
+extern dict_t *dict_create(dictcount_t, dict_comp_t, void * context);
+extern void dict_set_allocator(dict_t *, dnode_alloc_t, dnode_free_t, void *);
+extern void dict_destroy(dict_t *);
+extern void dict_free_nodes(dict_t *);
+extern void dict_free(dict_t *);
+extern dict_t *dict_init(dict_t *, dictcount_t, dict_comp_t);
+extern void dict_init_like(dict_t *, const dict_t *);
+extern dict_t *dict_init_alloc(dict_t *, dictcount_t, dict_comp_t,
+                               dnode_alloc_t, dnode_free_t, void *);
+extern int dict_verify(dict_t *);
+extern int dict_similar(const dict_t *, const dict_t *);
+extern dnode_t *dict_lookup(dict_t *, const void *);
+extern dnode_t *dict_lower_bound(dict_t *, const void *);
+extern dnode_t *dict_upper_bound(dict_t *, const void *);
+extern dnode_t *dict_strict_lower_bound(dict_t *, const void *);
+extern dnode_t *dict_strict_upper_bound(dict_t *, const void *);
+extern const void * dict_insert(dict_t *, dnode_t *, const void *);
+extern dnode_t *dict_delete(dict_t *, dnode_t *);
+extern const void * dict_alloc_insert(dict_t *, const void *, void *);
+extern void dict_delete_free(dict_t *, dnode_t *);
+extern dnode_t *dict_first(dict_t *);
+extern dnode_t *dict_last(dict_t *);
+extern dnode_t *dict_next(dict_t *, dnode_t *);
+extern dnode_t *dict_prev(dict_t *, dnode_t *);
+extern dictcount_t dict_count(dict_t *);
+extern int dict_isempty(dict_t *);
+extern int dict_isfull(dict_t *);
+extern int dict_contains(dict_t *, dnode_t *);
+extern void dict_allow_dupes(dict_t *);
+extern int dnode_is_in_a_dict(dnode_t *);
+extern dnode_t *dnode_create(void *);
+extern dnode_t *dnode_init(dnode_t *, void *);
+extern void dnode_destroy(dnode_t *);
+extern void *dnode_get(dnode_t *);
+extern const void *dnode_getkey(dnode_t *);
+extern void dnode_put(dnode_t *, void *);
+extern void dict_process(dict_t *, void *, dnode_process_t);
+extern void dict_load_begin(dict_load_t *, dict_t *);
+extern void dict_load_next(dict_load_t *, dnode_t *, const void *);
+extern void dict_load_end(dict_load_t *);
+extern void dict_merge(dict_t *, dict_t *);
+
+#if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+#ifdef KAZLIB_SIDEEFFECT_DEBUG
+#define dict_isfull(D) (SFX_CHECK(D)->dict_nodecount == (D)->dict_maxcount)
+#else
+#define dict_isfull(D) ((D)->dict_nodecount == (D)->dict_maxcount)
+#endif
+#define dict_count(D) ((D)->dict_nodecount)
+#define dict_isempty(D) ((D)->dict_nodecount == 0)
+#define dnode_get(N) ((N)->dict_data)
+#define dnode_getkey(N) ((N)->dict_key)
+#define dnode_put(N, X) ((N)->dict_data = (X))
+#endif
+
+#ifdef __cplusplus
+}
+
+#include <functional>
+
+namespace kazlib
+{
+    class dnode : public dnode_t {
+    public:
+        dnode() { dnode_init(this, 0); }
+        dnode(const dnode &) { dnode_init(this, 0); }
+        dnode &operator = (const dnode &) { return *this; }
+        bool is_in_a_dict()
+        {
+            return dnode_is_in_a_dict(this);
+        }
+    };
+
+    template <typename KEY>
+    int default_compare(const KEY &left, const KEY &right)
+    {
+        if (left < right)
+            return -1;
+        else if (left == right)
+            return 0;
+        else
+            return 1;
+    }
+
+    template <typename KEY, int (*COMP)(const KEY &, const KEY &)>
+    struct compare_with_function {
+        static int compare(const void *left, const void *right)
+        {
+            return COMP(*(const KEY *) left, *(const KEY *) right);
+        }
+    };
+
+    struct dupes_allowed {
+        static const int allowed = 1;
+    };
+
+    struct dupes_disallowed {
+        static const int allowed = 0;
+    };
+
+    template <class ITEM, typename KEY, KEY ITEM::* KEY_OFFSET>
+    struct key_is_member {
+        typedef KEY KEY_TYPE;
+        static void *item2key(ITEM *item)
+        {
+            return &(item->*KEY_OFFSET);
+        }
+    };
+
+    template <class ITEM>
+    struct key_is_base {
+        typedef ITEM KEY_TYPE;
+        static void *item2key(ITEM *item)
+        {
+            return item;
+        }
+    };
+
+    template <class ITEM, dnode ITEM::* DNODE_OFFSET>
+    class dnode_is_member {
+    private:
+        dnode_is_member(const dnode_is_member &);
+        void operator = (const dnode_is_member &);
+    public:
+        typedef ITEM ITEM_TYPE;
+        static ITEM *dnode2item(dnode_t *node)
+        {
+            if (node == 0)
+                return 0;
+            const ptrdiff_t offset = (char *) &(((ITEM *) 0)->*DNODE_OFFSET)
+                                     - ((char *) 0);
+            return (ITEM *) (((char *) node) - offset);
+        }
+        static dnode_t *item2dnode(ITEM *item)
+        {
+            return &(item->*DNODE_OFFSET);
+        }
+    };
+
+    template <class ITEM>
+    class dnode_is_base {
+    private:
+        dnode_is_base(const dnode_is_base &);
+        void operator = (const dnode_is_base &);
+    public:
+        typedef ITEM ITEM_TYPE;
+        static ITEM *dnode2item(dnode_t *node)
+        {
+            return static_cast<ITEM *>(node);
+        }
+        static dnode_t *item2dnode(ITEM *item)
+        {
+            return item;
+        }
+    };
+
+    struct static_items {
+        template <class CONTAINER>
+        static void delete_all(CONTAINER &)
+        {
+        }
+        template <class ITEM>
+        static void delete_item(ITEM *)
+        {
+        }
+    };
+
+    struct dynamic_items {
+        template <class CONTAINER>
+        static void delete_all(CONTAINER &c)
+        {
+            c.delete_all();
+        }
+        template <class ITEM>
+        static void delete_item(ITEM *item)
+        {
+            delete item;
+        }
+    };
+
+    struct placement_items {
+        template <class CONTAINER>
+        static void delete_all(CONTAINER &c)
+        {
+            c.delete_all();
+        }
+        template <class ITEM>
+        static void delete_item(ITEM *item)
+        {
+            item->~ITEM();
+        }
+    };
+
+    struct dict_dfl_feat {
+        typedef dupes_disallowed dupe_feature;
+        typedef static_items alloc_feature;
+    };
+
+    template <typename FIRST, typename REST>
+    struct trait_combinator : public FIRST, public REST {
+    };
+
+    template <typename REST, typename KEY, int (*F)(const KEY&, const KEY &)>
+    struct trait_combinator<compare_with_function<KEY, F>, REST>
+    : public REST {
+        typedef compare_with_function<KEY, F> compare_feature;
+    };
+
+    template