Commits

Murat Sari committed a58d997

Wrong eol

  • Participants
  • Parent commits 35ba38f
  • Branches v1-9

Comments (0)

Files changed (2)

File Components/Volume/include/OgreVolumeSimplexNoise.h

     class _OgreVolumeExport SimplexNoise
     {
     private:
-        
+        
         /// Skewing and unskewing factor for 3 dimensions.
         static Real F3;
-        
+        
         /// Skewing and unskewing factor for 3 dimensions.
         static Real G3;
 
             A random long.
         */
         unsigned long random(void);
-        
-        /** Dot product of a gradient with the given values.
-        @param g
-            The gradient.
-        @param x
-            The first value.
-        @param y
-            The second value.
-        @param z
-            The third value.
-        @return
-            The dot product.
-        */
-        inline Real dot(const Vector3 &g, Real x, Real y, Real z) const
-        {
+        
+        /** Dot product of a gradient with the given values.
+        @param g
+            The gradient.
+        @param x
+            The first value.
+        @param y
+            The second value.
+        @param z
+            The third value.
+        @return
+            The dot product.
+        */
+        inline Real dot(const Vector3 &g, Real x, Real y, Real z) const
+        {
             return g.x * x + g.y * y + g.z * z;
         }
                 

File Components/Volume/src/OgreVolumeSimplexNoise.cpp

 THE SOFTWARE.
 -----------------------------------------------------------------------------
 */
-#include "OgreVolumeSimplexNoise.h"
-
+#include "OgreVolumeSimplexNoise.h"
+
 #include <time.h>
 
 namespace Ogre {
 
     Real SimplexNoise::F3 = (Real)(1.0 / 3.0);
     Real SimplexNoise::G3 = (Real)(1.0 / 6.0);
-    
-    Vector3 grad3[] = {
-        Vector3(1,1,0), Vector3(-1,1,0), Vector3(1,-1,0), Vector3(-1,-1,0),
-        Vector3(1,0,1), Vector3(-1,0,1), Vector3(1,0,-1), Vector3(-1,0,-1),
+    
+    Vector3 grad3[] = {
+        Vector3(1,1,0), Vector3(-1,1,0), Vector3(1,-1,0), Vector3(-1,-1,0),
+        Vector3(1,0,1), Vector3(-1,0,1), Vector3(1,0,-1), Vector3(-1,0,-1),
         Vector3(0,1,1), Vector3(0,-1,1), Vector3(0,1,-1), Vector3(0,-1,-1)
     };
 
     //-----------------------------------------------------------------------
     
     void SimplexNoise::init(unsigned long definedSeed)
-    {
-        mSeed = definedSeed;
-        short p[256];
-        for (int i = 0; i < 256; ++i)
-        {
-            p[i] = (short)(random() % 256);
-        }
-
-        for(int i=0; i<512; i++)
-        {
-            perm[i]= p[i & 255];
-            permMod12[i] = (short)(perm[i] % 12);
+    {
+        mSeed = definedSeed;
+        short p[256];
+        for (int i = 0; i < 256; ++i)
+        {
+            p[i] = (short)(random() % 256);
+        }
+
+        for(int i=0; i<512; i++)
+        {
+            perm[i]= p[i & 255];
+            permMod12[i] = (short)(perm[i] % 12);
         }
     }
     
     //-----------------------------------------------------------------------
     
     SimplexNoise::SimplexNoise(unsigned long definedSeed)
-    {
+    {
         init(definedSeed);
     }
     
     
     Real SimplexNoise::noise(Real xIn, Real yIn, Real zIn) const
     {
-        Real n0, n1, n2, n3; // Noise contributions from the four corners
-        // Skew the input space to determine which simplex cell we're in
-        Real s = (xIn + yIn + zIn) * F3; // Very nice and simple skew factor for 3D
-        int i = (int)floor(xIn + s);
-        int j = (int)floor(yIn + s);
-        int k = (int)floor(zIn + s);
-        Real t = (i + j + k) * G3;
-        Real X0 = i - t; // Unskew the cell origin back to (x,y,z) space
-        Real Y0 = j - t;
-        Real Z0 = k - t;
-        Real x0 = xIn - X0; // The x,y,z distances from the cell origin
-        Real y0 = yIn - Y0;
-        Real z0 = zIn - Z0;
-        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
-        // Determine which simplex we are in.
-        int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
-        int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
-        if (x0 >= y0)
-        {
-            if (y0 >= z0)  // X Y Z order
-            {
-                i1 = 1;
-                j1 = 0;
-                k1 = 0;
-                i2 = 1;
-                j2 = 1;
-                k2 = 0;
-            }
-            else if (x0 >= z0) // X Z Y order
-            {
-                i1 = 1;
-                j1 = 0;
-                k1 = 0;
-                i2 = 1;
-                j2 = 0;
-                k2 = 1;
-            }
-            else // Z X Y order
-            {
-                i1 = 0;
-                j1 = 0;
-                k1 = 1;
-                i2 = 1;
-                j2 = 0;
-                k2 = 1;
-            } 
-        }
-        else // x0<y0
-        { 
-            if (y0 < z0) // Z Y X order
-            {
-                i1 = 0;
-                j1 = 0;
-                k1 = 1;
-                i2 = 0;
-                j2 = 1;
-                k2 = 1;
-            }
-            else if(x0 < z0) // Y Z X order
-            {
-                i1 = 0;
-                j1 = 1;
-                k1 = 0;
-                i2 = 0;
-                j2 = 1;
-                k2 = 1;
-            }
-            else // Y X Z order
-            {
-                i1 = 0;
-                j1 = 1;
-                k1 = 0;
-                i2 = 1;
-                j2 = 1;
-                k2 = 0;
-            } 
-        }
-        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
-        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
-        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
-        // c = 1/6.
-        Real x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
-        Real y1 = y0 - j1 + G3;
-        Real z1 = z0 - k1 + G3;
-        Real x2 = x0 - i2 + (Real)2.0 * G3; // Offsets for third corner in (x,y,z) coords
-        Real y2 = y0 - j2 + (Real)2.0*G3;
-        Real z2 = z0 - k2 + (Real)2.0*G3;
-        Real x3 = x0 - (Real)1.0 + (Real)3.0 * G3; // Offsets for last corner in (x,y,z) coords
-        Real y3 = y0 - (Real)1.0 + (Real)3.0 * G3;
-        Real z3 = z0 - (Real)1.0 + (Real)3.0 * G3;
-        // Work out the hashed gradient indices of the four simplex corners
-        int ii = i & 255;
-        int jj = j & 255;
-        int kk = k & 255;
-        int gi0 = permMod12[ii + perm[jj + perm[kk]]];
-        int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
-        int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
-        int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
-        // Calculate the contribution from the four corners
-        Real t0 = (Real)0.6 - x0 * x0 - y0 * y0 - z0 * z0;
-        if (t0 < 0)
-        {
-            n0 = 0.0;
-        }
-        else
-        {
-            t0 *= t0;
-            n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
-        }
-        Real t1 = (Real)0.6 - x1 * x1 - y1 * y1 - z1 * z1;
-        if (t1 < 0)
-        {
-            n1 = 0.0;
-        }
-        else
-        {
-            t1 *= t1;
-            n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
-        }
-        Real t2 = (Real)0.6 - x2 * x2 - y2 * y2 - z2 * z2;
-        if (t2 < 0)
-        {
-            n2 = 0.0;
-        }
-        else
-        {
-            t2 *= t2;
-            n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
-        }
-        Real t3 = (Real)0.6 - x3 * x3 - y3 * y3 - z3 * z3;
-        if (t3 < 0)
-        {
-            n3 = 0.0;
-        }
-        else
-        {
-            t3 *= t3;
-            n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
-        }
-        // Add contributions from each corner to get the final noise value.
-        // The result is scaled to stay just inside [-1,1]
+        Real n0, n1, n2, n3; // Noise contributions from the four corners
+        // Skew the input space to determine which simplex cell we're in
+        Real s = (xIn + yIn + zIn) * F3; // Very nice and simple skew factor for 3D
+        int i = (int)floor(xIn + s);
+        int j = (int)floor(yIn + s);
+        int k = (int)floor(zIn + s);
+        Real t = (i + j + k) * G3;
+        Real X0 = i - t; // Unskew the cell origin back to (x,y,z) space
+        Real Y0 = j - t;
+        Real Z0 = k - t;
+        Real x0 = xIn - X0; // The x,y,z distances from the cell origin
+        Real y0 = yIn - Y0;
+        Real z0 = zIn - Z0;
+        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+        // Determine which simplex we are in.
+        int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
+        int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+        if (x0 >= y0)
+        {
+            if (y0 >= z0)  // X Y Z order
+            {
+                i1 = 1;
+                j1 = 0;
+                k1 = 0;
+                i2 = 1;
+                j2 = 1;
+                k2 = 0;
+            }
+            else if (x0 >= z0) // X Z Y order
+            {
+                i1 = 1;
+                j1 = 0;
+                k1 = 0;
+                i2 = 1;
+                j2 = 0;
+                k2 = 1;
+            }
+            else // Z X Y order
+            {
+                i1 = 0;
+                j1 = 0;
+                k1 = 1;
+                i2 = 1;
+                j2 = 0;
+                k2 = 1;
+            } 
+        }
+        else // x0<y0
+        { 
+            if (y0 < z0) // Z Y X order
+            {
+                i1 = 0;
+                j1 = 0;
+                k1 = 1;
+                i2 = 0;
+                j2 = 1;
+                k2 = 1;
+            }
+            else if(x0 < z0) // Y Z X order
+            {
+                i1 = 0;
+                j1 = 1;
+                k1 = 0;
+                i2 = 0;
+                j2 = 1;
+                k2 = 1;
+            }
+            else // Y X Z order
+            {
+                i1 = 0;
+                j1 = 1;
+                k1 = 0;
+                i2 = 1;
+                j2 = 1;
+                k2 = 0;
+            } 
+        }
+        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
+        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
+        // c = 1/6.
+        Real x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
+        Real y1 = y0 - j1 + G3;
+        Real z1 = z0 - k1 + G3;
+        Real x2 = x0 - i2 + (Real)2.0 * G3; // Offsets for third corner in (x,y,z) coords
+        Real y2 = y0 - j2 + (Real)2.0*G3;
+        Real z2 = z0 - k2 + (Real)2.0*G3;
+        Real x3 = x0 - (Real)1.0 + (Real)3.0 * G3; // Offsets for last corner in (x,y,z) coords
+        Real y3 = y0 - (Real)1.0 + (Real)3.0 * G3;
+        Real z3 = z0 - (Real)1.0 + (Real)3.0 * G3;
+        // Work out the hashed gradient indices of the four simplex corners
+        int ii = i & 255;
+        int jj = j & 255;
+        int kk = k & 255;
+        int gi0 = permMod12[ii + perm[jj + perm[kk]]];
+        int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
+        int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
+        int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
+        // Calculate the contribution from the four corners
+        Real t0 = (Real)0.6 - x0 * x0 - y0 * y0 - z0 * z0;
+        if (t0 < 0)
+        {
+            n0 = 0.0;
+        }
+        else
+        {
+            t0 *= t0;
+            n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
+        }
+        Real t1 = (Real)0.6 - x1 * x1 - y1 * y1 - z1 * z1;
+        if (t1 < 0)
+        {
+            n1 = 0.0;
+        }
+        else
+        {
+            t1 *= t1;
+            n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
+        }
+        Real t2 = (Real)0.6 - x2 * x2 - y2 * y2 - z2 * z2;
+        if (t2 < 0)
+        {
+            n2 = 0.0;
+        }
+        else
+        {
+            t2 *= t2;
+            n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
+        }
+        Real t3 = (Real)0.6 - x3 * x3 - y3 * y3 - z3 * z3;
+        if (t3 < 0)
+        {
+            n3 = 0.0;
+        }
+        else
+        {
+            t3 *= t3;
+            n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
+        }
+        // Add contributions from each corner to get the final noise value.
+        // The result is scaled to stay just inside [-1,1]
         return (Real)32.0 * (n0 + n1 + n2 + n3);
     }