Source

project-euler / project-euler / 137 / analysis.txt

Full commit
F[n] = 1/sqrt(5) * { [ (1 + sqrt(5)) / 2 ]^n - [ (1 - sqrt(5)) / 2 ] ^ n }

$s = sqrt(5)

Therefore:

[ Given limits according to the |q| <= 1 ]

A_F(x) = 1/$s * { x(1+$s)/2/[ 1 - x(1+$s)/2] - x(1-$s)/2/[1 - x(1-$s)/2] } =

x/(2*$s) * { (1+$s)/[1 - x(1+$s)/2] - (1-$s)/[1 - x(1-$s)/2] } =

x/(2*$s) * { 1/[1/(1+$s) - x/2] - 1/[1/(1-$s) - x/2] } =

    [y = x/2]

y*$s * {1/[1/(1+$s) - y] - 1/[1/(1-$s) - y] } =

    [z = 1/y]

$s * { 1 / [z/(1+$s) - 1] - 1 / [z/(1-$s) - 1] } = N

$s * [z/(1-$s)-1 - z/(1+$s) + 1 ]/[z/(1+s)-1]/[z/(1-s)-1] = N

$s * z * (1/(1-$s)-1/(1+$s)) = N[z/(1+$s)-1][z/(1-s)-1]

    [ * (1+$s) * (1-$s)]

$s * $z * (1+$s-1+$s) = N[z-(1+$s)][z-(1-$s)]

    2 $s^2 * $z = N [ z^2 - 2z + (1-$s^2)]

    $s^2 = 5

    10z = N [ z^2 - 2z - 4 ]

    z^2 - (2+10/N)z -4 = 0

    z = [ -2a +/- sqrt(b^2-4ac) ] / (2*a)