Refactoring

Yet another thing you shouldn’t trust your IDE to do

Refactoring

e Whatisit?
e Howtodoit?
e What can go wrong?

e How to implement a refactoring tool

Code Quality Measurement:
WTFs/Minute

—

WTF WTF WTF
4 WTF P 7/'
\ N

e)
L WwTF

WTF is /

this shit?
= =
[] []
1 N\

WTF wTF

Good Code Bad Code

http://commadot.com

what is it?

The process of restructuring existing computer code without changing its external

behaVIOF (https://en.wikipedia.org/wiki/Code_refactoring, Martin Fowler, Opdyke)

Richard Naoufal

R EFACTORING :
_ HTML
Effective

RerscrorinG [T [ty

IMPROVING THE DESIGN o
of ExistiNg Copg IDATABASES In Java

ELLIOTTE RUSTY ’
HaroLp "
|
A

;‘;1{

Improve your software quality with Java's refactoring
techniques

owler

MARTIN FOWLER
With Contributions by Kent Beck, John Brant,
William Opdyke, sa Don Roberts

R EFACTORING
TO PATTERNS

Focewors by

Object Technology International Inc

REFACTORING

RuBY EDITION

o
5 Forewor 41'”,
BOOCH K 4 JAY FIELDS = SHANE HARVIE = MARTIN FOWLER
] JRCOBSON with KENT BECK
| EZZITE)

Packt>

https://en.wikipedia.org/wiki/Code_refactoring

- examples

Rename Local Variable Low level
Rename Method
Rename Class
Extract Variable
Extract Method
Move Method

Replace inheritance with

delegation High level

how to do it?

Manual refactoring
How?
Pros/cons?

I Analyze
T Tref:e
ransform,/,

Prett'-
Prin

Automated tools
How?
Other pros/cons?

|deally: correct automation (as with
everything..)

Why does everyone hate it?

YEAH.._IF YOU COULD STOP
REFACTORING WHILE WE TEST THINGS..

Refactoring: - Extract Local Variable

Before After
1 public void £() { public void £() {
2 a.b.c.d.m(); D temp = a.b.c.d;
3 a.b.c.d.n(); temp.m() ;
4 a.b.foo(a.b.c.d); temp.n();
5 a.b.bar(); a.b.foo(temp);
6 a.b.c.d.m(); a.b.bar();
7 b temp.m();

}

- Extract Local Variable

1
2
3
4
5

input : e — an expression of non-void type E
: § — a selection, as a list of consecutive statements
: context — the outermost, non-type scope containing S
output: contexrt with e extracted to a local variable in S
v — fresh variable name;
for s € S do
| in s replace all occurrences of e with v;
end
add a new variable declaration F v = e context just before S

Algorithm 1: Extract Local Variable algorithm: add a new variable
declaration initialized to the target argument in the beginning of the selec-
tion, then replace all occurrences of target with a reference to the variable.

Refactoring: - Extract Local Variable

Preconditions. These preconditions ensure that the resulting code is well-
formed and behaves the same as before:

e The selected expression is of a non-void type.
e The selected expression has no side effects.

e The selected expression or its aliases are not assigned to within the code
that is reachable from the selection.

The selection is not the outermost type declaration in a compilation unit.

The program is well-formed, i.e. syntactically correct and type-checks
(compiles)

How to implement a refactoring tool

The Eclipse project JDK core refactoring API plugin!
= org.eclipse.jdt.core.refactoring «

Which relies on
Eclipse Platform
Language Tool Kit, U, ...
org.eclipse.jdt.core
org.eclipse.jdt.core.dom
org.eclipse.jdt.core.dom.rewrite
org.eclipse.jdt.core.util

...a tumble into the Eclipse java language model...

The Java Model (org.eclipse.jdt.core)

Java projects

IJavaProject

(IPackageFragmentRoot)
(IPackageLragment]
[ICompila!.tionUnitJ
(types/fields /methods | (IType/IField/IMethod]

Figure 3.1: Project elements on the left, Java Model element to the right. Each
node on the right represents the types that nodes on that level can have in the
Java model, with the corresponding project elements to the left.

...a tumble into the Eclipse java language model...

The Java Model (org.eclipse jdt.core) The DOM/AST (org.eclipse.jdt.core.dom)

[CompilationUnit]

(PackageDeclaration?] [ImportDeclaration*J (AbstractTypeDeclaxatiom]

ICompilationUnit

(Name) [Annot at 10n*j (Name (BodyDecla.ratlon*] [SlmpleName]
Figure 3.1: Project elements on the left, Java Model element to the right. Each
node on the right represents the types that nodes on that level can have in the - . L L L L L.
e e Figure 3.2: Simplified Eclipse AST representation of a Java Project

...a tumble into the Eclipse java language model...

The DOM/AST (org.eclipse.jdt.core.dom)

[MethodDeclarationj

Type: void @10@ Parameter: []
1 public class C {
2 public X x = new X() (Statement)
3 public void £(X x) {
4 x.m(this); SimpleName: £ (Expression | TypeParameter: null]
5 }
6 1}

[Methodlnvocation) QualifiedName
(Nome/ Qe Tope

ThisExpression

ASTParser parser = ASTParser.newParser (AST.JLS8);

parser.setKind (ASTParser.K_COMPILATION_UNIT) ;

parser.setSource (document.get () .toCharArray()) ;
parser.setResolveBindings (true);

parser.setProject (PROJECT_NAME)) ;

parser.setUnitName (UNIT_NAME) ;

CompilationUnit cu = (CompilationUnit) parser.createAST(PROGRESS_MONITOR);

...a tumble into the Eclipse java language model...

The general lifecycle of a refactoring in Eclipse is as follows:

1. The refactoring is launched by a user or a script. An initial check is
performed to determine whether the refactoring is applicable at all in the
context desired by the user (checkInitialConditions()).

2. Configuration details is supplied by the user or script if necessary.

3. After all necessary information has been provided, an in-depth check is
invoked (checkFinalConditions()) and the individual changes in the
source text are calculated (createChange()).

4. The preview dialogue displays the changes; the user confirms and the LTK
applies them to the workspace.

A last step can include adding an undo change to the IDE’s undo history.

...a tumble into the Eclipse java language model...

ExtractTempRefactoring.java

(running and debugging Eclipse in Eclipse.. Linked to the single class
representing the refactoring)

http://git.eclipse.org/c/jdt/eclipse.jdt.ui.git/plain/org.eclipse.jdt.ui/core%20refactoring/org/eclipse/jdt/internal/corext/refactoring/code/IntroduceParameterRefactoring.java

