
INF225 Notes

Anya Helene Bagge
w/Ralf Lämmel, Vadim Zaytsev

v3, Fall 2016

i

Contents

Contents 1

0 Introduction 3
0.1 Software Language Engineering 3

0.1.1 Languages . 3
0.1.2 Engineering . 4
0.1.3 What’s SLE really about? 5
0.1.4 Typical SLE Activities . 5
0.1.5 Things to learn (maybe) in this course 5
0.1.6 Futher reading . 6

1 Concrete Syntax 7
1.1 Grammars . 7
1.2 Concrete and Abstract Syntax . 8

1.2.1 Concrete Syntax . 8
1.2.2 Abstract Syntax . 9

1.3 Parsing . 11
1.4 Pretty Printing . 11
1.5 Editing . 11

2 Evaluators & Dynamic Semantics 13
2.1 Dynamic and Static Semantics . 13
2.2 The Simpl-Exp Expression Language 14

2.2.1 Evaluating Trivial Expressions 14
2.2.2 The Trivial Evaluator . 16
2.2.3 Variables and Environments 18

2.3 Environmental Concerns . 20
2.3.1 Environment Interface . 20
2.3.2 Semantics of the Environment 21
2.3.3 Namespaces . 21

2.4 Functions . 22
2.4.1 Functions in the Evaluator 22

2.5 Scoping . 26
2.5.1 Scope Terminology . 26
2.5.2 Dynamic Scoping . 27
2.5.3 Lexical Scoping . 27

2.6 Imperative Languages . 29
2.6.1 Store and References . 29

2.7 Advanced Scoping . 29

1

Contents A.H. Bagge

2.7.1 Closures . 29
2.7.2 Nested Scopes . 29

3 Typecheckers & Static Semantics 31
3.1 Static versus Dynamic Typing . 31
3.2 Simple Typechecking . 32

3.2.1 Functions . 36
3.2.2 Design Issues . 38

3.3 More examples . 39

A Glossary 41
A.1 Term Definitions . 41
A.2 Tag Index . 56

B Overview of the Course, Fall 2013 59
B.1 What is a language? . 59

B.1.1 Formal language definition 59
B.2 Syntax . 59

B.2.1 Languages and Grammars 59
B.2.2 Classes of languages . 60
B.2.3 Parsing . 61
B.2.4 Parse Trees . 61
B.2.5 Abstract Syntax Trees . 61
B.2.6 Generalised parsing . 62
B.2.7 Ambiguities . 62
B.2.8 Precedence / Priorities . 63
B.2.9 Scanners vs. Scannerless 63
B.2.10 Spaces and Layout . 63

B.3 Domain-Specific Languages (DSLs) 63
B.4 Semantics . 63

B.4.1 Types . 63
B.4.2 Dynamic semantics . 64
B.4.3 Static semantics . 64

B.5 Environment and Store . 64

C Formal Semantics 67
C.1 Specification of MyLang

– the Simple Version . 67
C.1.1 Syntax of MyLang . 67
C.1.2 Operational Semantics of MyLang 68
C.1.3 Things to Think About . 70

C.2 Specification of MyLang
– with Type Checking and Stores 71
C.2.1 Syntax of MyLang . 71
C.2.2 Static Semantics of MyLang 72
C.2.3 Dynamic Semantics of MyLang 75

Bibliography 81

2

Chapter 0

Introduction

Software Language Engineering

What’s a language? A software language? What makes it engineering?

Languages

Wikipedia says: Language is the human capacity for acquiring and using complex
systems of communication, and a language is any specific example of such a system.
The scientific study of language is called linguistics.

Anya’s definition:

• A language is a system of communication. It carries meaning (semantics),
and has abstractions that allow you to communicate usefully at different
levels (i.e., more than just pointing at concrete things or showing a pic-
ture of something).

A general-purpose language will allow you to define your own abstraction
(e.g., by defining a class in Java, or by defining the term ‘language’ in English).

Formal Languages

A formal language has a formal definition:

• Given an alphabet Σ = {a, b, . . . } (the basic letters and characters of the
language)

• then Σ∗ is the set of all possible strings over the alphabet,

• and L ⊂ Σ∗ is a language (e.g., those strings over the alphabet that are
valid)

For example:

• Σsheep = {“b”, “æ”}

• Lsheep = {“bæ”, “bææ”, “bææææ”, “bæbæ”, “bæbæææ”, . . . } = /(bæ+)*/
is the language of sheep (bæææ!) (the thing in between the slashes is a
regular expression, a simple grammar for simple languages, which we’ll
learn more about later).

3

http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Regular_expression

0. Introduction A.H. Bagge

A language is typically not defined by listing all valid strings, but rather by
defining:

• the lexical syntax (giving the alphabet)

• a grammar for the sentence structure

and possibly also

• typing rules (excludes some sentences as meaningless)

• semantics (defines the meaning of sentences)

Software Languages

A software language

• is an artificial language (constructed by particular humans, not by cul-
tural evolution)

• which is used in software development.

A language can be a software language even though it’s not a program-
ming language (it could be a specification language, for example). A natural
language is not a software language, even though it’s used in development.

Software languages are also formal languages, though we will only have to
deal with some aspects of formal language theory.

There are many kinds of software languages:

• General-purpose programming languages; e.g., Java, Lisp, C, Python, . . .

• Domain-specific languages; e.g., SQL, HTML, CSS

• Modelling and meta-modelling languages; e.g. UML, XML Schema

• Data representation; e.g., HTML, markup languages, XML, JSON

• Ontologies

• APIs? For example, Java Collections, Python standard library. Maybe –
an API gives you communication, semantics and abstraction, but is typ-
ically not “stand-alone”; needs to be embedded in another language.

Engineering

Software Language Engineering means we deal with software languages in a
way that is:

• systematic,

• disciplined,

• quantifiable,

• informed by science.

4

http://en.wikipedia.org/wiki/Ontology_%28information_science%29

INF225 Notes 0.1. Software Language Engineering

What’s SLE really about?

What we do, research-wise:

• Development (design, implementation, testing, deployment), and

• maintenance (evolution, recovery, retirement)

of

• formal descriptions, and

• tooling

of/for software languages.

Typical SLE Activities

• Compiler construction [Wikipedia]

• Domain-specific languages [Wikipedia]

• Model-driven engineering [Wikipedia]

• Program generation [Wikipedia]

• Reverse engineering [Wikipedia]

• Reengineering, refactoring [Wikipedia]

Things to learn (maybe) in this course

• languages, grammar – syntax [Lecture 2: Syntax and Grammars]

• trees, parse-trees, abstract syntax trees

• semantics

– static semantcs / typechecking
– dynamic semantics / evaluation / compilation
– scopes, environments, parameter passing
– state; memory layout, execution model

• typing systems

– data abstraction, classes, structs
– dynamic vs static typing

• domain-specific languages

• data-flow analysis

– optimisation, slicing

• macro systems

• code generation

5

http://en.wikipedia.org/wiki/Compiler_construction
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Automatic_programming
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software
http://en.wikipedia.org/wiki/Code_refactoring

0. Introduction A.H. Bagge

• intermediate languages / representations

– three-address code; trees; SSA form

• code transformation

• mapping between different abstraction levels

You should learn enough that you can get started on

• designing / evolving SLE technologies

• test and evaluate your work

• figure out what went wrong and do better next time

You won’t learn:

• Automatons, NFAs, DFAs

• Constructing LR or LL parsers or lexers

Futher reading

• SLE conference – definition of the term software language engineering

6

http://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/LR_parser
http://en.wikipedia.org/wiki/LL_parser
http://planet-sl.org/sle2013/index.php?option=com_content&view=article&id=244:call-for-papers&catid=96:2013&lang=en

Chapter 1

Concrete Syntax

Grammars

A grammar describes the syntactic aspect of a language. Formally, a grammar
is a tuple G = 〈T,N, P, S〉, where P is a set of grammar productions; T is the set
of terminals in P (the alphabet), N is the set of non-terminals in P, and S is the
start-symbol.

Syntactially, a language L is the set of strings over the alphabet T that con-
form to the grammar G. L is a subset of T∗ – the (infinite) set of strings over
the alphabet T . Alternatively, we can define a language as the set of strings
generated by the grammar G (by starting at the start-symbol, and generating
all permutations).

In a regular grammar, the productions are of the form (with a being a termi-
nal and A and B being non-terminals):

A→ aB (1.1)

or
A→ Ba (1.2)

A linear grammar allows both forms within the same grammar, but a regular
grammar must use one or the other.

However, instead of writing productions as above, regular grammars of-
ten written using regular expressions (abbreviated re, regex or regexp). They are
commonly used to define the structure of the basic words in a programming
language.

For any regular grammar, we can define a finite automatonwhich recognises
sentences in the regular language. Commonly, such automata are used to di-
vide a program text into individual words or tokens.

In context-free languages, the productions are of the form:

A→ (a|B)∗ (1.3)

Context-free grammars are used to defined the structure of the sentences
of a programming language.

7

1. Concrete Syntax A.H. Bagge

Concrete and Abstract Syntax

Concrete Syntax

Concrete syntax is described by a grammar; typically a context-free grammar
(with the lexical sub-parts possibly described by a regular grammar). It is the
syntax used when you write programs or text in a language.

A grammar is a particular implementation of a syntax – a formal set of rules
that describe the syntax. The same syntax can be described in many different
ways: there are many C++ grammars (and nearly all of them are wrong), but
just one standard syntax.

In designing a concrete syntax, important considerations are:

• Ease of use for programmers (making it feel "natural")

• Familiarity / similarity to other languages (easier learning)

• Robustness (small typos shouldn’t drastically change the meaning of a
program without warning; syntax errors should be easy to identify and
recover from)

For example, Java is designed to have a fairly easy to use syntax (e.g., the
syntax "class A implements B" is easy to read, understand and remember) and
to be familiar to C and C++ programmers. The C familiarity has a negative im-
pact on robustness, because of C’s terse syntax – parse error recovery is made
difficult by the low level of redundancy, and some simple mistakes can have
big consequences:

1 for(int i = 0; i < 10; i++); // whoops! extra semicolon
System.out.println(i);

Syntax design is a language design issue. Grammar design is a language
implementation issue (though the language specification will typically also
comewith a grammar, specifying the syntax). Important grammar design con-
siderations are:

• Technology. If the grammar is to be used by a parser generator, it is
typically limited by what the parser generator supports. These limita-
tions can be quite severe (for example, left-recursive grammars (i.e., with
A→ AB) can’t be used directly with LL parsers).

• Readability. Various tricks to avoid technological deficiencies canmake a
grammar really hard to read (e.g., avoiding left recursion); using features
such as priorities and the *, ?, +, | and {} operators canmake a grammar
easier to read.

• Structure. Some grammars will tend to produce deeply nested trees on
parsing; this can be annoying depending on how your compiler is imple-
mented.

• Simplicity and compactness. Should every syntactical pattern that re-
peats itself be factored out into its own production? Or should one try to
minimise the number of productions at the cost of bigger productions?
This will typically impact both readability and structure.

8

INF225 Notes 1.2. Concrete and Abstract Syntax

Concrete Syntax in Rascal

Once you have defined a grammar in Rascal (or imported an existing gram-
mar), you can write code fragments in concrete syntax within your Rascal pro-
gram. Concrete syntax fragments are enclosed in back-quotes (‘...‘), and
optionally preceded by the name of the appropriate non-terminal in parenthe-
sis:

1 (Expr)‘a + 2‘

Pattern variables in concrete syntax fragments are enclosed in angle brack-
ets (<...>). It may be necessary to type the variables with their corresponding
non-terminal, in order to help out the Rascal parser:

1 (Expr)‘<Expr a> + 2‘

Parse Trees

The value of a concrete syntax fragment is its parse tree (also known as a con-
crete syntax tree):

1 Expr: ‘a + 2‘
Tree: appl(prod(sort("Expr"),[sort("Expr"),...

Parse tree values can be printed (which yields the original code text), and
manipulated just like any other Rascal data value. Translating a parse tree
back to a text is called unparsing. You can do this in Rascal by interpolating
the value in a string: "<myTree>", or calling the unparse() function (defined
in the ParseTree module). The parse tree type Tree is a subtype of the Node
type, as are all user-defined algebraic data types.

The structure of a parse tree follows directly from the grammar and the
parsing process: for every parse tree node, there is a corresponding production
in the grammar that was used to parse the text for that node, and each parse
tree node has one child for every symbol (terminal or non-terminal) on the
right-hand side of a production rule.

The parse tree traces the sequence of productions that was used during the
parse – different parsing techniques may produce different trees. In our case,
Rascal uses a generalised parsing technique, which produces all possible trees
– a parse forest (the ordering of the trees in the forest may still depend on the
parser; in Rascal, the trees are unordered (in a set)).

In Rascal, the parse tree includes all the information needed to reconstruct
the original input text, as well as information on all the productions used dur-
ing parsing, and the source code locations of all the nodes.

Abstract Syntax

The abstract syntax tree (AST) of a program encodes just the information neces-
sary to preserve the meaning of the original program text. The abstract syntax
describes the structure of the abstract syntax tree – it can be defined using a
regular tree grammar, or an algebraic data type or term (in Rascal, ML, Prolog,
...), or an object-oriented inheritance hierarchy of node classes (Java, C++, ...),
or as an S-expression (in Lisp languages).

9

1. Concrete Syntax A.H. Bagge

The abstract syntax tree can be used as an internal representation in a lan-
guage processor, but it is not the only possible representation.

An abstract syntax can be generated by a grammar in the following way:
For every non-terminal type, there is a corresponding abstract syntax type.
Each type has one constructor (or node type) corresponding to each produc-
tion in the grammar, with one child for every symbol in the production that
is not a literal token (e.g, punctation, keywords or spaces). If a constructor
has only one child, of the same type, it can be removed (e.g., this would be
the case for a parenthesis expression). You can do this process entirely based
on the information contained in a parse tree. Translating a parse tree into a
corresponding abstract syntax tree is called imploding the parse tree.

Given an abstract syntax tree, it is possible to reconstruct a parse tree or pro-
gram text, given the original grammar – though the resulting programmay be
slightly different in terms of spaces and punctation. This is called unparsing or
pretty-printing (particularly if the output is nicely formatted). Parsing, implod-
ing, pretty-printing and then reparsingmay not yield the exact same parse tree
as the original tree, but it should still implode to the same abstract syntax tree
(otherwise there is a bug in your tool chain!).

Although the abstract syntax may be derived from a grammar, it can actu-
ally be useful to define it yourself, to capture the core constructs in the lan-
guage. Multiple cases in the concrete syntax may be folded into the same
constructor in the abstract syntax, and the abstract syntax may distinguish be-
tween cases that aren’t syntactically distinct in the concrete syntax (e.g., in the
case of overloaded operators).

It may be entirely sensible to design a language around the abstract syntax
first, and then later on add a concrete syntax – this was done in the case of Lisp
(where they basically ended up using a representation of the abstract syntax
as a concrete syntax).

Various phases in a language processor may change the abstract syntax
tree, or use slightly different versions of the abstract syntax (e.g., after type
checking, the nodes for variables include the type of the variable) – it is also
possible to decorate or annotate the AST as processing proceeds. This adds ex-
tra information to the nodes in the AST, without impacting the structure of the
abstract syntax (this can also be done with a parse tree – in fact, the location
information in Rascal is an annotation on the parse tree node).

Important abstract syntax design considerations are:

• Simplicity. Generally, your compiler tools will do a lot of work on AST,
and the fewer different cases you have to worry about, the better. For
example, if the processing of overloaded functions and operators is basi-
cally the same (which it is to some degree in C++), youmaywant to have
only oneAST node type to cover both. Having a lot of unnecessary nodes
in the tree can be annoying as well, and may make processing slower.

• Good correspondence with the constructs of the language.

• Availability of information during processing. Some information that
can be computed from the tree (such as type information) might be en-
coded directly in the tree (at least at later stages) for easy processing.

10

INF225 Notes 1.3. Parsing

• Being end-user friendly or familiar to most programmers isn’t an impor-
tant consideration – the abstract syntax may be radically different from
the surface concrete syntax if that helps the compiler writer.

Abstract Syntax in Rascal

An alias type creates a new name for an existing type:

1 data Var = str;

A data declarationdeclares a new algebraic data type, or adds new constructors
to an already defined type:

1 data Val = Int(int i) | Fun(str arg, Expr body);

Tomakenewvalues of the Val type, simplydo: Int(4) or Fun("x", expr1),
etc. Int and Fun are known as constructors; they construct new objects of the
type Val. It’s fine for a type and a constructor to share the same name.

To extract the field values of a type, do v.i or f.body. You can also pattern
match on algebraic data types, using the := operator:

1 if(Fun(arg, body) := v) { ... }

Each field in a type should have the same type across all the constructors of
the type (otherwise, we’d be confused when doing x.f, since the type would
depend on the value of x). Rascal will complain loudly if you try to do this.

If you want to annotate your AST nodes, you must first declare the annota-
tion:

1 anno Type Expr@typ;

This declares the annotation typ (“type” is a reserved keyword) on Expr
nodes, with the type Type. You can create annotations that are valid on all data
type constructors like this:

1 anno str node@doc;

This adds the string annotation doc as a valid annotation for the node type,
which is the super type of all parse tree types and user-defined algebraic types.

You can add an annotation to an existing value v like this:

1 v = v[@doc="some string"];

You can read back the annotation like this:

1 rascal> v@doc str: "some string"

Parsing

Pretty Printing

Editing

11

Chapter 2

Evaluators
& Dynamic Semantics

Semantics is the study ofmeaning, just as syntax is the study of structure. If you
know the grammar of a language, you can tell whether a sentence is syntacti-
cally correct, and what its structure is. To understand its meaning, if there is
any, you must know the semantics of the language.

‘Meaning’ can takemany forms. In simple cases, wemay be interested only
in knowing what output we will get if we run a programwith some particular
input – exactly how we arrive at that output is uninteresting. In other cases,
we may be interested in knowing exactly what steps are executed, and in what
order. Or, wemaywant to knowwhat armmovements a robot will makewhen
we run its program. A good semantics description gives us exact, unambigu-
ous answers to such questions, without overspecifying uninteresting details.

For example, the specification of C will tell you details of when you can be
sure that values are written tomemory, but leaves out other details, such as the
evaluation order of expressions and the size and exact semantics of integers.
The definition of a functional language will give rules for computing the value
of expressions, and maybe also for how and when expressions are evaluated.

Dynamic and Static Semantics

For programming languages, we typically distinguish between static and dy-
namic semantics.

What is classified as static or dynamic depends a bit on the language, but
in general, static semantics (Chapter 3) deals with determining whether a pro-
grammakes enough sense to be executed at all, while dynamic semantics deals
with what happens when you execute a program.

Static semantics may include some rules, such as typing rules, that could
have been part of the grammar, but was left out to keep the grammar context-
free. For example, that the types of the operandsmustmatch the declaration of
an operator, or that a variable must be declared before it is used. Static seman-
tics may also specify how the uses of names are resolved, and how overloaded
names are dealt with.

13

2. Evaluators & Dynamic Semantics A.H. Bagge

1 module syn::SimplTrivial
extend syn::SimplLexical;

3

start syntax Program = Expr expr;
5

syntax Expr
7 = INT num

| bracket "(" Expr e ")"
9 > left (Expr e1 "*" Expr e2 | Expr e1 "/" Expr e2)

> left (Expr e1 "+" Expr e2 | Expr e1 "-" Expr e2)
11 > left (Expr e1 "==" Expr e2 | Expr e1 "\<" Expr e2)

| "if" Expr cond "then" e1 Expr "else" Expr e2 "end"
13 ;

Listing 2.1: Evaluator/src/syn/SimplTrivial.rsc: Syntax for Trivl – a trivial expression
language without variables or functions.

Dynamic semantics specifies what a program does – what its results are or
what actions it performs. This may also entail some of what is listed under
static semantics above, particularly in dynamic languages.

In this chapter, we will discuss dynamic semantics. We start by defining
the semantics of simple programs that just return a value. Later we will also
consider programs that work on state.

The Simpl-Exp Expression Language

We can specify semantics formally, using a specification formalism, or infor-
mally, using a natural language such as English. Another approach is to just
give an implementation of a language, and say that the implementation is also
the specification. This is often the case for languages that are under develop-
ment, or for which there is only a single implementation. If the implementa-
tion is clear and readable, this canmake a lot of sense, and gives a fairly decent
specification – with the additional benefit that we can test our assumptions
against an executable implementation.

For a widely adopted language with multiple implementations, there’s a
greater need for a proper specification, so that developers and language im-
plementers can agree on the exact meaning of programs.

For us, simplicity andunderstanding the fundamental concepts of languages
is themost important thing, sowe’ll startwith the implementation-as-specification
approach, and develop an evaluator in Rascal for a series of increasingly com-
plex languages.

Evaluating Trivial Expressions

Let’s start by considering the trivial expression language in Listing 2.1, and
develop an evaluator for it.

The syntax only provides for numbers, arithmetic expressions and condi-
tions. Valid programs include expressions such as 1 + 2 * 3, (2 * 3) + 7,

14

INF225 Notes 2.2. The Simpl-Exp Expression Language

Concrete Syntax and Pattern Matching in Rascal

Concrete Syntax
Rascal allows you to write parse trees and
patterns using the concrete syntax of the
object language (the language we’re defin-
ing). Concrete syntax fragments are en-
closed in back-quotes (‘...‘), and preceded
by the name of the appropriate non-terminal
in parenthesis:

(Expr)‘a + 2‘

Pattern variables in concrete syntax frag-
ments are enclosed in angle brackets (<...>).
The variables should be typedwith the name
of the corresponding non-terminal, in order
to help out the Rascal parser:

(Expr)‘<Expr b> + 2‘

Variables such as b above are also calledmeta
variables – they are variables in the host lan-
guage, rather than the object language (like
the variable a in the former code fragment).

Pattern Matching
Concrete syntax can be used in pattern
matching. For example:

if((Expr)‘<Expr e1> + 0‘ := e) {
e = e1;

}

On a successful match, the pattern variables
are bound to the corresponding subtrees of
the parse tree matched against.

You can also use concrete syntax patterns
a the function parameter list:

str term((Expr)‘<Expr a>+<Expr b>‘) {
// <> can be used inside strings to

// ’ interpolate ’ values into the string .
// They can contain any expression , incl
// function calls
return "Add(<term(a)>, <term(b)>)";

}

If you use pattern matching in parameter
lists, it’s a good idea to provide a default case
that catches calls that don’t match any of the
patterns:

default str term(Expr e) {
throw "unknown expression <e>";

}

To obtain the string corresponding to a
parse tree (i.e., the input string before pars-
ing), use the unparse function:

rascal> (Expr)‘a + b‘
sort("Expr"): ‘a + b‘
Tree: appl(prod(sort("Expr"),...

rascal> unparse((Expr)‘a + b‘)
str: "a + b"

15

2. Evaluators & Dynamic Semantics A.H. Bagge

and if 2 > 3 then 4 else 5 end. We’re of course free to assign any kind
of meaning to our language, but to avoid surprising our users, we’ll stick to a
fairly conventional interpretation: A program yields a value, computed by ap-
plying standard integer arithmetic. For example, the value of the expression
(2 * 3) + 7 is 13.

First, we need to define what a value is. We’ll make a Value type, which
we’ll use in our evaluator. Our language only supports integers, so our value
type has only a single Int case. In Rascal, this gives us the data type:

8 data Value = Int(int intValue); Evaluator/src/eval/EvalTrivial.rsc

To assign meaning to expressions, we define an eval function, with one
case for each kind of expression. The function should accept an expression
and return its value, giving us the signature:

1 public Value eval(Expr e);

The Trivial Evaluator

We now define evaluation functions for each language construct.
Integers: The value of an integer literal i (matched by the concrete syntax frag-
ment ‘<INT i>‘), is its integer value:

11 public Value eval((Expr)‘<INT i>‘) {
12 return Int(toInt(unparse(i)));

} Evaluator/src/eval/EvalTrivial.rsc

We use unparse to make a string from a parse tree, then toInt to convert that
string into an integer. The actual integer is wrapped in an Int constructor, in
accordance with our Value data type.
Arithmetic: In the case of arithmetic expressions, wemust first obtain the value
of the operands, by evaluating them recursively. We can then apply the oper-
ation and wrap up the result. For example, for addition:

25 public Value eval((Expr)‘<Expr e1>+<Expr e2>‘) {
26 return Int(eval(e1).intValue + eval(e2).intValue);

} Evaluator/src/eval/EvalTrivial.rsc

Parentheses: The value of a parenthesis expression is simply the value of the
contained expression:

15 public Value eval((Expr)‘(<Expr e>)‘) {
16 return eval(e);

} Evaluator/src/eval/EvalTrivial.rsc

Comparison: When it comes to comparison operators and conditionals, wemust
decide how to handle Boolean values, as our language so far only deals with
integers. A convenient approach is that of C, where 0 corresponds to false,
and any non-zero value is true. So, to compare two values, we first evaluate
them, then do the comparison, and then select either 0 or 1 (any non-zero value
would work) as the return value:

16

INF225 Notes 2.2. The Simpl-Exp Expression Language

40 public Value eval((Expr)‘<Expr e1>==<Expr e2>‘) {
return Int(eval(e1).intValue == eval(e2).intValue ? 1 : 0);

42 } Evaluator/src/eval/EvalTrivial.rsc

Conditionals: For if expressions, we have to choose between two expressions,
based on the value of the condition. We must be careful and only evaluate
one of the branches. At best, evaluating both branches will result in somewhat
slower execution time; worst case, one of the branches may contain code that
fails in some way, or doesn’t terminate. The code for if is:

51 public Value eval((Expr)
52 ‘if <Expr c> then <Expr e1> else <Expr e2> end‘) {

if(eval(c).intValue != 0)
54 return eval(e1);

else
56 return eval(e2);

} Evaluator/src/eval/EvalTrivial.rsc

Programs: Finally, we provide an evaluator for programs – which is simple
since a program is just an expression:

59 public Value eval((Program)‘<Expr e>‘) {
60 return eval(e);

} Evaluator/src/eval/EvalTrivial.rsc

We can now try the evaluator on a few simple programs:

1 rascal>eval((Program)‘1+2*3‘)
Value: Int(7)

3

rascal>eval((Program)‘(1+2)*3‘)
5 Value: Int(9)

7 rascal>eval((Program)‘if 1 then 2 else 1/0 end‘)
Value: Int(2)

9

rascal>eval((Program)‘if 0 then 2 else 1/0 end‘)
11 |rascal://eval::EvalTrivial|(1041,2,<36,37>,<36,39>):

ArithmeticException("/ by zero")

Questions

1. Can you think of any drawbacks to specifying a language in this way,
compared to using plain English or a mathematical formalism? What
about advantages?

2. Let’s say we implemented the evaluator in Java instead; using objects
with an eval method as nodes in an abstract syntax tree representation
of programs. For example, the tree node for addition would have this
evalmethod:

17

2. Evaluators & Dynamic Semantics A.H. Bagge

1 module syn::SimplVars
2 extend syn::SimplLexical;

4 start syntax Program = Expr expr;

6 syntax Expr
= ID var

8 | INT num
| bracket "(" Expr e ")"

10 > left (Expr e1 "*" Expr e2 | Expr e1 "/" Expr e2)
> left (Expr e1 "+" Expr e2 | Expr e1 "-" Expr e2)

12 > left (Expr e1 "==" Expr e2 | Expr e1 "\<" Expr e2)
| "if" Expr cond "then" e1 Expr "else" Expr e2 "end"

14 | "let" ID var "=" Expr e1 "in" Expr e2 "end"
;

Listing 2.2: Evaluator/src/syn/SimplVars.rsc: Syntax for SimplVars – a trivial expres-
sion language with variables.

1 public Value eval() {
2 return new IntValue(e1.eval().intValue()

+ e2.eval().intValue());
4 }

Would this change the semantics in any way? (Hint: is there a difference
between integers in Java and Rascal?)

Variables and Environments

The language in the previous section has the power of a very simple calcu-
lator, and is not very exciting. The next step is to add variables and variable
declarations.

First, we will set some simple rules for variables:

• Variables are bound to values in a let-expression.

• The binding of a variable in a let-expression has no effect outside that
expression.

• We track the currently bound variables in an environment.

• The value of a variable expression is the value of the variable in the en-
vironment.

• Accessing a variable that is not bound is illegal.

Next, we need to add productions to the grammar for defining and access-
ing variables. The extended grammar is shown in Listing 2.2.

Then, we must decide how to represent the environment. Fundamentally,
its purpose is to keep track of mappings from variables to values, so we may
represent it as a map from strings (variable names) to Values:

18

INF225 Notes 2.2. The Simpl-Exp Expression Language

8 alias Env = map[str, Value]; Evaluator/src/eval/EvalVars.rsc

The environment is only used when defining and using variables. How-
ever, since other expressions may have variables uses as sub-expressions, we
need to track the environment when processing other kinds of expressions as
well. We modify the eval function to accept the current environment as a pa-
rameter:

1 public Value eval(Expr e, Env env);

We must then modify all the eval cases to accept the extra argument, and
pass it on to recursive calls. For example, for addition:

33 public Value eval((Expr)‘<Expr e1>+<Expr e2>‘, Env env) {
34 return Int(eval(e1, env).intValue + eval(e2, env).intValue);

} Evaluator/src/eval/EvalVars.rsc

We are now ready to tackle the variables themselves. To obtain the value
of a variable, we look it up in the environment:

19 public Value eval((Expr)‘<ID x>‘, Env env) {
20 return env[unparse(x)];

} Evaluator/src/eval/EvalVars.rsc

Again, we use unparse to obtain a string from the parse tree matched in the
concrete syntax pattern ‘<ID x>‘. We should also include error handling code,
but we can postpone this, and rely on Rascal to throw an exception if the vari-
able is not defined in the environment map.

The let-expression is slightly more complicated, but not much. It is used
like this:

1 let x = 5+2 in x * x end

In the expression above, the variable x should be bound to the value of 5+2
while evaluating x * x. We implement this as follows:

70 public Value eval((Expr)
‘let <ID x> = <Expr e1> in <Expr e2> end‘, Env env) {

72 v = eval(e1, env);
return eval(e2, env + (unparse(x) : v));

74 } Evaluator/src/eval/EvalVars.rsc

First, we evaluate the first expression (e1), obtaining a value v. Then we eval-
uate and return the value of the second expression (e2), in an environment to
which we have added the binding of the variable identified by x to v.

Questions

1. What happens if we mention the same variable name we’re defining in
the initializer for that variable? For example:

1 ... let x = 5+x in x * x end ...

2. What happens if we redefine a variable which is already defined? For
example:

19

2. Evaluators & Dynamic Semantics A.H. Bagge

1 let x = 1 in let x = 5 in x * x end end

(To answer this, you need to know the semantics of Rascal maps.)

Environmental Concerns

Our language is still to simple to do useful computation, but we can use it to
illustrate one important concept: the environment.

With the possible exception of constant expressions, the evaluation of any
part of a program will depend on information from the surrounding environ-
ment. For example, an expression such as x + 5 is meaningless on its own,
as we don’t know what x is. If we see the wider context of the expression, for
example,

1 let x = 7 in
2 x + 5

end

we can construct an environment x 7→ 7 and find the value of x + 5.
Environments are used in both language specification and implementation.

Compiler literature typically uses the term symbol table.
The environment is used to keep track of contextual information such as

the bindings of variables, and possibly other information, like the name of
the current function or class, information about language options, and so on,
depending on the language. In its simplest form, as in the previous section,
the environment is simply a map from variables to values.

Environment Interface

As we proceed with more advanced languages, it is useful to abstract away
the details of how the environment is implemented, and focus just on how it
is used. Our use of the environment in Section 2.2.3 can be summed up as the
following operations:

• env’ = declare(x, v, env) – binding a new variable x to the value v
in env, overriding any previous binding in env. The result is a new envi-
ronment env’.

• v = lookup(x, env) – look up a variable x in an environment env, yield-
ing its binding v. The result is undefined if x is not bound in env.

We also need a way to construct new environments, and check whether a vari-
able is bound:

• env = newEnv() – create a fresh, empty environment env

• isDefined(x, env) – true if the variable x is bound in the environmentenv

For now, we’ll store data values in the environment; later, we’ll also use it bind
variables to function definitions, types and storage locations.

We assume that values are immutable in our implementation language (as
they are in Rascal), which is why declare returns a new environment.

The Rascal declarations for the above operations are shown in Fig. 2.1. Note
that we’ve parameterized the Env typewith the type of values we’ll store in the

20

INF225 Notes 2.3. Environmental Concerns

public Env[&T] declare(Tree name, &T val, Env[&T] env)

public &T lookup(Tree name, Env[&T] env)

public Env[&T] newEnv(type[&T] _)

public bool isDefined(Tree name, Env[&T] env)

Figure 2.1: Rascal declarations for the environment operations. &T indicates a
type parameter (can be any type). Tree is the type of parse trees.

environment. We also use the parse trees of variable identifiers as keys in the
environment, instead of strings. This will allow us to more easily use struc-
tured names later on, and also makes it easy to provide good error messages,
since parse trees carry location information.

Semantics of the Environment

Sincewe’re dealingwith semantics of languages, we should keep all our ducks
in a row, and not leave the semantics of fundamental concepts like the environ-
ment unspecified. Below, we provide equational axioms that define the impor-
tant characteristics of the environment operations. In the axiom, xwill be any
variable, v any value, and e any environment.
New Environment. Nothing is defined in an empty environment, so isDefined
always returns false. The lookup operation is undefined on empty environ-
ments (we may implement it in practice using exceptions, for example):

isDefined(x,newEnv()) ⇐⇒ false (2.1)
lookup(x,newEnv()) ⇐⇒ undefined (2.2)

Binding a Variable. Adding a variable to the environment, and then looking up
the same variable, yields the same value. Similarly for isDefined.

lookup(x,declare(x, v, e)) ⇐⇒ v (2.3)
isDefined(x,declare(x, v, e)) ⇐⇒ true (2.4)

This also implies that new bindings override old ones with the same name.
Binding Unrelated Variables. Adding a variable x2 doesn’t affect the binding of
the variable x1, as long as x1 6= x2 – i.e., we get the same result from looking
up x1 whether or not we have declared some other variable x2.

lookup(x1,declare(x2, v, e)) ⇐⇒ lookup(x1, e), for x1 6= x2 (2.5)
defined(x1,declare(x2, v, e)) ⇐⇒ defined(x1, e), for x1 6= x2 (2.6)

Namespaces

We may also want to have separate namespaces for different kinds of names,
such type names, variable names, module names or function names. For ex-
ample, if we allow user-defined types, we could allow types and variables to

21

2. Evaluators & Dynamic Semantics A.H. Bagge

share the same name, but have separate definitions. In this case, we could use
one environment for each namespace, or add an extra parameter to the opera-
tions, selecting what kind of name we’re working with.

Languages like C++ and Java support named scopes (e.g., java.lang.io) –
this complicates things quite a lot, and requires a more advanced environment
structure.

Functions

Let us now turn our attention back to our little language, and add one of the
features it’ll need to make it in the real world: functions.

Functions have two key features that make them important: they abstract,
so that we don’t need to know the details of how something is done in order to
use the results; and they provide parametrization, so that we can use the same
piece of code to do many different useful computations. Additionally, having
recursive functions will allow us to do arbitraty computation, even without
have loop constructs in the language.First-class values can be passed

as arguments, returned,
assigned to a variables and
generally be used the same way
other values.

In some languages functions are special entities that are declared andnamed,
but can’t be passed as arguments, stored in variables or returned from func-
tions. This is true for Javamethods, for example. Other languages, such as Lisp
and Haskell, treat functions as first-class values, which can be passed around
like any other value.

In our language, which is (so far) expression-oriented, the latter approach
makes sense: we will treat functions as values. Functions-as-values is nor-Lambda expressions are

functions that can be defined
and used without being bound
to an identifier.

mally combined with allowing anonymous functions, also known as lambda
expressions. First class functions and lambda expressions are very popular on
the interwebs, so these features should help our new language on its way to
success.

With functions being values, we can reuse our existing let construct to
define functions. For example:

1 let f = fun x => x * x in
f(2)

3 end

A function expression is introduced by the ‘fun’ keyword, followed by the list
of parameters, a ‘=>’ sign, and the body of the function (an expression).

The updated syntax is shown in Listing 2.3. In addition to declaring func-
tions with let, we can also use them directly in a call – though this is usually
less useful:

1 (fun x => x * x)(5)

Functions in the Evaluator

Having extended the syntax, we now need to define the semantics of function
declaration and calls by extending the evaluator.

Function Values. First of all, we need to extend our idea of what a value is to
include functions:

22

INF225 Notes 2.4. Functions

1 module syn::SimplFuns
extend syn::SimplLexical;

3

start syntax Program = Expr expr;
5

syntax Expr
7 = ID var

| INT num
9 | bracket "(" Expr e ")"

| Expr fun "(" {Expr ","}* args ")"
11 > left (Expr e1 "*" Expr e2 | Expr e1 "/" Expr e2)

> left (Expr e1 "+" Expr e2 | Expr e1 "-" Expr e2)
13 > left (Expr e1 "==" Expr e2 | Expr e1 "\<" Expr e2)

| "if" Expr cond "then" e1 Expr "else" Expr e2 "end"
15 | "let" ID var "=" Expr e1 "in" Expr e2 "end"

> "fun" {ID ","}* params "=\>" Expr body
17 ;

Listing 2.3: Evaluator/src/syn/SimplFuns.rsc: Syntax for SimplFuns – a simple ex-
pression language with functions. The new syntax rules are on lines 10 (func-
tion calls) and 16 (functions).

10 data Value
= Int(int intValue)

12 | Fun(list[ID] params, Expr body)
; Evaluator/src/eval/EvalFuns.rsc

The new case for functions include a parameter list, as a list of identifiers, and
a body – an expression. Both ID and Expr are parse tree types, referring to
non-terminals in our grammar.

We also need to tell the evaluator how to handle this kind of value:

38 public Value eval((Expr)‘fun <{ID ","}* params> =\> <Expr body>‘,
Env[Value] env) {

40 return Fun([p | p <- params], body);
} Evaluator/src/eval/EvalFuns.rsc

The concrete syntax match expression is slightly more complicated than we’ve
seen before. Essentially, <{ID ","}* params>means “match a comma-separated
list of IDs, and bind to the variable params”. In the returned expression, we
use [p | p <- params] (build a list of p’s, with one p for each p in params)
– this is just a simple way of converting a comma-separated list of identifiers
into a plain list of identifiers.

For example, we can evaluate a function and obtain a function value like
this (we’ve defined an extra function printlnValue to print values prettily,
otherwise we’ll get huge parsetrees in the output):

1 rascal> printlnValue(eval((Expr)‘fun x, y, z =\> x * y + z‘,
2 newEnv()))

23

2. Evaluators & Dynamic Semantics A.H. Bagge

Fun([(ID)‘x‘, (ID)‘y‘, (ID)‘z‘], (Expr)‘x * y + z‘)
4 ok

FunctionDeclarations. Wehave no separate function declaration construct (yet);
we just use the same let as before. Given our above code, the old code for let
should still work. Here’s the code again, updated to use the new environment
operations:

106 public Value eval((Expr)
‘let <ID x> = <Expr e1> in <Expr e2> end‘, Env[Value] env) {

108 v = eval(e1, env);
return eval(e2, declare(x, v, env));

110 } Evaluator/src/eval/EvalFuns.rsc

Notice how the evaluation of let starts by evaluating the expression e1. This
would be the function in the case of a function declaration. This is why we
need to have an evaluation function for function values, even though it hardly
does any work.
Function Calls. Now for the interesting stuff. The evaluation of a function call
consists of four steps:

1. Evaluate the function expression, to get the function value

2. Evaluate the actual arguments

3. Bind the actual arguments to the formal parameters of the function

4. Evaluate the function body in the resulting environment

The Rascal code for this is:

43 public Value eval((Expr)‘<Expr f>(<{Expr ","}* args>)‘,
44 Env[Value] env) {

fVal = eval(f, env); // evaluate function expression
46 if(Fun(params, body) := fVal) {

fEnv = env; // set up environment
48

for(<arg, param> <- zip([a | a <- args], params)) {
50 argVal = eval(arg, env); // evaluate argument

fEnv = declare(param, argVal, fEnv); // bind parameter
52 }

54 return eval(body, fEnv); // evaluate body in fEnv
}

56 else throw "Calling a non-function: <unparse(f)>, at <f@\loc>";
} Evaluator/src/eval/EvalFuns.rsc

Wehave combined step 2 and 3 into one pass over the argument and parameter
lists (zipped together into a list of pairs). We’ve also added a little bit of error
checking by complaining if the thing we’re trying to call is not a function (i.e.,
evaluates to something other than a function value), but further error checking
(such as checking whether the arguments match the parameter list) has been
omitted. Rascal will however throw its own exceptions in the case of errors.

24

INF225 Notes 2.4. Functions

Example 1: Step-by-Step Function Evaluation
Consider the following code:

1 let f = fun x, y, z => x * y + z in
f(1, 2, 3)

3 end

Its evaluation will proceed as follows, starting with evaluating the outer let
expression:

1. First, the function expression is evaluated, yielding a function value Fun([(ID)‘x‘, (ID)‘y‘, (ID)‘z‘],
(Expr)‘x * y + z‘)

2. Then, the variable f is bound to the function value.

3. Finally, the body of the let, containing the function call is evaluated:

a) First, we evalute the function expression – f, which yields the func-
tion value above.

b) Then,we evaluate each argument, yielding a series of values Int(1),
Int(2), Int(3), and bind them to the parameters; x 7→ Int(1), y 7→
Int(2), z 7→ Int(3).

c) Finally, we evaluate the function body in the environment produced
by the previous step. This will produce the final result, Int(5) (1 ∗
2+ 3 = 5).

Exercises

1. Evaluate the following programs by hand:

a)1 let f = fun x, y => x * y in
2 f(f(2, 2), 3)
end

b)1 let fac = fun n => if n < 1 then 1 else n*fac(n-1) end in
fac(3)

3 end

c)1 let x = 5 in
let f = fun a => a * x in

3 f(10)
end

5 end

d)1 let x = 5 in
let f = fun a => a * x in

3 let x = 7 in
f(10)

5 end
end

7 end

Study the last two programs carefully, consulting our definition of func-
tion calls. Is the answer in d) different from that in c)? Which value is the
x inside the function bound to in each case?

25

2. Evaluators & Dynamic Semantics A.H. Bagge

Scoping

If you paid careful attention to the exercise at the end of the previous section,A free variable is one that is not
bound (by let or as a
parameter) in a certain context.
E.g., x is free in x * 2, but
bound in let x = 4 in x * 2
end.

youwill have noticed that the binding of free variables in function bodies is de-
termined by the caller’s environment, rather than by the environment that was
in place at the point where the function was defined. The example program
below makes this apparent:

1 let f = fun => x * x in
2 let x = 2 in

f()
4 end end // result is 4

There is no variable x at the point where the function f is defined. Instead, x
refers to whatever variable x is active when the function is called. This is called
dynamic scoping.

Another approach is to say that identifiers refer to whatever names are ac-
cessible at the point where the function is defined. This wouldmake the above
program invalid – since x is undefined when f is being defined. Instead, we
need to add an outer definition of x. For example:

1 let x = 4 in
2 let f = fun => x * x in

let x = 2 in
4 f()
end end end // result is 16

Here, the inner definition of x has no effect, as the x in f refers to the outermost
x = 4. This is called lexical or static scoping.

Scope Terminology

A scope is a collection of identifier bindings – i.e., what is captured by the en-
vironment at some point in the code or in time.

The scope of a declaration includes all the points in the code where the de-
clared identifier is bound according to the declaration. In lexical scoping, the
scope of a declaration is typically either textually included in the declaration
construct, or extends to the nearest scoping container. This is illustrated in
Fig. 2.2, where the scopes of each variable declaration is marked in the code
margin. In dynamic scoping, the scope of a declaration is determined at run-
time, and lasts until the program exits from the let or other scoping construct.

Bindings can also be shadowed by declaring a new variable with the same
name as an in-scope variable. This results in the outer variable being tem-
porarily out of scope while the inner variable is in scope (though, it may still
be possible to access the shadowed variable, e.g., through qualified names).
The shadowed variable still exists and is active – it is only inaccessible due to
its name being out of scope. This forbidden by some languages, such as Java,
as it may sometimes lead to confusion.

An identifier is said to be in scope at a given point in the code if it occurs
within the scope of its declaration.

26

INF225 Notes 2.5. Scoping

1 let x = 42 in
2 x // scope of x

// ...
4 end

1 int x;
2 x {

int y,
4 y z = y;

// ...
6 }

// ...

1 let x = 4 in
x let y = 2 in

3 y let x = y in
x x

5 end
end

7 end

Figure 2.2: Examples of the scopes of declarations. The scope of a let (left) is
the body of the let. The scope of Java variable declarations (middle) extend
from immediately after the new variable is mentioned, to the end of the cur-
rent block. Inner declarations may shadow outer declarations, putting some
identifiers temporarily out of scope (right).

Dynamic Scoping

Dynamic scoping is seldom used nowadays, as it tends to lead to confusing
programs. With dynamic scoping, you can’t fully understand what a piece of
code does without also looking at context in which it is used. This is particu-
larly problematic if functions can be defined and rebound on the fly.

In an evaluator-based approach such as ours, dynamic scoping is very easy
to implement – it’s what you end upwith if you don’t do anything in particular
to deal with scoping.

• For dynamic scoping, we only need to know the environment that is in
place at the time a function is called. There is no need to know anything
about the environment as it was when the function was called.

• Thus, our representation of functions from Section 2.4.1 is sufficient:

12 | Fun(list[ID] params, Expr body) Evaluator/src/eval/EvalFuns.rsc

• Emacs Lisp, and some older versions of Lisp use dynamic scoping.

Lexical Scoping

With lexical scoping, the binding of an identifier follows from the surrounding
program text – i.e., the lexical context. This is typically clearer for the program-
mer, and it also allows us to statically check whether a program uses variables
that haven’t been declared.

Lexical scoping complicates the dynamic semantics somewhat. We can no
longer evaluate a function call without knowing what was in scope at the time
the function was declared. For this, we need to store the definition environment
of the function together with its body, so we can later restore the environment.
This means extending the definition of function values:

10 data Value
= Int(int intValue)

12 | Fun(list[ID] params, Expr body, Env[Value] env)
; Evaluator/src/eval/EvalLex.rsc

27

2. Evaluators & Dynamic Semantics A.H. Bagge

Function declarations. Next, we must extend the evaluation of function expres-
sions to save the environment in the function value:

38 Value eval((Expr)‘fun <{ID ","}* params> =\> <Expr body>‘,
Env[Value] env) {

40 return Fun([p | p <- params], body, env);
} Evaluator/src/eval/EvalLex.rsc

Function calls. Finally, the evaluation of function calls must be changed, so that
the function body gets evaluated in the function’s own environment:

43 Value eval((Expr)‘<Expr f>(<{Expr ","}* args>)‘, Env[Value] env) {
44 fVal = eval(f, env); // evaluate function expression

if(fVal is Fun) {
46 fEnv = fVal.env; // function environment

for(<arg, param> <- zip([a | a <- args], fVal.params)) {
48 argVal = eval(arg, env); // evaluate argument

fEnv = declare(param, argVal, fEnv); // bind parameter
50 }

52 return eval(fVal.body, fEnv); // evaluate body in fEnv
}

54 else throw "Calling a non-function: <unparse(f)>, at <f@\loc>";
} Evaluator/src/eval/EvalLex.rsc

Themain change compared to the dynamic scoping version of function calls, is
that we now use a separate fEnv for evaluating the body. This environment is
initialised with the saved declaration environment of the function (fVal.env).
As before, the arguments are evaluated in the caller’s environment (env) and
bound in the callee environment (fEnv).

Recursion. If you study the rules for function values and declarations carefully,
you will see that the env that gets added to the function value doesn’t contain
the binding of the function itself. For example, in the following piece of code,
we’ll evalute fun a => f(a) first, resulting in a function value capturing the
environment as it is before we bind the f:

1 let f = fun a => f(a) in ... end

This means that f is not bound within its own body.
An easy solution to this problem is to just add the binding of the function

to the environment while evaluating the call:

58 Value eval((Expr)‘<Expr f>(<{Expr ","}* args>)‘, Env[Value] env) {
fVal = eval(f, env); // evaluate function expression

60 if(fVal is Fun) {
fEnv = fVal.env; // function environment

62 if((Expr)‘<ID fName>‘ := f) { // check if f is a name
fEnv = declare(fName, fVal, fEnv); // for recursive calls

64 }
for(<arg, param> <- zip([a | a <- args], fVal.params)) {

66 argVal = eval(arg, env); // evaluate argument

28

INF225 Notes 2.6. Imperative Languages

fEnv = declare(param, argVal, fEnv); // bind parameter
68 }

70 return eval(fVal.body, fEnv); // evaluate body in fEnv
}

72 else throw "Calling a non-function: <unparse(f)>, at <f@\loc>";
} Evaluator/src/eval/EvalLex.rsc

This works nicely for simple recursion, but fails for mutual recursive, e.g., if f
calls gwhich calls f again. We will deal with this problem later.

• We might also mix scope rules; for example, we could make functions
lexically scoped, so that any function call in the body of a function is
resolved at definition time, while still having dynamically scoped vari-
ables.

Imperative Languages

Store and References

See code from Lecture 11:
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l11?
at=master

See exercise 4A,C,D:
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%204

Advanced Scoping

Closures

See exercise 4B:
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%204

Nested Scopes

See code from Lecture 10:
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l10?
at=master

29

https://bitbucket.org/anyahelene/inf225public/src/master/inf225l11?at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l11?at=master
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%204
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%204
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l10?at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l10?at=master

2. Evaluators & Dynamic Semantics A.H. Bagge

The Power of the Simpl-Exp Language

You may think that what we’ve made so far
is just a toy, but it is in fact a fairly powerful
programming language – at least if we’re pri-
marily interested in manipulating integers.

Algorithms
Simple algorithms like computing the Fi-
bonacci numbers are easy to implement:

let fib = fun n => if n < 2
then 1
else fib(n-1)+fib(n-2)
end

in
fib(10)

end // result is 89

Encoding Data Structures
We can create simple data structures by en-
coding them as functions that return fields
based on their arguments. For example, a
pair data structure would be a function re-
turning the first field if the argument is 0
and the second field otherwise. We can then
make getters and setters (the setters con-
struct new pairs – we can’t make mutable
data structures) on top of this crude inter-
face:

let pair = fun x, y =>
fun i => if i then y else x end

in
let getX = fun p => p(0) in
let getY = fun p => p(1) in
let setX = fun p, x =>

pair(x, getY(p)) in
let setY = fun p, y =>

pair(getX(p), y) in
getY(setY(pair(17,19),21))

end end end end end // result is 21

This only works with lexical scoping, since
the function returned by pair needs access
to the x and y at the time it was created.

With functions being values, we could
of course also store functions in data struc-
tures. This brings us within reach of object-
orientation and dynamic dispatch (with very
ugly syntax).

This approach is similar to Church encod-
ing, which can be used to encode data struc-
tures, booleans, conditionals and even inte-
gers as functions in lambda calculus.

The Let Construct
The let construct is strictly speaking not
necessary, since functions provide the same
power of binding identifiers. Any let
declaration let x = e1 in e2 end is ex-
actly equivalent to (fun x => e2)(e1) – i.e.,
making a function with the variable as a pa-
rameter and the let-body as the function
body, and then immediately calling it with
the initialiser expression as the argument.

Lambda Calculus
The language we’ve created is closely related
to lambda calculus, which is also the basis of
Lisp, Scheme, and functional programming
languages. The combination of scoping rules
and the ability to create anonymous func-
tions gives us farmore power than onemight
expect.

λ
30

Chapter 3

Typecheckers
& Static Semantics

Static versus Dynamic Typing

In a statically typed language, typechecking happens at compile time. Stati-
cally typed languages typically have these properties:

• Variables and data structure fields must be declared before use.

• Variables and data structure fields can only hold values of the declared
type.

• Operations (functions, procedures,methods) and typesmust be declared.
In some languages, such asC andPascal, declarationsmust be placed tex-
tually before uses of the names (this makes it easier to process a source
file in a single pass). Other languages, such as Java, allow such declara-
tions to occur in any order.

• Declaring the exact types of variables and operations may or may not be
needed (some languages to type inference).

By contrast, a dynamically typed language does no checking before a pro-
gram is run – though it may still do strict checking while the program is run-
ning. For a dynamic language, typing rules are part of the dynamic semantics,
which we have covered in the previous chapter. Dynamic languages typically
have these properties:

• A variable need not be declared before it is used.

• Avariable can hold values of any type, and assigning to the variable may
change its type.

• Fields in structures and classes are likewise liberalwhen it comes to using
them with values of different types.

• Fields may or may not need to be declared before use.

• Operations must be declared before they are called.

31

3. Typecheckers & Static Semantics A.H. Bagge

1 module syn::SimplVarsTyped
2 extend syn::SimplLexical;

4 start syntax Program = Expr expr;

6 syntax Expr
= Name var

8 | INT intVal
| Bool boolVal

10 | bracket "(" Expr e ")"
> left (Expr e1 "*" Expr e2 | Expr e1 "/" Expr e2)

12 > left (Expr e1 "+" Expr e2 | Expr e1 "-" Expr e2)
> left (Expr e1 "==" Expr e2 | Expr e1 "\<" Expr e2)

14 | "if" Expr cond "then" e1 Expr "else" Expr e2 "end"
| "let" TypeExpr Name var "=" Expr e1 "in" Expr e2 "end"

16 ;

18 syntax Name = ID \ Bool;

20 syntax Bool = "true" | "false";

22 syntax TypeExpr
= "int"

24 | "bool"
;

Listing 3.1: Evaluator/src/syn/SimplVarsTyped.rsc: Syntax for SimplVarsTyped – a
simple expression language with types.

Some languages are weakly typed, meaning that most operations accept val-
ues of any type which are then either adapted to the type the operation needs
(coercing), or the operation fails unceremoniously. Javascript is an example of
this – you can use a stringwhere an integer is needed and vice versa. Most stat-
ically typed languages and many dynamic languages are strictly typed. In this
case, operations require exactly matching types (modulo certain well-defined
promotions and conversions). For example, you cannot call the add functionwith
a string, even if that string happens to contain the text representation of a num-
ber.

Simple Typechecking

Let’s illustrate typechecking on a simple language similar to the oneweworked
on in Chapter 2. The overall scheme is similar to the one we used when we
implemented the evaluator – in fact, we can think of typechecking as a form of
simplified evaluation where the values are types.

Listing 3.1 shows the syntax of the language we’ll start with. It’s similar
to what we had in Section 2.2.3, but with added syntax for types and typed
variable declarations, and for boolean literals.

32

INF225 Notes 3.2. Simple Typechecking

First of all, we need to define what a type is. In order to make the language
slightly more interesting, we’ve added booleans to the the language, so we
have two types, int and bool:

12 data Type = Int() | Bool(); Evaluator/src/check/CheckVarsTyped.rsc

Next, we define a series of recursive checkExpr functions, one for each kind
of expression. Just like in the evaluator, we’ll need an environment Env[Type],
to keep track of the types of variables.
Base case: In the default case, we just throw an exception. This will help us in
debugging.

14 public default Type checkExpr(Expr expr, Env[Type] env) {
throw "Unknown expr: <[expr]>";

16 } Evaluator/src/check/CheckVarsTyped.rsc

Integer literals: The type of an integer is always int:

19 public Type checkExpr((Expr)‘<INT i>‘, Env[Type] env) {
20 return Int();

} Evaluator/src/check/CheckVarsTyped.rsc

Note that we don’t care about the actual value of the integer at all, only
about the type.
Boolean literals: The type of a boolean is always bool:

24 public Type checkExpr((Expr)‘<Bool b>‘, Env[Type] env) {
return Bool();

26 } Evaluator/src/check/CheckVarsTyped.rsc

Arithmetic: In the case of arithmetic expressions, we must first obtain the type
of the operands, by checking them recursively. Arithmetic operators require
integer arguments and provide an integer result. For example, for addition:

52 public Type checkExpr((Expr)‘<Expr e1>+<Expr e2>‘, Env[Type] env) {
t1 = checkExpr(e1, env);

54 t2 = checkExpr(e2, env);

56 if(t1 == Int() && t2 == Int())
return Int();

58 else
throw "Type error: expected (int, int), got (<t1>, <t2>)";

60 } Evaluator/src/check/CheckVarsTyped.rsc

Parentheses: The type of a parenthesis expression is simply the type of the con-
tained expression:

36 public Type checkExpr((Expr)‘(<Expr e>)‘, Env[Type] env) {
return checkExpr(e, env);

38 } Evaluator/src/check/CheckVarsTyped.rsc

33

3. Typecheckers & Static Semantics A.H. Bagge

Comparison: Unlike the language we evaluated in Chapter 2, this language has
Boolean values, which comes into play when we consider comparisons and
conditionals. Comparison requires integer arguments and gives a Boolean re-
sult. For example, for the less-than operator:

96 public Type checkExpr((Expr)‘<Expr e1>\<<Expr e2>‘, Env[Type] env) {
t1 = checkExpr(e1, env);

98 t2 = checkExpr(e2, env);

100 if(t1 == Int() && t2 == Int())
return Bool();

102 else
throw "Type error: expected (int, int), got (<t1>, <t2>)";

104 } Evaluator/src/check/CheckVarsTyped.rsc

Equivalence: The equals operator also gives a Boolean result. But itmakes sense
to be able to apply it to both Booleans and integers, so we will say that the
operands must have the same type:

85 public Type checkExpr((Expr)‘<Expr e1>==<Expr e2>‘, Env[Type] env) {
86 t1 = checkExpr(e1, env);

t2 = checkExpr(e2, env);
88

if(t1 == t2)
90 return Bool();

else
92 throw "Type error: operands have different types (<t1>, <t2>)";

} Evaluator/src/check/CheckVarsTyped.rsc

Conditionals: The if expression selects one of two branch values depending on
the condition. The condition should be a Boolean value.

The types of the branches don’t matter whenwe consider the if expression
in isolation, but they are important when we consider that the result may be
used in a larger expression. Somehow, the branches must have ‘compatible’
types, so that the program is type correct regardless of which branch is chosen.
For our simple language, this means that the if branches should both have the
same type.

108 public Type checkExpr((Expr)
‘if <Expr c> then <Expr e1> else <Expr e2> end‘, Env[Type] env) {

110 if(checkExpr(c, env) != Bool())
throw "Condition must be bool";

112

t1 = checkExpr(e1, env);
114 t2 = checkExpr(e2, env);

116 if(t1 == t2)
return t1;

118 else
throw "Type error: branches have different types (<t1>, <t2>)";

34

INF225 Notes 3.2. Simple Typechecking

120 } Evaluator/src/check/CheckVarsTyped.rsc

Note that, unlike the evaluator whichwould only evaluate one of the branches,
we typecheck both branches.

Variables: The type of a variable is its type in the environment, if any. If the
variable is undefined (not in the environment), the program is incorrect and
we should give an error message.

29 public Type checkExpr((Expr)‘<ID x>‘, Env[Type] env) {
30 if(isDefined(x, env))

return lookup(x, env);
32 else

throw "Undefined variable: <x>";
34 } Evaluator/src/check/CheckVarsTyped.rsc

Variable declarations: A let-expression has a type name, a variable name, an
initialiser expression and a body expression. We must first check that the type
of the initialiser expression corresponds to the declared type. Then, we can
add the variable to the environment in which we typecheck the body:

125 public Type checkExpr((Expr)
126 ‘let <TypeExpr te> <ID x> = <Expr e1> in <Expr e2> end‘,

Env[Type] env) {
128 typ = checkType(te, env);

t1 = checkExpr(e1, env);
130 if(typ != t1)

throw "Type mismatch declaring <x>: expected <typ>, got <t1>";
132

return checkExpr(e2, declare(x, typ, env));
134 } Evaluator/src/check/CheckVarsTyped.rsc

This code makes use of an auxiliary function checkType which checks the
TypeExpr and returns the corresponding type. This is needed because the
TypeExpr is just a parse tree fragment – we need to convert it to our abstract
representation (Int() or Bool()). Additionally, if our language was a little bit
more complicated, we might have to check the if the type expressions are well
formed, for example, whether a user-defined type has been properly declared.

The code for checkType is:

136 public Type checkType((TypeExpr)‘int‘, Env[Type] env) {
return Int();

138 }

140 public Type checkType((TypeExpr)‘bool‘, Env[Type] env) {
return Bool();

142 } Evaluator/src/check/CheckVarsTyped.rsc

35

3. Typecheckers & Static Semantics A.H. Bagge

1 module syn::SimplFunsTyped
2 extend syn::SimplLexical;

4 start syntax Program = Expr expr;

6 syntax Expr
= Name var

8 | INT intVal
| Bool boolVal

10 | bracket "(" Expr e ")"
| Expr fun "(" {Expr ","}* args ")"

12 > left (Expr e1 "*" Expr e2 | Expr e1 "/" Expr e2)
> left (Expr e1 "+" Expr e2 | Expr e1 "-" Expr e2)

14 > left (Expr e1 "==" Expr e2 | Expr e1 "\<" Expr e2)
| "if" Expr cond "then" e1 Expr "else" Expr e2 "end"

16 | "let" TypeExpr Name var "=" Expr e1 "in" Expr e2 "end"
> "fun" {Param ","}* params "=\>" Expr body

18 ;

20 syntax Param
= TypeExpr paramType ID paramName

22 ;

24 syntax Name = ID \ Bool;

26 syntax Bool = "true" | "false";

28 syntax TypeExpr
= "int"

30 | "bool"
| TypeExpr "(" {TypeExpr ","}* ")"

32 ;

Listing 3.2: Evaluator/src/syn/SimplFunsTyped.rsc: Syntax for SimplFunsTyped – a
simple expression language with functions and types. Function parameter
declarations must include types, but to reduce syntacic clutter, we automat-
ically infer the return type of functions.

Functions

Let us now consider typechecking of a language with functions. Listing 3.2
shows the extended syntax, similar to the language in Section 2.4.

There are two new kinds of expressions to typecheck: functions and func-
tion calls. Since functions are values in our language, we need to provide a
type for them, hence we should extend our idea of types to include function
types:

12 data Type
= Int()

36

INF225 Notes 3.2. Simple Typechecking

14 | Bool()
| Fun(list[Type] params, Type retType)

16 ; Evaluator/src/check/CheckFunsTyped.rsc

The type of a function depends on the type of its parameters and its return
type. For example, int(int,bool) – represented abstractly as Fun([Int(),Bool()],
Int()) – would be the type of a function that accepts an int and a bool as ar-
guments and returns an int.
Functions: A function expression has a list of parameter declarations and a
body. We need to check the parameter types, then bind the parameters to
their respective types and use the resulting environment to check the body.
The return type of the function is the type of the body expression.

44 public Type checkExpr((Expr)‘fun <{Param ","}* params> =\> <Expr body>‘,
Env[Type] env) {

46 list[Type] paramTypes = [];
for((Param)‘<TypeExpr te> <ID p>‘ <- params) {

48 t = checkType(te, env);
env = declare(p, t, env); // for use in checking body

50 paramTypes += t; // accumulate list of parameter types
}

52 retType = checkExpr(body, env);

54 return Fun(paramTypes, retType);
} Evaluator/src/check/CheckFunsTyped.rsc

In the evaluator, we just stored the function body, since there was nothing we
could do with it until we had values for the parameters. Here, we can check
that the body is valid based on the parameter types, without knowing the ar-
gument values.

We might want to have an additional wellness constraint of function dec-
larations: that names in the parameter list are unique. We could do this, for
example, by maintaining a list of the names seen so far, and then checking if
the next parameter we examine has already been used:

66 if(p in paramNames)
throw "Duplicate parameter name <p>";

68 else
paramNames += p; Evaluator/src/check/CheckFunsTyped.rsc

Function calls: A function calls consists of a function expression and a list of ar-
gument expressions. To typecheck, we need to type check the subexpressions,
then match the types of the argument expressions with the parameter types of
the function.

Since functions are just expressions, we need to handle the case where we
try to call somethingwhich is not a function. Wemust also deal with the possi-
bility of a call beingmadewith thewrong number orwrong type of arguments.

The type of a function call is the return type of the function called.

76 public Type checkExpr((Expr)‘<Expr f>(<{Expr ","}* args>)‘,
Env[Type] env) {

37

3. Typecheckers & Static Semantics A.H. Bagge

78 fType = checkExpr(f, env); // get function type

80 if(Fun(paramTypes, retType) := fType) {
if(size([a | a <- args]) != size(paramTypes))

82 throw "Wrong number of arguments for <f>";
// match each argument against the corresponding parameter type

84 for(<arg, paramType> <- zip([a | a <- args], paramTypes)) {
argType = checkExpr(arg, env);

86 if(argType != paramType)
throw "Type mismatch in call to <f>: expected <paramType>, got <argType>";

88 }

90 return retType; // type of call is return type of function
}

92 else throw "Attempt to call a non-function: <f>";
} Evaluator/src/check/CheckFunsTyped.rsc

Design Issues

Our little language has a few design issues. First of all, the let syntax is a little
cumbersome, particularly when it comes to functions:

1 let int(int,int) f =
fun int x, int y => x + y

3 in
f(2,3)

5 end

There isn’t really any need to declare the type of the variable, since we can
always obtain it from the type of the initialiser expression:

1 let f = fun int x, int y => x + y in f(2,3) end

This kind of simple inference of variable types is common in languages where
type expressions can get very complicated (e.g., newer editions of C++ and
Java).

Another approach is to introduce a new syntax for function declarations,
such as, for example:

1 let int f(int x, int y) => x + y in f(2,3) end

This second form is useful when we try to tackle the other problem our lan-
guage design has: there’s no way to make recursive functions, since the vari-
able in a let-expression is only bound inside the let body, not inside the ini-
tialiser (which is where the function body is).

A common way to fix this recursion problem is to introduce a new con-
struct, letrec, which changes the binding rules so that the new variable is also
bound inside the initialiser expression. Typically, letrec also allows multiple
variable bindings, allowing for mutually recursive functions:

1 letrec int f(int x, int y) => x + g(y)
int g(int x) => f(x, x)

38

INF225 Notes 3.3. More examples

3 in f(2,3) end

More examples

See code from Lecture 12 and 13:
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l12?
at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l13?
at=master

39

https://bitbucket.org/anyahelene/inf225public/src/master/inf225l12?at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l12?at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l13?at=master
https://bitbucket.org/anyahelene/inf225public/src/master/inf225l13?at=master

Appendix A

Glossary

Entires marked with a star? is not part of the curriculum. Entries in bold are
particularly important for the exam.

Term Definitions
Abstract data type?
Types

A type which is defined only through
an interface of operations used to ma-
nipulate its value, and where the data
representation is hidden.

[Wikipedia]

Abstract syntax tree
Abstraction, Parsing, Syntax

A tree representation of the syntac-
tic structure of a sentence; similar to
a parse tree, but usually ignoring lit-
eral nonterminals and nodes corre-
sponding to productions that don’t di-
rectly contribute to the structure of
the language (e.g., parenteses, pro-
ductions used to encode operator pri-
ority and so on). May represent
a slightly simpler language that the
parse tree, for example, with opera-
tor calls desugared to function calls,
and variations of a construct folded
into one. Can be represented using
as trees or terms, and described by an
algebraic data type or a regular tree
grammar.

[Wikipedia]

Abstract value?
Abstraction, Semantics

A value (of an abstract data type)
known only through the operations
used to create it. The user of an
abstract data type operates on ab-
stract values; only the implementa-
tion of the abstract data type sees
the concrete value. A single abstract
value may have many different con-
crete representations (either because
there are several implementations of
the data type, or because several rep-
resentations mean the same – for ex-
ample, 1/2 = 2/4)

Abstraction?
Abstraction

Focusing on relevant details while
leaving irrelevant details unspecified
or hidden away. Data abstraction (e.g.,
classes and interfaces) hides the de-
tails of how a data structure is repre-
sented, instead giving an interface to
manipulate the data. Control abstrac-
tion (e.g., functions, methods) hides
how something is done (the algo-
rithm), focusing instead on what is
done.

[Wikipedia]

Algebraic data type
Semantics, Types

A composite data type defined induc-
tively from other types. Typically,

41

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

A. Glossary A.H. Bagge

each type has a number of cases or
alternatives, which each case having
a constructor with zero or more argu-
ments.

For example, data Expr =
Int(int i) | Plus(Expr a, Expr
b). The data type can be seen as an
algebraic signature, with the expres-
sions written using the constructors
being terms. For our purposes, values
may be interpreted as trees, with the
constructor name being node labels,
arguments being children, and atomic
values and nullary constructors being
leaves.

[Wikipedia]

Ambiguous grammar
Ambiguity, Syntax

A grammar for which there is a string
which has more than one leftmost
derivation.

– Parsing Requires a generalised
parser, produces a parse forest.

[Wikipedia]

Analytic grammar?
Parsing, Syntax

A grammar which corresponds di-
rectly to the structure and seman-
tics of a parser. For example, parser
combinators and parsing expression
grammars (PEGs).

[Wikipedia]

Anonymous function
Semantics

A function occuring as a value, with-
out being bound (directly) to a name.
C.f. closure.

Application binary interface?
Compilation

Specifies how software modules or
components interact with each other
at the machine code level. Typically
includes such things function calling
conventions (whether arguments are
passed on the stack or in registers,
and so on), the binary layout of data

structures and how system calls are
done.

[Wikipedia]

Application programming interface?
Abstraction
Specifies how software modules
or components interact with each
other.

[Wikipedia]

Associativity
Ambiguity, Syntax
A property of binary operators in
parsing, indicating whether expres-
sions such as a+b+c should be inter-
preted as (a+b)+b (left associative),
a + (b + c) (right associative) or as il-
legal (non-associative).

– Left Operations are grouped
on the left, giving a tree which is
“heavy” on the left side; typically
used for arithmetic operators. With-
out associativity rules, grammar pro-
ductions usually look like PlusExpr
::= PlusExpr "+" MultExpr | ...,
forcing any expression containing the
operator to be on the left side.

– Right Operations are grouped
on the right, giving a tree which is
“heavy” on the right side; typically
used for assignment and exponentia-
tion operators.

[Wikipedia]

Associativity rule
Ambiguity, Syntax
A disambiguation rule stating that
an operator is either left-, right-
or non-associative. E.g., in Ras-
cal: syntax Expr = left (Expr "*"
Expr | Expr "/" Expr);

Attribute grammar
Parsing, Syntax
A grammar where each production
rule has attached attributes that are
evaluated whenever the production
rule is used in parsing. Can be used,
for example, to build an intermedi-
ate representation directly from the

42

http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Ambiguous_grammar
http://en.wikipedia.org/wiki/Formal_grammar#Analytic_grammars
http://en.wikipedia.org/wiki/Application_binary_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Operator_associativity

INF225 Notes A.1. Term Definitions

parser, or to do typechecking while
parsing.

[Wikipedia]

Backend
Compilation
The final stage of a compiler or lan-
guage processor, often tasked with
low-level optimisation and code gen-
eration targeted at a particular ma-
chine architecture.

Backus-Naur form
Syntax
A formal notation for gram-
mars, where productions are
written <symbol> ::= <symbol1>
"literal" Often extended with
support for repetition (*, +), op-
tionality (? or []) and alternatives
(|).

[Wikipedia]

Bottom-up parser
Parsing
A parser that works by identifying
the lowest-level details first, rather
than working top-down from the
start symbol. For example, an LR
parser.

[Wikipedia]

Chomsky normal form?

Syntax
A simplified form of grammars where
all the production rules are of the
form A → BC or A → a or S →
ε, where A, B and C are nontermi-
nals (with neither B nor C being the
start symbol), a is a terminal, ε is the
empty string, and S is the start sym-
bol. The third rule is only applicable
if the empty string is in the language.
Any context-free grammar can be con-
verted to this form, and any grammar
in this form is context free.

[Wikipedia]

Closure
Semantics
A function (or other operation) pack-
aged together with all the variables

it can access from the surrounding
scope in which it was defined. See
Section 2.7.1. A related term is anony-
mous function, which does not neces-
sarily imply access to variables from
the surrounding scope.

[Wikipedia]

Composite data type
Types
A data type constructed from other
types (or itself, in the case of a recur-
sive data type), e.g., a structure or an
algebraic data type.

Context-free grammar
Syntax
A formal grammar in which every
production rule has a form of A→ w,
where A is a single nonterminal sym-
bol and w is a sequence of terminals
and nonterminals.

[Wikipedia]

Continuation?
Semantics
An abstract representation of the con-
trol state of a program. Often used in
the sense of first-class continuations
which let the execution state of a pro-
gram be saved, passed around and
then later restored.

[Wikipedia]

Cross-cutting concern?
Abstraction
A programming concern, such as log-
ging or security, which impacts many
parts of a program and is difficult
to decompose (cleanly separate into
a library) from the rest of the sys-
tem.

[Wikipedia]

Dangling else problem
Ambiguity, Syntax
A common ambiguity in program-
ming languages (particularly those
with C-like syntax) in which an op-
tional else clause may be interpreted
as belonging to more than one if sen-
tence. Usually resolved in favour of

43

http://en.wikipedia.org/wiki/Attribute_grammar
http://en.wikipedia.org/wiki/Backus-Naur_Form
http://en.wikipedia.org/wiki/Bottom-up_parser
http://en.wikipedia.org/wiki/Chomsky_normal_form
http://en.wikipedia.org/wiki/Closure_(computer_science)
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Continuation
http://en.wikipedia.org/wiki/Cross-cutting_concern

A. Glossary A.H. Bagge

the closest if, often by an implicit
disambiguation rule (at least in non-
generalised parsing).

[Wikipedia]

Declarative programming?

A programming paradigm where
programs are built by expressing the
logic of a computation rather than the
control flow; i.e.,what should be done,
rather than how.

[Wikipedia]

Definite clause grammar?
Syntax

A way of expressing grammars in
logic programming languages such as
Prolog.

[Wikipedia]

Derivation
Parsing

A sequence of production rule appli-
cations that rewrites the start symbol
into the input string (i.e., by replac-
ing a nonterminal symbol by its ex-
pansion at each step). This can be seen
as a trace of a parser’s actions or as
a proof that the string belongs to the
language.

– Leftmost A derivation where the
leftmost nonterminal symbol is se-
lected at every rewrite step.

– Rightmost A derivation where
the rightmost nonterminal symbol is
selected at every rewrite step.

Desugaring
Syntax, Transformation

Removal of syntactic sugar. Some-
times used in a frontend to translate
convenient language constructs used
by the programmer into more fun-
damental constructs. For example,
translating Java’s enhanced for into a
more basic iterator use.

[Wikipedia]

Deterministic context-free grammar?
Ambiguity, Syntax

A context-free grammar that can be
derived from a deterministic push-
down automaton (DPDA). Always
unambiguous.

[Wikipedia]

Disambiguation rule
Ambiguity, Parsing, Syntax

Used to resolve ambiguities in a gram-
mar, so that the parser yields a sin-
gle unambiguous parse tree. Includes
techniques such as follow restrictions,
precede restrictions, priority rules, as-
sociativity rules, keyword reservation
and implicit rules.

Domain-specific language
Abstraction, Languages

A language (i.e., not just a library)
with abstractions targeted at a specific
problem domain.

– Benefits Easier programming,
more efficient or secure, possibly bet-
ter error reports

– Drawbacks Lots of implemen-
tation work, language fragmentation,
learning/training issues, less tooling,
troublesome interoperability, possi-
bly worse error reports

– External DSL ADSL defined as a
separate programming language.

– Internal or embedded DSL A DSL
defined as language-like interface to
library.

[Wikipedia]

Duck typing
Types

A typing style where the exact type
of an object is not important, rather,
any object is usable in any situation
as long as it supports whatever meth-
ods are called on it. Used in many dy-
namic languages, such as Python, and
in C++ templates. C.f. structural typ-
ing.

Named after the duck test (at-
tributed to James Whitcomb Riley):
“When I see a bird that walks like
a duck and swims like a duck and

44

http://en.wikipedia.org/wiki/Dangling_else
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Definite_clause_grammar
http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Deterministic_context-free_grammar
http://en.wikipedia.org/wiki/Domain-specific_language

INF225 Notes A.1. Term Definitions

quacks like a duck, I call that bird a
duck.”

[Wikipedia]

Dynamic dispatch
Compilation, Languages, Semantics

The process of selecting, at runtime,
which implementation of a method to
call at runtime; typically based on the
the actual class of the object on which
the method is called (as opposed to
the static type of the variable). With
multiple dispatch, the selection is done
based on some or all arguments, mak-
ing it a kind of runtime overload res-
olution.

[Wikipedia]

Dynamic language
Languages

A language where most or all of the
language semantics is processed at
runtime, including aspects such as
name binding and typing. May have
features such as duck typing, dy-
namic typing, runtime reflection and
introspection, and often allows code
to be replaced and objects to be ex-
tended at runtime.

[Wikipedia]

Dynamic scoping
Languages, Semantics

When names are resolved by finding
the closest binding in the runtime en-
vironment (i.e., the execution stack),
rather than in the local lexical envi-
ronment (i.e., the containing scopes
at the use site). C.f. lexical scop-
ing.

[Wikipedia]

Dynamic semantics
Semantics

Gives themeaning of a program at ex-
ecution time; either in terms of values
being computed, actions being per-
formed and so on.

[Wikipedia]

Dynamic typing
Types
When type safety is enforced at run-
time. Values are associated with type
information, which can also be used
for other purposes, such as runtime
reflection. Used in languages such as
Python, Ruby, Lisp, Perl, etc.

–Benefits Compilermay run faster;
easy to load code dynamically at run-
time; allows some things that are type
safe but are still excluded by a static
type system; easy to use duck typing
to get naturally generic codewith little
overhead for the programmer; reflec-
tion, introspection andmetaprogram-
ming becomes easier.

– Drawbacks Type errors cannot
be detected at compile time; rigorous
testing is needed to avoid type errors;
some optimisationsmay be difficult to
perform (less of a problem with just-
in-time compilation).

Dynamic typing does not imply
weak typing. C.f. static typing, duck
typing.

[Wikipedia]

Environment
Semantics
A mapping of names to values or
types. Used in evaluation and type-
checking to carry name bindings.
The environment is passed around
(propagated) according to the scop-
ing rules of the language, and may
use amore complicated data structure
to accomodate nested and/or named
scopes.

[Wikipedia]

Epsilon
Syntax
In a grammar, the empty
string.

Evaluator (also Interpreter)
Compilation, Languages, Semantics
A program that executes another pro-
gram.

[Wikipedia]

45

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Dynamic_dispatch
http://en.wikipedia.org/wiki/Scope_(computer_science)#Dynamic_scoping
http://en.wikipedia.org/wiki/Programming_language#Dynamic_semantics
http://en.wikipedia.org/wiki/Dynamic_typing
http://en.wikipedia.org/wiki/Environment_(type_theory)
http://en.wikipedia.org/wiki/Interpreter_(computing)

A. Glossary A.H. Bagge

Extended Backus-Naur form?

Syntax
A syntax notation introduced by
Niklaus Wirth, which includes nota-
tion for optionality, repetition, alter-
nation, grouping and so on.

[Wikipedia]

Field
Types
A data member of a data struc-
ture.

Follow restriction
Ambiguity, Syntax
A disambiguation technique where a
symbol is forbidden from or forced to
be immediately followed by a certain
terminal.

Formation rule
Semantics, Syntax
A grammar; rules for describing
which strings are valid in a lan-
guage. This term is used mainly in
logic.

Frontend
Compilation
The first stage of a compiler or lan-
guage processor, typically including a
parser (possiblywith a tokeniser), and
a typechecker (semantic analyser).
Sometimes also includes desugaring.
Is typically responsible for giving the
programmer feedback on errors, and
translating to the internal AST or rep-
resentation used by the rest of the sys-
tem.

Function
Semantics
An abstraction over expressions (or
more generally, over expressions,
statements and algorithms).

Function type
Semantics, Types
The representation of a function in the
type system. Typically includes pa-
rameter types and return type, writ-
ten t1, ..., tk → t.

Function value
Semantics

The representation of a function in
an evaluator or in a dynamic seman-
tics specification. Usually includes
the parameter names and the function
body. Forms a closure together with
an environment giving the function’s
declaration scope.

Functional programming
Languages

A programming paradigm based on
mathematical functions, usuallywith-
out state and mutable variables. Pure
functional languages have referential
transparency, and typically allows
Higher-order functions.

[Wikipedia]

Generalised parser
Ambiguity, Parsing

A parser that can handle the full
range of context-free grammars, in-
cluding nondeterministic and am-
biguous grammars. For example, a
GLL parser or a GLR parser.

Generative grammar?
Syntax

An approach to specifying the syntax
of the language, using a set of rules
that produce all strings in the lan-
guage. Formalised by Noam Chom-
sky in the late 1950s, but the idea
goes back to Pān. ini’s Sanskrit gram-
mar, 4th century BCE.

[Wikipedia]

Generative programming?
Abstraction, Languages, Transforma-
tion

Programming aided by automatic
generation of code, including tech-
niques such as generic programming,
templates, aspects, code generation,
etc.

[Wikipedia]

46

http://en.wikipedia.org/wiki/Extended_Backus-Naur_Form
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Generative_grammar
http://en.wikipedia.org/wiki/Automatic_programming#Generative_programming

INF225 Notes A.1. Term Definitions

Generic programming?
Abstraction, Languages
A programming style which allows
the same piece of code to deal with
many different types, for example
through polymorphism.

[Wikipedia]

GLL parser?
Parsing
An LL parsing algorithm extended
to handle nondeterministic and am-
biguous grammars, making it capable
of parsing any context-free grammar.
Unlike normal LL or recursive descent
parsers, it can also handle left recur-
sion.

[WWW]

GLR parser?
Parsing
An LR parsing algorithm extended
to handle nondeterministic and am-
biguous grammars, making it capa-
ble of parsing any context-free gram-
mar.

[Wikipedia]

Grammar
Syntax
A formal set of rules defining the syn-
tax of a language. Formally, a tuple
〈N, T, P, S〉 of nonterminal symbols N,
terminal symbols T , production rules
P, and a start symbol S ∈ N. In soft-
ware languages, the most frequently
used kinds are context-free and regu-
lar grammars.

[Wikipedia]

Grammar in a broad sense?
Syntax
A structural description in software
systems, and a description of struc-
tures used in software systems: a
parser specification is an enriched
grammar, a type definition is a gram-
mar, an attribute grammar comprises
a grammar, a class diagram can be
considered a grammar, a metamodel
must contain a grammar, an algebraic

signature is a grammar, an algebraic
data type is a grammar, a generalized
algebraic data type is a very power-
ful grammar, a graph grammar and a
tree grammar are grammars for visual
concrete notation, an object grammar
contains two grammars and a map-
ping between them.

[Paper: Toward an Engineering
Discipline for Grammarware]

Higher-order function
Languages
A function which takes takes func-
tions as arguments or returns function
values.

[Wikipedia]

Imperative programming
Languages
A programming paradigm based on
statements that change program state;
as opposed to declarative program-
ming. May be combined with object-
oriented programming.

[Wikipedia]

Implicit disambiguation rule
Ambiguity, Parsing, Syntax
A disambiguation rule built into the
parser, such as longest match for reg-
ular expressions, or resolving the dan-
gling else problem by preferring shift
over reduce in an LR parser.

Inheritance
Abstraction, Languages
A technique in object-oriented pro-
grammingwhich combines automatic
code reuse with subtyping.

[Wikipedia]

Inlining
Abstraction, Compilation, Transforma-
tion
A technique in language processing
where a call to a function or procedure
is replaced by the code being called.
Often used as part of code optimisa-
tion; removes abstraction introduced
by the programmer.

[Wikipedia]

47

http://en.wikipedia.org/wiki/Generic_programming
http://www.rhul.ac.uk/computerscience/research/csle/gllparsers.aspx
http://en.wikipedia.org/wiki/Glr_parser
http://en.wikipedia.org/wiki/Formal_grammar
http://doi.acm.org/10.1145/1073000
http://doi.acm.org/10.1145/1073000
http://en.wikipedia.org/wiki/Higher-order_function
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Inlining

A. Glossary A.H. Bagge

Island grammar?
Syntax

A grammar which describes only
small parts of a language, skipping
over the rest. Used, for example, to
recover documentation from a pro-
gram.

[Program Transformation Wiki]

Just-in-time compilation?
Compilation

A technique used in interpreted or
bytecode-compiled languages where
program code is compiled at run-
time, during evaluation. This gives
the speed advantages of compilation,
while retaining the dynamic flexibil-
ity and architecture-independence of
a interpreted or bytecode-based lan-
guage. Can sometimes give even bet-
ter performance than static compila-
tion, since more information may be
available at runtime, leading to bet-
ter optimisation. Heavily used in
modern implementations of JVM and
.NET.

[Wikipedia]

Kleene closure
Syntax

A metasyntactic sugar for repetition:
x* means that x can be repeated zero
or more times. The language that
the Kleene star generates, is a monoid
with concatenation as the binary op-
eration and epsilon as the identity el-
ement.

[Wikipedia]

Language
Languages

A system of communication, with
structure (syntax) and meaning (se-
mantics), and abstractions that allow
you to communicate usefully at differ-
ent levels (i.e., more than just pointing
at concrete things or showing a pic-
ture of something).

Left factoring?
Syntax
A technique used to avoid back-
tracking in top-down parsing, by en-
suring that the productions for a
nonterminal don’t have alternatives
that start with the same terminals..
Used to massage a grammar to LL
form.

[Wikipedia]

Left recursion?
Syntax
When production rules have the form
A → Aa|b, with the Nonterminal oc-
curring directly or indirectly to the left
of all terminals on the right-hand side.
Must be eliminated in order to use an
LL parser.

[Wikipedia]

Lexeme
Syntax
A string of characters that is sig-
nificant as a group; a word or to-
ken.

Lexical analysis (also scanner, lexer or
tokeniser)
Compilation, Parsing
Converting a sequence of characters
(letters) to a sequence of tokens (lex-
emes or words).

Lexical scoping (also Static scoping)
Languages, Semantics
When names are resolved (possibly
statically) by finding the closest bind-
ing in the lexical environment (i.e.,
by looking at the scopes that lexically
contains the name). C.f. dynamic
scoping.

[Wikipedia]

Lexical syntax
Syntax
Describes (often using a Regular
grammar) the syntax of tokens;
e.g., what constitutes an identi-
fier, a number, different operators
and the whitespace that separates
them.

[Wikipedia]

48

http://www.program-transformation.org/Transform/IslandGrammars
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Kleene_star
http://en.wikipedia.org/wiki/Left_factoring
http://en.wikipedia.org/wiki/Left_recursion
http://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scoping
http://en.wikipedia.org/wiki/Lexical_grammar

INF225 Notes A.1. Term Definitions

Literate programming?
Languages, Syntax
A programming style where pro-
grams can be read as documents
that explain the implementation, with
explanations in a natural language.
Tools allow programs to be compiled
as either code or documents.

[Wikipedia]

LL parser
Parsing
A table-driven top-down parser, sim-
ilar to a recursive descent parser. Has
trouble dealing with left recursion
in production rules, so the grammar
must typically be left factored prior to
use. The LL parser reads its input in
one direction (left-to-right) and pro-
duces a leftmost derivation, hence the
name LL. Often referred to as LL(k),
where the k indicates the number of
tokens of lookahead the parser uses to
avoid backtracking.

[Wikipedia]

LL grammar
Syntax
Agrammar that can be parsed by a LL
parser.

[Wikipedia]

Logic programming
A declarative programming
paradigm based on formal logic, in-
ference and reasoning. Useful for
many purposes, including formal
specification of language semantics.
Prolog is the most well-known logic
language.

[Wikipedia]

LR parser
Parsing
A bottom-up parser that can handle
deterministic context-free languages
in linear time. Common variantes are
LALR parsers and SLR parsers. It
reads its input in one direction (left-
to-right) and produces a rightmost
derivation, hence the name LR.

[Wikipedia]

LR grammar
Syntax

Agrammar that can be parsed by a LR
parser.

[Wikipedia]

Massaging?
Parsing, Syntax, Transformation

The act of modifying a grammar to
make it fit a particular technology or
purpose.

Megamodel?

A result ofmegamodelling— amodel
which elements are software lan-
guages, models, metamodels, trans-
formations, etc

[Paper: On the Need for
Megamodels]

Member (also Field)
Types

An element of a structure or class;
a field, method or inner class/-
type.

Method (also Member function)
Languages, Semantics

A function which is a member of
a class. Typically receives a self-
reference to an object as an implicit ar-
gument.

[Wikipedia]

Mixin?

A partial class (data fields and meth-
ods) that can be used to plug function-
ality into another class using inheri-
tance.

[Wikipedia]

Multi-paradigm programming?
Languages

Programming which combines sev-
eral paradigms, such as functional,
imperative, object-oriented or logic
programming. Languages that sup-
port multiple paradigms include, for
example, C++, Scala, Oz, Lisp, and
many others.

[Wikipedia]

49

http://en.wikipedia.org/wiki/Literate_programming
http://en.wikipedia.org/wiki/LL_parser
http://en.wikipedia.org/wiki/LL_grammar
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/LR_parser
http://en.wikipedia.org/wiki/LR_grammar
http://www.softmetaware.com/oopsla2004/bezivin-megamodel.pdf
http://www.softmetaware.com/oopsla2004/bezivin-megamodel.pdf
http://en.wikipedia.org/wiki/Method_(computer_programming)
http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Programming_paradigm#Multi-paradigm_programming_language

A. Glossary A.H. Bagge

Name binding
Compilation, Semantics
A part of language processing where
names are associated with their dec-
larations, according to scoping and
namespace rules. A name’s binding is
typically determined by checking the
environment at the use site.

– Static When done statically (or
early), name binding is often com-
bined with typechecking.

– Dynamic Names are bound at
runtime; also applies to dynamic dis-
patch (where it is sometimes called
late or virtual binding), where cer-
tain properties (such as types) may be
known statically, but the exact opera-
tion called is determined at runtime.

[Wikipedia]

Named tuple
Types
A tuple where the elements are
named, like in a structure. Often
exhibits structural type equivalence,
even in languages that normally use
nominative type equivalence

Namespace
Semantics
Some kind name grouping thatmakes
it possible to distinguish different
uses of the same name. For exam-
ple, having variable names be distinct
from type names; or treating names
in one module as distinct from the
same names in another module (In
this sense, namespaces are related to
scope).

[Wikipedia]

Nominative type equivalence? (also
Nominal/Nominative type system)
Types
A system where type equivalence or
compatibility is determined based on
the type names (or, more strictly,
which declaration the names refer to)
and not the structure of the type. C.f.
structural type equivalence.

[Wikipedia]

Nonterminal footprint?
Syntax
A non-recursive measure of nonter-
minal symbol usage in a grammati-
cal expression: a multiset of presence
indicators (1 for the nonterminal it-
self, ? for its optional use, * for its
Kleene closure, etc). A usefulness of
a footprint for grammar matching de-
pends on how rich the metalanguage
is.

Nonterminal symbol
Syntax
A symbol in a grammar which is de-
fined by a production. Can be re-
placed by terminal symbols by apply-
ing the production rules of the gram-
mar. In a context-free grammar, the
left-hand side of a production rule
consists of a single nonterminal sym-
bol.

Object-oriented programming?
Languages
A programming paradigm based on
modelling interactions between ob-
jects. Objects have fields and meth-
ods and encapsulate state. Pro-
vides data abstraction, and usually
supports inheritance, dynamic dis-
patch and subtype subtype polymor-
phism.

[Wikipedia]

Optimisation
Compilation, Transformation
The process of transforming pro-
gram code to make it more effi-
cient, in terms of time or space or
both.

[Wikipedia]

Overloading
Semantics
When the same name is used for mul-
tiple things (of the same kind). For
example, several functions with the
same name, distinguished based on
the parameter types. C.f. namespace,
where the same name can have differ-
entmeanings in different context (e.g.,

50

http://en.wikipedia.org/wiki/Name_binding
http://en.wikipedia.org/wiki/Namespace
http://en.wikipedia.org/wiki/Nominative_type_system
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Program_optimization

INF225 Notes A.1. Term Definitions

type names are distinct from variable
names).

[Wikipedia]

Overload resolution
Compilation, Semantics
A compilation step, usually combined
with typechecking, where the name
of an overloaded function is resolved
based on the types of the actual ar-
guments. C.f. dynamic dispatch,
which does something similar at run-
time.

[Wikipedia]

Parse forest
Ambiguity, Parsing, Syntax
The parse trees that are the result of
parsing an ambiguous grammar us-
ing a generalised parser.

Parse tree
Parsing, Syntax
A tree that shows the structure of a
string according to a grammar. The
tree contains both the tokens of the
original string, and a trace of the
derivation steps of the parse, thus
showing how the string is a valid
parse according to the grammar. Typ-
ically, each leaf corresponds to a to-
ken, each interior node corresponds to
a production rule, and the root node
to a production rule of the start sym-
bol.

Parser
Parsing
A program that recognises input ac-
cording to some grammar, checking
that it conforms to the syntax and
builds a structured representation of
the input.

Parser combinator?
Parsing
A way of expression a grammar
and a parser using higher-order
functions. Each combinator accepts
parsers as arguments and returns a
parser.

[Wikipedia]

Parsing expression grammar?
Parsing, Syntax
A form of analytic grammar, giv-
ing rules that can be directly applied
to parse a string top-down. Similar
to a context-free grammar, but the
rules are unambiguously interpreted;
for example, alternatives are tried in
order. Related to parse combina-
tors. PEGs are a useful and straight-
forward technique for parsing soft-
ware languages.

It is suspected that there are
context-free languages that cannot be
parsed by a PEG, but this has not been
proved.

[Wikipedia]

Parsing
Parsing
Recovering the grammatical structure
of a string. The task done by a
parser.

Pattern matching
Languages, Transformation
A technique for comparing (typically
algebraic) data structures, where one
or both structures may contain vari-
ables (sometimes refered to as meta-
variables). Upon successful match,
variables are bound to the corre-
sponding substructure from the other
side. Related to unification in Prolog,
but often more restricted.

[Wikipedia]

Polymorphism?

Languages, Types

– Ad hoc Another name for func-
tion or operator overloading.

– Parametric When a function or
data type is generic and handle values
of different types in the same; for in-
stance, List<T> – a list with elements
of an arbitrary type. The specific type
in question is often given as a param-
eter, hence the name.

– Subtype When an object belong-
ing to a subtype can be used in a place

51

http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Parser_combinator
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Pattern_matching

A. Glossary A.H. Bagge

where the supertype is expected (as
with classes and inheritance in object-
oriented programming).

[Wikipedia]

Precede restriction
Ambiguity, Syntax
A disambiguation technique where a
symbol is forbidden from or forced to
be immediately preceded by a certain
terminal.

Predictive parser
Parsing
A recursive descent parser which
does not require backtracking. In-
stead, it looks ahead a finite number
of tokens and decides which parsing
function should be called next. The
grammar must be LL(k) for this to
work, where k is the maximum looka-
head.

Priority rule
Ambiguity, Parsing, Syntax
A disambiguation rule declaring an
operator’s priority/precedence. E.g.,
in Rascal: syntax Expr = Expr "*"
Expr > Expr "+" Expr;

Procedural programming
A programming paradigm based
around procedure calls. Sometimes
considered the same as imperative
programming and typically based on
structured programming.

[Wikipedia]

Production rule
Syntax
A rule describing which symbols may
replace other symbols in a grammar.
In a context-free grammar, the left-
hand side consists of a single nonter-
minal symbol, while the right-hand
side may be any sequence of termi-
nals and nonterminals. For exam-
ple, Expr ::= Expr "+" Expr says
that anywhere you may have an ex-
pression, you can have an expression
plus another expression. The rules
may be used to generate syntactically

correct strings, by applying them as
rewrite rules starting with the start
symbol, or be used to parse strings,
e.g., in a top-down parser or bottom-
up parser.

Program slicing
Transformation
A program transformation technique
where all code that is irrelevant to a
certain set of inputs or outputs is re-
moved. Applied forwards, any code
not directly or indirectly using a se-
lection of inputs is discarded; applied
backwards, all code that does not con-
tribute to the computation of the se-
lected outputs is discarded. Mainly
used in debugging (e.g., to find the
code that might have contributed to
an error), but sometimes also as an op-
timisation technique. Originally for-
malised by Mark Weiser in the early
1980s.

[Wikipedia]

Recogniser
Parsing
A program that recognises input ac-
cording to some grammar, giving an
error if it does not conform to the
grammar, but does not build a data
structure.

Record, Record type
Types
See Structure, Structure type.

[Wikipedia]

Recursive data type?
Types
A composite data type, such as an
algebraic data type which may con-
tain itself. Used, for example, to de-
fine data structures such as lists and
trees.

Recursive descent parser
Parsing
A top-down parser built from mu-
tually recursive functions, where
each function typically implements

52

http://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Program_slicing
http://en.wikipedia.org/wiki/Record_(computer_science)

INF225 Notes A.1. Term Definitions

one production rule of the gram-
mar.

[Wikipedia]

Referential transparency
Languages, Semantics
When an expression can be replaced
by its value without changing the
meaning of the program; i.e., it will
evaluate to the same value every time
and not cause side effects. Usually a
property of functional programming
languages.

[Wikipedia]

Regular expression
Syntax
A formalism for describing a regular
grammar, using the normal alphabet
mixed with special metasyntactic sym-
bols, such as the Kleene star. Com-
monly used to specify the lexical syn-
tax of a language, and also for search-
ing and string matching in many dif-
ferent applications.

[Wikipedia]

Regular grammar
Syntax
A formal grammar where every pro-
duction rule has the form A → aB
(for a right regular grammar), orA→ a
or A → ε, where A and B are non-
terminal symbols and a is a terminal
symbol, and ε is the empty string. Al-
ternatively, the first production form
may beA→ Ba, for a left regular gram-
mar.

– Limitations Can’t express arbi-
trary nesting, such as nested paren-
theses or block structure in a lan-
guage.

[Wikipedia]

Reserve rule
Ambiguity, Syntax
A disambiguation rule which states
that a grammar symbol cannot match
some constraint. For example, iden-
tifiers could be defined as any word
matching [a-zA-Z]+ except if, while,
...

Scannerful parsing
Parsing

Parsing is divided into two parts; a to-
keniser that deals with the lexical syn-
tax and a parser that deals with the
sentence syntax.

– Benefits Faster than scannerless
parsing, because the lexical syntax
is specified with a regular grammar
which can be parsed very efficiently.

– Drawbacks Cannot deal with ar-
bitrary composition of languages.

Scannerless parsing
Ambiguity, Parsing, Syntax

When scanning and parsing is unified
into one process that deals with with
the input characters directly.

– Benefits Can parse combinations
of languages that have different lex-
ical syntax. Lexical syntax can be
context-free, not just regular.

– Drawbacks Slower than scanner-
ful parsing. Can lead to hard to find
lexical ambiguities.

Scope
Semantics

A collection of identifier bindings –
i.e., what is captured by the environ-
ment at some point in the code or in
time.

– Nested With nested scopes, vari-
ables in inner scopes may shadow
those in outer scopes, and variables
are removed as control flows out of
the scope. Variable shadowing may
be forbidden in some languages.

– Named With named scopes, we
can refer to names in scopes that are
not ancestors of the current scope.
For example, with C++ classes and
namespaces and Java packages and
(static) classes.

[Wikipedia]

Semantic analysis
Compilation, Semantics

A phase of language processing
that enforces the static semantics

53

http://en.wikipedia.org/wiki/Recursive_descent_parser
http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Scope_(programming)

A. Glossary A.H. Bagge

of a language. Includes typecheck-
ing, name binding, overload resolu-
tion and checking other static con-
straints.

Software Language
Languages

An artificial language used in soft-
ware development.For example, Java
(programming language), HTML
(markup language), XML (data lan-
guage), CSS (domain-specific lan-
guage).

Start symbol
Syntax

The nonterminal symbol in a gram-
mar that generates all valid strings in
a language.

Static semantics
Semantics, Types

The part of language semantics which
is processed at compile time (stati-
cally). Often includes constraints that
might be part of the syntax, but which
is done separately in order to keep
the grammar context-free. Includes
concepts like name binding and type-
checking, and is used to eliminate a
large class of invalid or erroneous pro-
grams. See static typing.

Static typing
Types

When type safety is enforced at com-
pile type (though some tests, such as
for typecasting, may be done at run-
time).

– Benefits Detects a large an im-
portant class of errors (type errors) at
compile time; enables advanced opti-
misations and efficient memory use.

– Drawbacks Type system may
become either overly complicated
or overly restrictive; doesn’t help
with non-type errors; makes dynamic
loading of code somewhat more com-
plicated; type declarations may be
cumbersome if the language lacks
type inference.

Strong typing
Types
When a language (to some degree) en-
forces type safety.

[Wikipedia]

Structural type equivalence? (also
Structural type system)
Types
A system where two types are equal
or compatible if they have the same
structure; e.g., have the same fields
with the same types in the same or-
der. C.f. nominative type equiva-
lence.

[Wikipedia]

Structure, Structure type (also Record,
Record type)
Types
A composite data type with named
fields members; such as struct in C
or record in Pascal. Similar to (or
same as, with structural type equiva-
lence) a named tuple.

[Wikipedia]

Structured programming?
Languages
A programming paradigm where the
clarity of programs is improved by
nestable language constructs like if,
while, as opposed to conditional
jumps.

[Wikipedia]

Syntactic sugar
Syntax
See Desugaring.

[Wikipedia]

Terminal symbol
Syntax
An elementary symbol in the lan-
guage defined by a grammar, which
cannot be changed/matched by the
production rules in the grammar
(i.e., the symbol doesn’t occur (alone)
on the left-hand side of a produc-
tion). Corresponds to a token or
an element of the alphabet of a lan-
guage.

54

http://en.wikipedia.org/wiki/Strong_typing
http://en.wikipedia.org/wiki/Structural_type_system
http://en.wikipedia.org/wiki/Record_(computer_science)
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Syntactic_sugar

INF225 Notes A.1. Term Definitions

Token
Parsing
A lexeme or group of characters that
forms a basic unit of parsing, cate-
gorised according to type, e.g., iden-
tifier, number, addition operator, etc.
Forms the alphabet of the parser in
scannerful parsing.

[Wikipedia]

Tokeniser (also lexer or scanner)
Parsing
A program that performs lexical anal-
ysis, grouping and classifying input
into tokens.

Top-down parser
Parsing
A parser using a strategy where the
top-level constructs are recognised
first, starting with the start symbol.
The parser starts at the root of the
parse tree, and builds it top-down,
according to the rules of the gram-
mar. Includes LL parsing and Recur-
sive descent parsing.

Typechecker
Compilation, Types, Semantics
A program that detects type errors,
ensuring type safety in a statically
typed language. Often combined
with other static semantic checks and
processing, such as overload resolu-
tion, name binding, and checking ac-
cess restrictions on names. Can be
seen as a form of abstract interpre-
tation, where the abstract values are
the types, and all operations are de-
fined according to their static seman-
tics (i.e., type signature) rather than
their dynamic semantics. C.f. seman-
tic analysis.

[Wikipedia]

Type inference
Types
Automatic deduction of the types in
a language. Used with static typing
to avoid having to declare types for
variables and functions. Particularly

useful in generic programming and
type polymorphism where type ex-
pressions can become quite compli-
cated. Used, e.g., in Haskell and Stan-
dard ML.

[Wikipedia]

Type safety
Languages, Types

Whether a language protects against
type errors, such as when a value of
one data type is interpreted as another
type (e.g., an int as a float or as a
pointer to a string).

[Wikipedia]

Typecasting? (also type conversion)
Types

Forced conversion from one type to
another. In a languages with weaker
type systems, may lead to data being
misinterpreted.

[Wikipedia]

Unification?

Languages

A pattern matching-like operation,
where the goal is to find an assign-
ment of variables so that two terms
become equal. Used heavily in Pro-
log.

[Wikipedia]

Weak typing
Types

When a language (to some de-
gree) does not enforces type
safety.

[Wikipedia]

Yield?

Parsing, Transformation

The yield of a parsetree is the unparsed
input text.

55

http://en.wikipedia.org/wiki/Token_(parser)#Token
http://en.wikipedia.org/wiki/Typechecker
http://en.wikipedia.org/wiki/Type_inference
http://en.wikipedia.org/wiki/Type_safety
http://en.wikipedia.org/wiki/Type_conversion
http://en.wikipedia.org/wiki/Unification_(computing)
http://en.wikipedia.org/wiki/Weak_typing

A. Glossary A.H. Bagge

Tag Index
Abstraction
Abstract syntax tree (p.41) —
Abstract value? (p.41) —
Abstraction? (p.41) — Application
programming interface? (p.42) —
Cross-cutting concern? (p.43) —
Domain-specific language (p.44) —
Generative programming? (p.46) —
Generic programming? (p.47) —
Inheritance (p.47) — Inlining (p.47)

Ambiguity
Ambiguous grammar (p.42) —
Associativity (p.42) — Associativity
rule (p.42) — Dangling else
problem (p.43) — Deterministic
context-free grammar? (p.44) —
Disambiguation rule (p.44) —
Follow restriction (p.46) —
Generalised parser (p.46) — Implicit
disambiguation rule (p.47) — Parse
forest (p.51) — Precede
restriction (p.52) — Priority
rule (p.52) — Reserve rule (p.53) —
Scannerless parsing (p.53)

Compilation
Application binary interface? (p.42)
— Backend (p.43) — Dynamic
dispatch (p.45) — Evaluator (p.45) —
Frontend (p.46) — Inlining (p.47) —
Just-in-time compilation? (p.48) —
Lexical analysis (p.48) — Name
binding (p.50) — Optimisation (p.50)
— Overload resolution (p.51) —
Semantic analysis (p.53) —
Typechecker (p.55)

Languages
Domain-specific language (p.44) —
Dynamic dispatch (p.45) — Dynamic
language (p.45) — Dynamic
scoping (p.45) — Evaluator (p.45) —
Functional programming (p.46) —
Generative programming? (p.46) —
Generic programming? (p.47) —
Higher-order function (p.47) —
Imperative programming (p.47) —
Inheritance (p.47) — Language (p.48)

— Lexical scoping (p.48) — Literate
programming? (p.49) —
Method (p.49) — Multi-paradigm
programming? (p.49) —
Object-oriented programming? (p.50)
— Pattern matching (p.51) —
Polymorphism? (p.51) — Referential
transparency (p.53) — Software
Language (p.54) — Structured
programming? (p.54) — Type
safety (p.55) — Unification? (p.55)

Parsing
Abstract syntax tree (p.41) —
Analytic grammar? (p.42) —
Attribute grammar (p.42) —
Bottom-up parser (p.43) —
Derivation (p.44) — Disambiguation
rule (p.44) — Generalised
parser (p.46) — GLL parser? (p.47) —
GLR parser? (p.47) — Implicit
disambiguation rule (p.47) — Lexical
analysis (p.48) — LL parser (p.49) —
LR parser (p.49) —Massaging? (p.49)
— Parse forest (p.51) — Parse
tree (p.51) — Parser (p.51) — Parser
combinator? (p.51) — Parsing
expression grammar? (p.51) —
Parsing (p.51) — Predictive
parser (p.52) — Priority rule (p.52)
— Recogniser (p.52) — Recursive
descent parser (p.52) — Scannerful
parsing (p.53) — Scannerless
parsing (p.53) — Token (p.55) —
Tokeniser (p.55) — Top-down
parser (p.55) — Yield? (p.55)

Semantics
Abstract value? (p.41) — Algebraic
data type (p.41) — Anonymous
function (p.42) — Closure (p.43) —
Continuation? (p.43) — Dynamic
dispatch (p.45) — Dynamic
scoping (p.45) — Dynamic
semantics (p.45) —
Environment (p.45) —
Evaluator (p.45) — Formation
rule (p.46) — Function (p.46) —
Function type (p.46) — Function
value (p.46) — Lexical scoping (p.48)

56

INF225 Notes A.2. Tag Index

—Method (p.49) — Name
binding (p.50) — Namespace (p.50)
— Overloading (p.50) — Overload
resolution (p.51) — Referential
transparency (p.53) — Scope (p.53)
— Semantic analysis (p.53) — Static
semantics (p.54) —
Typechecker (p.55)

Syntax
Abstract syntax tree (p.41) —
Ambiguous grammar (p.42) —
Analytic grammar? (p.42) —
Associativity (p.42) — Associativity
rule (p.42) — Attribute
grammar (p.42) — Backus-Naur
form (p.43) — Chomsky normal
form? (p.43) — Context-free
grammar (p.43) — Dangling else
problem (p.43) — Definite clause
grammar? (p.44) —
Desugaring (p.44) — Deterministic
context-free grammar? (p.44) —
Disambiguation rule (p.44) —
Epsilon (p.45) — Extended
Backus-Naur form? (p.46) — Follow
restriction (p.46) — Formation
rule (p.46) — Generative
grammar? (p.46) — Grammar (p.47)
— Grammar in a broad sense? (p.47)
— Implicit disambiguation
rule (p.47) — Island grammar? (p.48)
— Kleene closure (p.48) — Left
factoring? (p.48) — Left
recursion? (p.48) — Lexeme (p.48) —
Lexical syntax (p.48) — Literate
programming? (p.49) — LL
grammar (p.49) — LR
grammar (p.49) — Massaging? (p.49)
— Nonterminal footprint? (p.50) —
Nonterminal symbol (p.50) — Parse

forest (p.51) — Parse tree (p.51) —
Parsing expression grammar? (p.51)
— Precede restriction (p.52) —
Priority rule (p.52) — Production
rule (p.52) — Regular
expression (p.53) — Regular
grammar (p.53) — Reserve
rule (p.53) — Scannerless
parsing (p.53) — Start symbol (p.54)
— Syntactic sugar (p.54) — Terminal
symbol (p.54)

Transformation
Desugaring (p.44) — Generative
programming? (p.46) —
Inlining (p.47) — Massaging? (p.49)
— Optimisation (p.50) — Pattern
matching (p.51) — Program
slicing (p.52) — Yield? (p.55)

Types
Abstract data type? (p.41) —
Algebraic data type (p.41) —
Composite data type (p.43) — Duck
typing (p.44) — Dynamic
typing (p.45) — Field (p.46) —
Function type (p.46) —
Member (p.49) — Named
tuple (p.50) — Nominative type
equivalence? (p.50) —
Polymorphism? (p.51) — Record,
Record type (p.52) — Recursive data
type? (p.52) — Static
semantics (p.54) — Static
typing (p.54) — Strong typing (p.54)
— Structural type equivalence? (p.54)
— Structure, Structure type (p.54) —
Typechecker (p.55) — Type
inference (p.55) — Type safety (p.55)
— Typecasting? (p.55) —Weak
typing (p.55)

57

Appendix B

Overview of the Course, Fall 2013

What is a language?

A language is a form of communication, with structure (syntax) and meaning
(semantics).

For our purposes:

• A formal, human-made language

• Has a grammar

• Can be parsed

• Can be processed by a computer

Formal language definition

• It’s described by a grammar: a tuple

– Non-terminals – kinds of phrases
– Terminals – tokens, words
– Start symbol
– Productions – depending on kind of grammar, for example
– Context-free N := (N|T)*
– Regular: N := T N or N := N T

• It’s all the strings over the terminals which are valid according to the
grammar

Syntax

Languages and Grammars

Discussed in: Lession 1, Lession 2, Exercise 1

• Context-free and regular grammars – used in defining the syntax of for-
mal languages

59

https://bitbucket.org/anyahelene/inf225public/wiki/Introduction
https://bitbucket.org/anyahelene/inf225public/wiki/Syntax,%20Grammars%20and%20Trees
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%201

B. Overview of the Course, Fall 2013 A.H. Bagge

• Grammars describe the concrete syntax of a language

• Parsing determines if a text is legal with respect to the grammar and
builds a tree/structure for further processing

• Context-free grammars are typically written in (some variant of) BNF –
Backus-Naur Form; regular grammars are typically written as regular
expressions.

Classes of languages

• Regular – can be parsed by a finite-state machine; extremely efficient

– Can’t specify that things should be nested. E.g., count parentheses
– this would require a stack.

• Context-Free – can be parsed by a push-down automaton (FSM+a stack);
very efficient

– Can’t specify that something should be declared before use (incl.
type checking), or support user-define delimiters (e.g., as in MIME
multipart email messages).

– Solution: do it anyway, and check after parsing.

• Context-Sensitive – Linear-bounded non-deterministic Turing machine;
complicated

• Recursively enumerable – turing machine; very complicated

Context-Free Languages

• Used in programming languages –most programming langsmore or less
context-free

– C++ is slighty outside
– Many languages are in subclass LALR
– Grammars in standards often don’t correspond to those in the im-
plementations, and might be internally inconsistent

– In practice, parsers for CFGs in realistic languages are often hand-
implemented. This is due to the need for good error reporting.

• A context-free language has a context-free grammar. In practice, the lan-
guage is context-sensitive, but this is dealt with after syntax processing.

• The syntax of a CFG defines the structure; says nothing about the seman-
tics.

Regular Languages

• Can’t defined languages with nested constructs.

60

https://bitbucket.org/anyahelene/inf225public/wiki/http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://bitbucket.org/anyahelene/inf225public/wiki/http://en.wikipedia.org/wiki/Regular_expression
https://bitbucket.org/anyahelene/inf225public/wiki/http://en.wikipedia.org/wiki/Regular_expression
https://bitbucket.org/anyahelene/inf225public/wiki/http://en.wikipedia.org/wiki/Finite-state_machine
https://bitbucket.org/anyahelene/inf225public/wiki/http://en.wikipedia.org/wiki/Push-down_automaton

INF225 Notes B.2. Syntax

Parsing

Discussed in: Exercise 1

• Scanner/lexer – for regular grammars. Can be implemented using a
finite-state machine (FSM)

• Parser – for context-free grammars. Can be implemented using a push-
down automaton (PDA – an FSM with a stack)

• Scannerless parsing – used in Rascal and SDF2/SGLR. Useful in lan-
guage composition and language extension, and for some language like
Markdown, TeX, various Wikis etc.

• Parser generators – create an executable parser automatically fromagram-
mar

• Generalised parsers – ([GLR][], GLL) can parse any context-free gram-
mar. Rascal, SDF2/SGLR and Bison are systems with generalised pars-
ing support. Useful in language composition and language extension.

• Classical parsers ([LALR][], [LL][]) can only parse a subset of context-free
grammars – and combining or extending grammars may require exten-
sive rewrites. Some example systems are Yacc and Bison (both LALR)
and ANTLR (LL(k) / LL(*)).

Parse Trees

Discussed in: Lession 2

• A structured representation of a text, with respect to a grammar (and the
parsing process)

• Contains details of the concrete syntax

Abstract Syntax Trees

• A structured representation of a program, without

– details related to concrete syntax (which is needed to unambigu-
ously encode the program as text),

– details related to the parsing scheme or the parsing process.

• May be derived from the grammar (concrete syntax);

• Or, may be designed as a program representation unrelated to the con-
crete syntax.

61

https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%201
https://bitbucket.org/anyahelene/inf225public/wiki/https://en.wikipedia.org/wiki/Finite-state_machine
https://bitbucket.org/anyahelene/inf225public/wiki/https://en.wikipedia.org/wiki/Push-down_automaton
https://bitbucket.org/anyahelene/inf225public/wiki/https://en.wikipedia.org/wiki/Push-down_automaton
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.rascal-mpl.org/
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.syntax-definition.org/
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.rascal-mpl.org/
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.syntax-definition.org/
https://bitbucket.org/anyahelene/inf225public/wiki/https://www.gnu.org/software/bison/
https://bitbucket.org/anyahelene/inf225public/wiki/https://en.wikipedia.org/wiki/Yacc
https://bitbucket.org/anyahelene/inf225public/wiki/https://www.gnu.org/software/bison/
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.antlr.org/
https://bitbucket.org/anyahelene/inf225public/wiki/Syntax,%20Grammars%20and%20Trees

B. Overview of the Course, Fall 2013 A.H. Bagge

Generalised parsing

• Parses the entire class of context-free grammars

• Produces a parse forest

• Can be used for context-sensitive languages:

– Make a context-free grammar with ambiguities
– Resolve ambiguities later

• Reasons why you’d use it:

– Grammars can be a lot nicer, useful in a standard or a textbook
– You can combine different languages, for example in ameta-programming
system

– Tradeoffs: can be slower (n3), parse forest generation can take time
– Grammars are prettier, might be easier towrite and easier tomodify
– Non-generalised grammarsmight need a lot of changes to do a small
modification

– CFG are closed under composition. If A, B are CFGs, then A + B is
a CFG. Not true for restricted classes like LALR.

– But: parse results may be ambiguous, which is normally undesir-
able. Might be hard to debug

Ambiguities

Discussed in: Exercise 2

• An ambiguous grammar has more than one valid parse tree for a valid
input. For example, a + b + c – should this be (a + b) + c or a + (b
+ c)?

• If a grammar is ambiguous, generalised parsing produces a parse forest
instead of a tree – all the possible trees that can be obtained.

• Simpler parsing schemes typically don’t allow ambiguous grammars.

• The union of two unambiguous grammars can be an ambiguous one.

• Ambiguous grammars are difficult to detect statically (undecidable in
general).

• In Rascal and with SDF2/SGLR, you’ll find amb nodes in the parse tree
if there is an ambiguity.

• Expression ambiguities, like with a + b + c are typically resolved with
operator precedence rules and associativity rules.

• Other cases may be more tricky, such as with the dangling else problem.

62

https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%202
https://bitbucket.org/anyahelene/inf225public/wiki/http://www.syntax-definition.org/
https://bitbucket.org/anyahelene/inf225public/wiki/https://en.wikipedia.org/wiki/Dangling_else

INF225 Notes B.3. Domain-Specific Languages (DSLs)

Precedence / Priorities

Discussed in: Exercise 2

Scanners vs. Scannerless

Discussed in: Lesson 6

Spaces and Layout

Discussed in: Lesson 6, Exercise 2

Domain-Specific Languages (DSLs)

Discussed in: Lesson 5

• What – targeted at and restricted to domain, has a language interface.

• Why– easier programming,more efficient or secure, possibly better error
reports.

• Why not – lots of implementation work, language fragmentation, learn-
ing/training issues, less tooling, troublesome interoperability.

• How – external DSL (separate programming language), internal DSL
(language-like interface as a library).

Semantics

• Syntax gives structure, semantics gives meaning

• Can be specified formally, for example using (big-step) operational se-
mantics. Can also be done informally, e.g., using English text, or via a
reference implementation.

• The nicer, more structured your implementation is, the better it specifies
the semantics.

Types

• Used to validate programs in static semantics

• Used to specify data layout (and for safety checks) in dynamic semantics

• We’ve looked at

– Plain data types; ints, etc.
– Function types
– Structure types (records) – a little bit

• We can have various degrees of strong or weak typing (strong being
usual nowadays), and static anddynamic typing (both are popular nowa-
days).

63

https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%202
https://bitbucket.org/anyahelene/inf225public/wiki/Exercise%202
https://bitbucket.org/anyahelene/inf225public/wiki/Stratify

B. Overview of the Course, Fall 2013 A.H. Bagge

Dynamic semantics

• Dynamic semantics gives the meaning of the program at execution time.

• We’ve specified it using evaluators

• Used to define code generation in a compiler

• Dynamic semantic rules tell you:

– How things are computed
– How environment and store are propagated throughout the com-
putation

Static semantics

Includes:

• Additional constraints on what a legal or meaningful program is

• Rules for which names refer to what; names are linked to declarations –
this is used to work around the context-freeness of the syntax.

. . .

• Semantics “executed” at compile time, using types instead of values.

• Reject meaningless programs

• We’ve dealtwith static semantics in typecheckers; it “evaluates” the static
semantics, gives you yes/no answer to wellformedness / legality, and
possibly a annotated program.

• Only in static(ally typed) languages, not in dynamic languages like Python
or Lisp.

• Important to code generation – used to figure out thememory layout and
size of variables, and how they should be allocated.

Environment and Store

• Environment contains bound variables – variables that correspond to a
declaration

• Variables may be bound to values or locations (if we have a store).

• If every step in the program execution produces a new environment, we
can change the value of variables without having a store. But we’d need
a store to have references.

• Store is an abstraction of the machine memory.

– Store has locations
– Each location contains a value

64

INF225 Notes B.5. Environment and Store

– Each program step may update the store, resulting in a new store
– (In a language with a store) Variables are typically bound to store
locations.

– Get value from store on variable use, put value in store when as-
signing to variable

– This is used for references. When the value of a variable is a location,
you have references in your language.

– In real life: store is heapmemory and stack. Locations are addresses,
either relative to stack pointer, or on the heap (mainmemory). Stack
is used for temporary / local variables. Heap is used in dynamic
memory allocation (e.g., new in C++ and Java, malloc in C).

– You could use an array or amap to implement it. (Arraywouldmost
machine-like)

– Static vs. dynamic scoping – what is the environment used when
evaluating a function?

– Compilers typically implement the enivornment as a symbol table –
either a simple hash table, or amore complex structurewith support
for nested scopes.

• Garbage collection is going through the heap (store) in order to find values
that can’t be accessed anymore (by any available location). Often done
by a mark and sweep algorithm.

• Reasoning about semantics is very difficult if you allow multiple vari-
ables to point to the same location. This is called aliasing. Compilers will
try to do alias analysis in order to do optimisations. This is not a problem
in languages with immutable values (e.g., Haskell), or without aliasing
(e.g., Magnolia).

65

Appendix C

Formal Semantics

This chapter gives a quick introduction to how to do formal semantics, using
the running example from INF225, Fall 2011. The notation is a variant of big-
step structural operational semantics.

A good reference if you want to learn more is Hüttel [1].
This is not officially part of the syllabus, but we have discussed it in the lectures,

so you should know a little bit about it.

Specification of MyLang
– the Simple Version

Syntax of MyLang

1 lexical INT = [0-9]+;
lexical VAR = [a-zA-Z_][a-zA-Z0-9_]*;

3 lexical LAYOUT = [\t-\n \r \];
layout LAYOUTLIST

5 = LAYOUT* !>> [\t-\n \r \];

7 syntax Program = Expr;

9 syntax Expr
= VAR

11 | INT
| "(" Expr ")"

13 | VAR "(" Expr ")"
> left (

15 Expr "*" Expr
| Expr "/" Expr

17)
> left (

19 Expr "+" Expr
| Expr "-" Expr

21)
> "let" VAR "=" Expr "in" Expr

67

C. Formal Semantics A.H. Bagge

23 | "let" VAR "(" VAR ")" "=" Expr "in" Expr
| "if" Expr "then" Expr "else" Expr

25 ;

Operational Semantics of MyLang

Used symbols and variables (possibly with subscripts):

• X : VAR – variables

• I : INT – integers

• E : Expr – expressions

• v : Val – values

• e : Env – environments

• ⇒: Expr, Env→ Val – evaluation

Each inference rule has a conclusion of the form A
e

=⇒ a, meaning “the ex-
pression A evaluates to the value a in the environment e”. The premises, above
the horizontal line, must hold (i.e., be inferable from the other rules) in order
for the conclusion to hold.

See Section 2.3 for a definition of the environment.
Integers The value of a literal integer is the integer’s value:

I
e

=⇒ I (C.1)

Variables The value of a variable is the value of that variable in the environment
(or undefined if the variable is unbound in the environment):

v = lookup(X, e)
X

e
=⇒ v

(C.2)

Parenthesis The value of a parenthesis expression is the value of the expression
between the parenthesis, evaluated in the current environment.

E
e

=⇒ v

(E)
e

=⇒ v
(C.3)

Addition The value of a plus expression is the sum of the values of the operand
expressions evaluated in the current environment.

E1
e

=⇒ v1 E2
e

=⇒ v2

E1 + E2
e

=⇒ v1 + v2
(C.4)

Subtraction The value of a minus expression is the difference of the values of
the operand expressions evaluated in the current environment.

E1
e

=⇒ v1 E2
e

=⇒ v2

E1- E2
e

=⇒ v1 − v2
(C.5)

68

INF225 Notes
C.1. Specification of MyLang

– the Simple Version

Multiplication The value of a multiplication expression is the product of the
values of the operand expressions evaluated in the current environment.

E1
e

=⇒ v1 E2
e

=⇒ v2

E1 * E2
e

=⇒ v1 × v2
(C.6)

Division The value of a division expression is the quotient of the values of the
operand expressions evaluated in the current environment.

E1
e

=⇒ v1 E2
e

=⇒ v2

E1/ E2
e

=⇒ v1

v2

(C.7)

Conditionals The value of a conditional expression on the value of the condition
Ec in the current environment. If the condition is different from 0, the value is
the value of the then-branch in the current environment, otherwise the value
of the else-branch.

Ec
e

=⇒ vc vc 6= 0 Et
e

=⇒ vt

if Ec then Et else Ee
e

=⇒ vt
(C.8)

Ec
e

=⇒ vc vc = 0 Ee
e

=⇒ ve

if Ec then Et else Ee
e

=⇒ ve
(C.9)

Let Bindings The value of a let expression is the value of the sub-expression E2

evaluated in an environment where the variable X is bound to the value of E1

evaluated in the original environment.

E1
e

=⇒ v1 e ′ = add(X, v1, e) E2
e ′

=⇒ v2

let X = E1 in E2
e

=⇒ v2
(C.10)

Function Bindings The value of a function let expression is the value of the sub-
expression E2 evaluated in an environment where the variable X is bound to a
pair of the function’s formal parameter name and the function’s body.1

e ′ = add(Xf, 〈Xp, Ebody〉, e) E2
e ′

=⇒ v2

let Xf (Xp) = Ebody in E2
e

=⇒ v2
(C.11)

Function Application First, the actual argument is evaluated in the current en-
vironment. Then, we look up the function (Xf) in the environment, giving us
the name of its formal parameter (Xp) and the function body (Ebody). Then
we create an environment e ′ where the formal parameter is bound to the ac-
tual argument value, and where the function name is bound as well (to allow
recursion). The result is the function body evaluated in the environment e ′.

Ea
e

=⇒ va 〈Xp, Ebody〉 = lookup(Xf, e)

e ′ = add(Xp, va, add(Xf, 〈Xp, Ebody〉, empty()))

Ebody
e ′

=⇒ v

Xf (Ea)
e

=⇒ v
(C.12)

1We may have to tweak this a bit, depending on the semantics of function calls (C.12).

69

C. Formal Semantics A.H. Bagge

There are several ways to build the environment we’ll use to evaluate the func-
tion body. The one chosen above isn’t particularly good – we can call the func-
tion itself recursively, but we can’t call any other functions, since they’re not
found in the environment (we start from an empty environment). These are
the (main) alternatives:

• e ′ = add(Xp, va, empty()) – in which case only the argument is visible.
We don’t have global variables, but this then would not allow calls to
other functions or recursion either. Surely we want to allow other sur-
rounding lets to define functions and values that we can use.

• e ′ = add(Xp, va, e) – in which case the argument is visible, as are all the
variables and functions at the call site (those contained in the current en-
vironment e). This is dynamic scoping, which is used in some languages.
It may make some sense in our case, since the call site is always nested
within the scope of the definition site.

• e ′ = add(Xp, va, eX) – where eX is the environment at the function def-
inition site. In that case, we’d have to modify the rule for function def-
inition (C.11) to make the definition site environment available. This is
lexical scoping which is the most common case in modern languages. If
local names/variables at the definition site is available, then we have a
closure (this distinction doesn’t makemuch sense in our case, since all the
variables are local).

• We could also create an environment by adding everything from eX to e;
in this case all bound variables at the definition site are lexically scoped,
but all the rest (the free variables) will be dynamically scoped (accessed
through the call site environment).

Things to Think About

• We’re already half way to making functions into values. Perhaps we
should take this all the way, in which case we wouldn’t need a sepa-
rate let for function definition (instead, use something like let f = x
=> x*x in ...; and we could allow any expression in the function call
construct (syntax Expr = Expr "(" Expr ")"). This is normal in func-
tional programming languages – it would also allow us to emulatemulti-
argument functions through amechanismknownas currying (afterHaskell
Curry, American mathematician).

• We’re lacking in comparison operators – we can compare with zero by
using the minus operator, but we need at least a less-than operator as
well if wewant to compare our integers. Also, sincewe only allow single-
argument functions, we can’t define these operatorswithin the language.

• Having just a single type (integers) is very boring...

70

INF225 Notes
C.2. Specification of MyLang

– with Type Checking and Stores

Specification of MyLang
– with Type Checking and Stores

Syntax of MyLang

Quick reference for the grammar:

• “Name:” in front of a production associates a name or constructor with
that production.

• “left”, “right” or “non-assoc” in front of a production (or group of pro-
ductions) makes that production left, right or non-associative.

• “>” is used for operator priority.

• Lower-case names are field names for the parse tree – e.g., with “Expr e1
"+" Expr e2”, the left operand of a tree “t” can be accessed with “t.e1”.

1 lexical INT = [0-9]+;
lexical BOOL = "true" | "false" ;

3 lexical VAR = [a-zA-Z_][a-zA-Z0-9_]*;
lexical TYPE = [a-zA-Z_][a-zA-Z0-9_]*;

5 lexical LAYOUT = [\t-\n \r \];
layout LAYOUTLIST

7 = LAYOUT* !>> [\t-\n \r \];

9 syntax Program = Expr;

11 syntax Expr
= Var: VAR var

13 | Int: INT i
| Bool: BOOL b

15 | Paren: "(" Expr e ")"
| Apply: VAR fun "(" {Expr ","}* args ")"

17 | Not: "!" Expr
> left (

19 Times: Expr e1 "*" Expr e2
| Divide: Expr e1 "/" Expr e2

21)
> left (

23 Plus: Expr e1 "+" Expr e2
| Minus: Expr e1 "-" Expr e2

25)
> non-assoc Less: Expr "\<" Expr

27 > non-assoc Equal: Expr "==" Expr
> left And: Expr "&&" Expr

29 > left Or: Expr "||" Expr
> Let: "let" TYPE typ VAR var "=" Expr e1

31 "in" Expr e2 "end"
| LetFun: "let" TYPE typ VAR fun "(" {Param ","}* params ")"

33 "=" Expr e1 "in" Expr e2 "end"

71

C. Formal Semantics A.H. Bagge

| If: "if" Expr cond "then" Expr e1
35 "else" Expr e2 "end"

> right Assign: VAR var "=" Expr e
37 > left Seq: Expr e1 ";" Expr e2

;
39

syntax Param
41 = TYPE typ VAR var

;

Static Semantics of MyLang

This is the formal specification of theMyLang type checker. Used symbols and
variables (possibly with subscripts):

• X : VAR – variables

• I : INT – integers

• E : Expr – expressions

• T, τ : Type – types

• e : Env – environments

• −→: Expr,Env → Expr,Type – type checking

Types are coloured green, environments are coloured red, and code is coloured
blue.

Each inference rule has a conclusion of the form E
e−→ E′ : τ, meaning “the

expression E type checks to the expression E′ with the type τ in the environ-
ment e”. The premises, above the horizontal line, must hold (i.e., be inferable
from the other rules) in order for the conclusion to hold.

The resulting type checked expression might be slightly different from the
original expression – e.g., it might be annotatedwith type information, or with
a unique name for overloaded operations. We won’t do much changes to the
expressions in this version of the static semantics, except give operator calls
the same form as function calls.

See Section 2.3 for a definition of the environment.
Programs Programs don’t have types, so we can just type check the expression
in an empty environment, and discard the type.

E
empty()−→ E′ : τ

E −→ E′ (C.13)

Integers An integer has the type int:

I
e−→ I : int (C.14)

Booleans Booleans have the type bool:

true
e−→ true : bool (C.15)

false
e−→ false : bool (C.16)

72

INF225 Notes
C.2. Specification of MyLang

– with Type Checking and Stores

Variables The type of a variable is the type of that variable in the environment
(or undefined if the variable is unbound in the environment):

τ = lookup(X, e)
X

e−→ X : τ
(C.17)

Parenthesis The type of a parenthesis expression is the type of the expression
between the parenthesis, checked in the current environment. We can drop
the parentheses in the result.

E
e−→ E′ : τ

(E)
e−→ E′ : τ

(C.18)

Addition, Subtraction,Multiplication, Division Arithmetic operators are only valid
on integers. The result of type checking an operator call is a call to a corre-
sponding function, and the type int:

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 + E2
e−→ plus(E1

′, E2
′) : int

(C.19)

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 � E2
e−→ minus(E1

′, E2
′) : int

(C.20)

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 * E2
e−→ times(E1

′, E2
′) : int

(C.21)

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 / E2
e−→ divide(E1

′, E2
′) : int

(C.22)

Note: If we were to support overloaded operators – for example, addition on strings –
we could make separate inference rules for this, yielding a different form for the type
checked expression:

E1
e−→ E1′ : str E2

e−→ E2′ : str
E1 + E2

e−→ str_append(E1′, E2′) : str (C.23)

Comparison Operators Ordered comparison is only valid on integers. Equality
can also work on bools. The type is always bool.

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 < E2
e−→ lessThan(E1

′, E2
′) : bool

(C.24)

E1
e−→ E1

′ : int E2
e−→ E2

′ : int

E1 == E2
e−→ int_equal(E1

′, E2
′) : bool

(C.25)

E1
e−→ E1

′ : bool E2
e−→ E2

′ : bool

E1 == E2
e−→ bool_equal(E1

′, E2
′) : bool

(C.26)

73

C. Formal Semantics A.H. Bagge

Boolean Operators These are only valid on bool operands, and always return
bool.

E1
e−→ E1

′ : bool E2
e−→ E2

′ : bool

E1 && E2
e−→ and(E1

′, E2
′) : bool

(C.27)

E1
e−→ E1

′ : bool E2
e−→ E2

′ : bool

E1 || E2
e−→ or(E1

′, E2
′) : bool

(C.28)

E
e−→ E′ : bool

!E1
e−→ not(E′) : bool

(C.29)

Let Bindings The type of a let expression is the type of the sub-expression E2

type checked in an environment where the variable X is bound to the type T .
The type of the bound expression E1 must match the declared type T of the
variable X.

E1
e−→ E1

′ : T e′ = add(X,T, e) E2
e′

−→ E2
′ : τ

let T X = E1 in E2 end
e−→ let T X = E1

′ in E2
′ end : τ

(C.30)

Function Bindings The type of a function let expression is the type of the sub-
expression E2 type checked in an environment where the variable X is bound
to a tuple of the function’s formal parameter types and the function’s return
type.

The function’s body Ebody must be type checked as well. Since we allow
recursive functions, the function itself must be defined in the environment we
use for this. Also, we need to add all the formal parameters to the environment
we use when we type check the function body. In the rule below, e ′k (built by
adding the parameters one by one) has both the function definition and all the
parameters. The type of the function body must match the declared return
type of the function.

The body of the let is checked in the environment e′, which has the func-
tion definition, but not the parameters.

e′ = add(Xf, 〈[T0, . . . , Tk], T〉, e)

e ′0 = add(X0, T0, e
′) . . . e ′k = add(Xk, Tk, e

′
k−1)

Ebody
e ′
k−→ Ebody

′ : T E2
e′

−→ E2
′ : τ

let T Xf (T0 X0, ..., Tk Xk) = Ebody in E2 end
e−→ let T Xf (T0 X0, ..., Tk Xk) = Ebody

′ in E2
′ end : τ

(C.31)

Function Application In the case of function application, we must first type
check all the arguments. Then we look up the function (Xf) in the current
environment, getting its formal parameter list and return type. The formal pa-
rameter listmustmatch the actual argument types. The result is a type checked
function call, where the type is the return type of the function.

E0
e−→ E0

′ : τ0 . . . Ek
e−→ Ek

′ : τk
〈[τ0, . . . , τk], τ〉 = lookup(Xf, e)

Xf (E0, ..., Ek)
e−→ Xf (E0

′, ..., Ek
′) : τ

(C.32)

74

INF225 Notes
C.2. Specification of MyLang

– with Type Checking and Stores

Note: In a language with support for overloading, the matching process becomes more
complicated as we may have to chose between multiple overloaded candidates. If the
language supports type conversions, type promotions or generics, the matching be-
comes even more complicated.

Conditionals The type of a conditional expression is the type of the branches.
The condition itself should be of type bool, and the type of the then branch
should be the same as the type of the else branch.

Ec
e−→ Ec

′ : bool Et
e−→ Et

′ : τt Ee
e−→ Ee

′ : τe τt = τe

if Ec then Et else Ee end
e−→ if Ec

′ then Et
′ else Ee

′ end : τt
(C.33)

Assignment In an assignment, the type of the expression must match the type
of the variable – and this is also the return type of the expression.

τ = lookup(X, e) E
e−→ E′ : τ

X = E
e−→ X = E′ : τ

(C.34)

Note: In a language with type conversions or promotions, we would have to loosen
the matching criterion. Instead of the expression type being equal to the variable type,
it would be sufficient that it is assignable to the variable type. For example, an int
may be assignable to a float. For simplicity in later processing, we could insert an
explicit conversion during type checking. Typically the matching criterion for function
arguments is the same as for assignment.

Sequencing Sequencing enforces an evaluation order, so that one expression is
evaluated before another. We must type check both expressions, the return
type is the type of the second expression.

E1
e−→ E1

′ : τ1 E2
e−→ E2

′ : τ2

E1;E2
e−→ E1

′;E2
′ : τ2

(C.35)

Dynamic Semantics of MyLang

Used symbols and variables (possibly with subscripts):

• X, X : VAR – variables

• I, I : INT – integers

• E, E : Expr – expressions

• v : Val – values

• e : Env – environments

• s : Store – stores

• l : Location – a storage location (or address)

• =⇒: Expr, Store,Env → Val, Store – evaluation

75

C. Formal Semantics A.H. Bagge

Stores and locations are coloured teal, and values are coloured magenta.
In the dynamic semantics, each inference rule has a conclusion of the form

〈E, s〉 e
=⇒ 〈v, s′〉, meaning “the expression E evaluates to the value v and the

store s′ in the environment e and the store s”. The premises, above the hori-
zontal line, must hold (i.e., be inferable from the other rules) in order for the
conclusion to hold.

See Section 2.3 for a definition of the environment.

Order of Evaluation

With store semantics, we might end up with the evaluation order affecting the
semantics. For example, in the program

x = 1; y = (x = 2) + x

the value of y will be 3 or 4, depending on the evaluation order of the argu-
ments to +.

For simplicity, we’ll assume that argument lists are evaluated left-to-right,
so the value of y above will be 4.
Note: Specifying the evaluation order may restrict the compiler’s opportunity to make
some optimisations – particularly in terms of evaluating things in parallel. The benefit
is that the code will always mean the same across multiple compilers and platforms
– something which isn’t necessarily true for C code, for example (C has undefined
evaluation order). Bugs related to undefined evaluation order can be hard to find. A
way around the whole problem is to disallow updates in expressions.

Specification

Programs The value of a program, is the value of its expression, evaluated in
an empty environment and store:

〈E, blank()〉 empty()
=⇒ 〈v, s〉

E =⇒ v
(C.36)

Note: Another possibility is to return both the value and the store – but as long as we
start with an empty environment, all variables will have been deleted from the store
before evaluation is complete (otherwise, we have a memory leak).

Built-in operations can be provided by making an initial environment, sometimes
called a prelude. This is also an easy way to provide a standard library.

Command-line arguments can also be provided through the initial environment
and store. We could, for example, provide a count of the arguments in a variable argc
and then a function arg(i) to access the argument values (we don’t have arrays or
lists yet, but we can emulate them using functions).
Integers The value of a literal integer is the integer’s value:

〈I, s〉 e
=⇒ 〈I, s〉 (C.37)

Booleans The value of a literal Boolean is the booleans value:

〈true, s〉 e
=⇒ 〈true, s〉 (C.38)

〈false, s〉 e
=⇒ 〈false, s〉 (C.39)

76

INF225 Notes
C.2. Specification of MyLang

– with Type Checking and Stores

Variables The value of a variable is the value of the storage location of that
variable in the environment (or undefined if the variable is unbound in the
environment):

l = lookup(X, e)
〈X, s〉 e

=⇒ 〈s[l], s〉 (C.40)

The store is unchanged.

Parenthesis The value of a parenthesis expression is the value of the expression
between the parenthesis, evaluated in the current environment.

〈E, s〉 e
=⇒ 〈v, s′〉

〈(E), s〉 e
=⇒ 〈v, s′〉 (C.41)

Arithmetic and Comparison Operators Operators may be handled either by built-
in functions (in which case, see (C.50)), or they may be defined directly in the
specification. For example, for the plus operator:

〈E1, s〉
e

=⇒ 〈v1, s′〉 〈E2, s′〉
e

=⇒ 〈v2, s′′〉
〈plus(E1, E2), s〉

e
=⇒ 〈v1 + v2, s′′〉 (C.42)

Boolean Operators These are only valid on bool operands, and always return a
bool.

〈E1, s〉
e

=⇒ 〈v1, s′〉 〈E2, s′〉
e

=⇒ 〈v2, s′′〉
〈and(E1, E2), s〉

e
=⇒ 〈v1 ∧ v2, s′′〉 (C.43)

〈E1, s〉
e

=⇒ 〈v1, s′〉 〈E2, s′〉
e

=⇒ 〈v2, s′′〉
〈or(E1, E2), s〉

e
=⇒ 〈v1 ∨ v2, s′′〉 (C.44)

〈E, s〉 e
=⇒ 〈v, s′〉

〈not(E), s〉 e
=⇒ 〈¬v, s′〉 (C.45)

Note: There’s one sticky pointwith the Boolean operators –many languages (including
C, Java andML) have short-circuiting Boolean operators. This means that evaluation
stops as soon as the result is known. For example, false && E is always false, so there
is no need to evaluate E. This can be just an optimisation – or it can be required by the
language definition. In the latter case, the and and or operators are more like a form
of if expressions, and we can handle them this way in the semantics:

〈and(E1, E2), s〉
e

=⇒ 〈if E1 then E2 else false end, s〉 (C.46)

〈or(E1, E2), s〉
e

=⇒ 〈if E1 then true else E2 end, s〉 (C.47)

77

C. Formal Semantics A.H. Bagge

Let Bindings The let operation becomes a whole lot trickier when we have to
deal with storage. First, we need get a new storage location l for the variable X.
The location / sizemay depend on the variable type, so add this as a parameter
to the new store operation.

We get the value of the new variable by evaluating E1 (this may of course
also result in anupdated store). The final value of the let expression is then the
value of the sub-expression E2 evaluated in an environmentwhere the variable
X is bound to the new storage location l and a store where the location l is set
to the value of E1.

The resulting store is the output store of the evaluation, with the new vari-
able location deleted – variables disappear when they go out of scope.

〈E1, s〉
e

=⇒ 〈v1, s′〉 〈l, s′′〉 = new(T, v1, s′)
e′ = add(X, l, e) 〈E2, s′′〉

e′

=⇒ 〈v2, s′′′〉
〈let T X = E1 in E2 end, s〉 e

=⇒ 〈v2,del(l, s′′′)〉 (C.48)

Function Bindings The value of a function let expression is the value of the
sub-expression E2 evaluated in an environment where the variable X is bound
to a triple of the function’s formal parameter list, the function’s body, and the
definition environment. The definition environment is needed to support lex-
ical scoping.

e′ = add(Xf, 〈[T0 X0, . . . , Tk Xk], Ebody, e〉, e) 〈E2, s〉
e′

=⇒ 〈v2, s′〉
〈let T Xf (T0 X0, ..., Tk Xk) = Ebody in E2 end, s〉 e

=⇒ 〈v2, s′〉
(C.49)

Note: If the definition environment is not made available at the call site, we have to use
dynamic scoping – variables in the function body refer to variables in the calling envi-
ronment. Alternatively, we could pre-evaluate the function body and replace variable
references with storage locations, in which case we would not longer need to pass along
the environment. In our solution, the environment contains the mapping of variables
to locations, so we’ll need that at the call site.

Note: Above, we’ve made functions into a special kind of entity which is not assigned
a location in the store. This makes the inference rule slightly simpler. But we could
allow functions to be stored just as variables are – in that case, functions would be first-
class values in the language; they can be assigned, returned and passed as parameters.
Depending on your implementation of the first version ofMyLang, functions may have
been first-class values there.

In the semantics above, we need the environment to map names to storage locations
or functions. It may be somewhat cleaner to always map to a storage location, so that
functions are stored just the same way as values. Python, for instance, works this way
– and you can actually update an object’s methods as your program is running. The
negative effect of this is that some optimisations are harder – for example, you’d only be
able to do inlining of functions that are known constants at compile time (C and C++
struggle with inlining function pointers).

Function Application Function application is somewhat complicated, now that
we have to deal with both multiple arguments and variable storage. These are
the steps involved:

78

INF225 Notes
C.2. Specification of MyLang

– with Type Checking and Stores

• Evaluate each argument in turn, yielding a value and an updated store.
The next argument is evaluated in the store of the previous evaluation –
this enforces left-to-right evaluation.

• Allocate new storage locations for all the arguments. This corresponds to
building a stack frame in a compiler, and is consistent with call-by-value
semantics – changing the value of an argument only has an effect inside
the function itself.

• Look up the function name, and get the parameter list (with types and
parameter names), the body, and the definition environment.

• Start with the definition environment, and add each parameter to the
environment, bound to the storage location of the corresponding argu-
ment.

• Add the function definition to the environment (for recursive calls).

• Evaluate the function body in the environment, and the store containing
all the evaluated arguments.

• Evaluating the body yields a new store. Because the function body may
have assigned to variables in outer scopes, we need to keep those changes
to the store – but we also need to get rid of all the arguments we added to
the store. In a compiler implementation, we can get this effect simply by
adjusting / unwinding the stack pointer. Here, we explicitly delete each
of the argument locations.

〈E0, s〉
e

=⇒ 〈v0, s0〉 . . . 〈Ek, sk−1〉
e

=⇒ 〈vk, sk〉
〈l0, s ′0〉 = new(T0, v0, s0) . . . 〈lk, s ′k〉 = new(Tk, vk, sk)

〈[T0X0, . . . , TkXk], Ebody, ef〉 = lookup(Xf, e)

e ′0 = add(X0, l0, ef) . . . e
′
k = add(Xk, lk, e

′
k−1)

e′ = add(Xf, 〈[T0X0, . . . , T0Xk], Ebody, ef〉, e ′k)

〈Ebody, sk〉
e′

=⇒ 〈v, s ′〉
〈Xf (E0, ..., Ek), s〉

e
=⇒ 〈v, del([l0, . . . , lk], s ′)〉 (C.50)

Note: Bonus points to the one who finds the bug(s) in the above definition.
Conditionals The value of a conditional expression depends on the value of the
condition Ec in the current environment. If the condition is true then the value
is the value of the then-branch in the current environment, otherwise the value
of the else-branch.

〈Ec, s〉
e

=⇒ 〈true, s′〉 〈Et, s′〉
e

=⇒ 〈vt, s′′〉
〈if Ec then Et else Ee end, s〉 e

=⇒ 〈vt, s′′〉 (C.51)

〈Ec, s〉
e

=⇒ 〈false, s′〉 〈Ee, s′〉
e

=⇒ 〈ve, s′′〉
〈if Ec then Et else Ee end, s〉 e

=⇒ 〈ve, s′′〉 (C.52)

79

C. Formal Semantics A.H. Bagge

Note: In an implementation, it is important not to evaluate the other branch of the
if-statement, since that could have undesirable effects on the store. Without a store,
this effect isn’t noticeable – except in cases where the computation may not terminate
(for example, in a recursive function). Some functional languages evaluate on demand
(lazy evaluation), which is another way of avoiding the non-termination problem.
Assignment Assignment is (fortunately) straight-forward. We evaluate the ex-
pression, getting a value v and a new store s′. We then lookup the variable to
get its storage location l, and the result is the value v and the store s′ updated
with l = v.

〈E, s〉 e
=⇒ 〈v, s′〉 l = lookup(X, e)
〈X = E, s〉 e

=⇒ 〈v, s ′[l = v]〉 (C.53)

Sequencing We evaluate both expressions, the output store of the left expres-
sion is the input of the right expression. The value is the value of the right
expression.

〈E1, s〉
e

=⇒ 〈v1, s ′〉 〈E2, s ′〉
e

=⇒ 〈v2, s ′′〉
〈E1;E2, s〉

e
=⇒ 〈v2, s ′′〉 (C.54)

80

Bibliography

[1] Hans Hüttel. Transitions and Trees: An Introduction to Structural Operational
Semantics. Cambridge University Press, Cambridge, UK, June 2010. ISBN
978-0521147095.

81

	Contents
	Introduction
	Software Language Engineering
	Languages
	Engineering
	What's SLE really about?
	Typical SLE Activities
	Things to learn (maybe) in this course
	Futher reading

	Concrete Syntax
	Grammars
	Concrete and Abstract Syntax
	Concrete Syntax
	Abstract Syntax

	Parsing
	Pretty Printing
	Editing

	Evaluators & Dynamic Semantics
	Dynamic and Static Semantics
	The Simpl-Exp Expression Language
	Evaluating Trivial Expressions
	The Trivial Evaluator
	Variables and Environments

	Environmental Concerns
	Environment Interface
	Semantics of the Environment
	Namespaces

	Functions
	Functions in the Evaluator

	Scoping
	Scope Terminology
	Dynamic Scoping
	Lexical Scoping

	Imperative Languages
	Store and References

	Advanced Scoping
	Closures
	Nested Scopes

	Typecheckers & Static Semantics
	Static versus Dynamic Typing
	Simple Typechecking
	Functions
	Design Issues

	More examples

	Glossary
	Term Definitions
	Abstract data type
	Abstract syntax tree
	Abstract value
	Abstraction
	Algebraic data type
	Ambiguous grammar
	Analytic grammar
	Anonymous function
	Application binary interface
	Application programming interface
	Associativity
	Associativity rule
	Attribute grammar
	Backend
	Backus-Naur form
	Bottom-up parser
	Chomsky normal form
	Closure
	Composite data type
	Context-free grammar
	Continuation
	Cross-cutting concern
	Dangling else problem
	Declarative programming
	Definite clause grammar
	Derivation
	Desugaring
	Deterministic context-free grammar
	Disambiguation rule
	Domain-specific language
	Duck typing
	Dynamic dispatch
	Dynamic language
	Dynamic scoping
	Dynamic semantics
	Dynamic typing
	Environment
	Epsilon
	Evaluator
	Extended Backus-Naur form
	Field
	Follow restriction
	Formation rule
	Frontend
	Function
	Function type
	Function value
	Functional programming
	Generalised parser
	Generative grammar
	Generative programming
	Generic programming
	GLL parser
	GLR parser
	Grammar
	Grammar in a broad sense
	Higher-order function
	Imperative programming
	Implicit disambiguation rule
	Inheritance
	Inlining
	Island grammar
	Just-in-time compilation
	Kleene closure
	Language
	Left factoring
	Left recursion
	Lexeme
	Lexical analysis
	Lexical scoping
	Lexical syntax
	Literate programming
	LL parser
	LL grammar
	Logic programming
	LR parser
	LR grammar
	Massaging
	Megamodel
	Member
	Method
	Mixin
	Multi-paradigm programming
	Name binding
	Named tuple
	Namespace
	Nominative type equivalence
	Nonterminal footprint
	Nonterminal symbol
	Object-oriented programming
	Optimisation
	Overloading
	Overload resolution
	Parse forest
	Parse tree
	Parser
	Parser combinator
	Parsing expression grammar
	Parsing
	Pattern matching
	Polymorphism
	Precede restriction
	Predictive parser
	Priority rule
	Procedural programming
	Production rule
	Program slicing
	Recogniser
	Record, Record type
	Recursive data type
	Recursive descent parser
	Referential transparency
	Regular expression
	Regular grammar
	Reserve rule
	Scannerful parsing
	Scannerless parsing
	Scope
	Semantic analysis
	Software Language
	Start symbol
	Static semantics
	Static typing
	Strong typing
	Structural type equivalence
	Structure, Structure type
	Structured programming
	Syntactic sugar
	Terminal symbol
	Token
	Tokeniser
	Top-down parser
	Typechecker
	Type inference
	Type safety
	Typecasting
	Unification
	Weak typing
	Yield
	Tag Index
	Abstraction
	Ambiguity
	Compilation
	Languages
	Parsing
	Semantics
	Syntax
	Transformation
	Types

	Overview of the Course, Fall 2013
	What is a language?
	Formal language definition

	Syntax
	Languages and Grammars
	Classes of languages
	Parsing
	Parse Trees
	Abstract Syntax Trees
	Generalised parsing
	Ambiguities
	Precedence / Priorities
	Scanners vs. Scannerless
	Spaces and Layout

	Domain-Specific Languages (DSLs)
	Semantics
	Types
	Dynamic semantics
	Static semantics

	Environment and Store

	Formal Semantics
	Specification of MyLang – the Simple Version
	Syntax of MyLang
	Operational Semantics of MyLang
	Things to Think About

	Specification of MyLang– with Type Checking and Stores
	Syntax of MyLang
	Static Semantics of MyLang
	Dynamic Semantics of MyLang

	Bibliography

