
TuCSoN4JADE quick guide
In this quick guide, you will learn how to get TuCSoN4JADE (t4j for short), build it and run a first
example showcasing its features. You will also learn the main API available to JADE developers and
how to use them in your code, for your JADE agents, as well as a bit of "behind the scenes" on how
t4j works.

Assumptions are you are familiar with Java (compilation), JADE (usage), Git (cloning repositories),
optionally, ANT (buildfiles), JADE and TuCSoN.

Prior to reading this how-to is highly recommended to read the reference paper on integrating
TuCSoN and JADE:

Mariani, S., Omicini, A., Sangiorgi, L.: "Models of Autonomy and Coordination: Integrating
Subjective & Objective Approaches in Agent Development Frameworks". Published in 8th
International Symposium on Intelligent Distributed Computing (IDC 2014), 3-5 September
2014

available from here.

1. Getting Started with t4j

1.1 Downloading

1.2 Compiling

1.3 Deploying

1.4 Running

2. Using t4j

2.1 API Overview

2.2 "Hands-on" step-by-step tour

3. Contact Information

1. Getting Started with t4j

1.1 Downloading

If you want the ready-to-use distribution of t4j, download t4j.jar archive from the "Downloads"
section, here > http://bitbucket.org/smariani/tucson4jade/downloads.

If you want the source code of t4j, clone the t4j Git repository hosted here on Bitbucket, at >
http://smariani@bitbucket.org/smariani/tucson4jade.git (e.g., from a command prompt type $> git
clone https://smariani@bitbucket.org/smariani/tucson4jade.git) [1].

In the former case, skip to the "Running" section below. In the latter case, keep reading.

http://jade.tilab.com/
http://tucson.unibo.it/
http://apice.unibo.it/xwiki/bin/view/Publications/ObjsubjIdcVIII
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#getting
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#downloading
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#compiling
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#deploying
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#running
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#using
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#api
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#hands-on
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#contact
http://bitbucket.org/smariani/tucson4jade/downloads
http://git-scm.com/
http://smariani@bitbucket.org/smariani/tucson4jade.git
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#1
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#running

1.2 Compiling

By cloning t4j you have downloaded a folder named tucson4jade/ , with the following directory
structure:

tucson4jade/
|__...
|__t4j/
 |__...
 |__ant-scripts/
 |__build.xml
 |__environment.properties
 |__eclipse-config/
 |__how-to/
 |__license-info/
 |__src/

t4j depends on 3 other Java libraries to function properly [2]:

JADE, downloadable from JADE "Download" page, here >
http://jade.tilab.com/download/jade/ (jade.jar)
TuCSoN, downloadable from TuCSoN "Downloads" section, here >
http://bitbucket.org/smariani/tucson/downloads (tucson.jar)
tuProlog, downloadable from tuProlog "Download" page, here >
http://apice.unibo.it/xwiki/bin/view/Tuprolog/Download (2p.jar)

Once you got the above libraries, you are ready to compile t4j source code.

The easiest way to do so is by exploiting the ANT script named build.xml within folder ant-
scripts/ , which takes care of the whole building process for you, from compilation to deployment
(covered in next section). To do so, you need to have ANT installed on your machine [3]. If you don't
want to use ANT, build t4j jar archive using the tools you prefer, then skip to the "Running" section
below.

To compile t4j using ANT:

1. Edit the environment.properties file according to your system configuration:

1.1 Tell ANT where your JDK and your java tool are

1.2 Tell ANT which libraries are needed to compile t4j (those you just downloaded, that is
JADE, TuCSoN and tuProlog)

1.3 Tell ANT where you put such libraries (e.g. if you put them into t4j/libs/ you are
already set)

[1.4 Tell ANT your Bitbucket username (for automatic syncing with t4j repository, not
supported at the moment)]

2. Launch the ANT script using target compile (e.g., from a command prompt position yourself
into the ant-scripts/ folder then type $> ant compile) [4]. This will create folder
classes/ within folder t4j/ and therein store Java .class files.

Other ANT targets are available through the build.xml file: to learn which, launch the ANT script

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#2
http://jade.tilab.com/download/jade/
http://bitbucket.org/smariani/tucson/downloads
http://apice.unibo.it/xwiki/bin/view/Tuprolog/Download
http://ant.apache.org/
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#3
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#running
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#4

using target help .

1.3 Deploying

Deploying t4j is as simple as giving a different build target to the ANT script build.xml :

if you only want the t4j jar archive, ready to be included in your JADE project, launch the
script using target lib . This will compile t4j source code into binaries (put into
t4j/classes/ folder) then package them to t4j.jar into t4j/lib/ folder [5].

if you want a ready-to-release distribution of t4j, including also documentation and support
libraries, launch the script using target dist . This will:

compile t4j source code into binaries, put into t4j/classes/ folder
package them to t4j.jar, put into t4j/lib/ folder
generate Javadoc information, put into t4j/doc/ folder
create folder jade/add-ons/TuCSoN4JADE-${version} including:

folder docs/ including the generated Javadoc information as well as this "how-
to"
folder libs/ including JADE, TuCSoN and tuProlog libraries used to build t4j
folder rel/ including t4j jar archives

The complete directory structure obtained by launching ant dist build process should look like the
following (assuming you put JADE, TuCSoN and tuProlog libraries in folder t4j/libs/):

tucson4jade/
|__...
|__t4j/
 |__...
 |__ant-scripts/
 |__build.xml
 |__environment.properties
 |__classes/
 |__doc/
 |__eclipse-config/
 |__how-to/
 |__jade/
 |__add-ons/
 |__TuCSoN4JADE-${version}/
 |__docs/
 |__how-to/
 |__javadoc/
 |__libs/
 |__rel/
 |__...
 |__lib/
 |__libs/
 |__license-info/
 |__src/

Other ANT targets are available through the build.xml file: to learn which, launch the ANT script

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#5

using target help .

1.4 Running

To run t4j, you need:

t4j jar, t4j.jar
JADE jar, jade.jar
TuCSoN jar, tucson.jar
tuProlog jar, 2p.jar

Supposing you built t4j using the provided ANT script [6] and that you are comfortable with using a
command prompt to launch Java applications [7]:

1. open a command prompt and position yourself into either t4j/lib/ or t4j/jade/add-
ons/TuCSoN4JADE-${version}/rel/ folder

2. launch the JADE platform specifying you want to exploit TuCSoN services provided by t4j,
e.g. as follows [8]:

 java -cp t4j.jar:../libs/tucson.jar:../libs/2p.jar:../libs/jade.jar jade.Boot
-gui -services it.unibo.tucson.jade.service.TucsonService

JADE GUI should appear as well as the t4j ASCII logo on the command prompt, as depicted below.

As long as no JADE agents start exploiting TuCSoN coordination services wrapped by t4j, nothing
happens. Thus, here follows instructions on how to launch the example application shipped within
t4j.jar, showcasing its features: the "Book Trading" MAS (package
it.unibo.tucson.jade.examples.bookTrading).

Supposing you successfully launched the JADE platform as described above, to launch the "Book
Trading" example:

1. operate on JADE gui to launch one "seller agent"
(it.unibo.tucson.jade.examples.bookTrading.BookSellerAgent), whose name should
adhere to TuCSoN agents naming rules (roughly, lowercase letters [9])

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#6
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#7
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#8
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#9

2. operate on JADE gui to launch at least one "buyer agent"
(it.unibo.tucson.jade.examples.bookTrading.BookBuyerAgent), whose name should
adhere to TuCSoN agents naming rules

You should see many prints on the command prompt, tracking what happens in the MAS [10].

NB: To showcase TuCSoN4JADE features, the example is designed to start & stop a default TuCSoN
node (from the seller agent), thus:

launching more seller agents will likely raise exceptions
starting a buyer agent first will likely raise exceptions
shutting the seller agent prior to the buyer agent will likely raise exceptions

If you want to try a setting with more sellers, comment out node starting/stopping code in seller
agent's source code and start the TuCSoN node separately [11].

2. Using t4j

2.1 API Overview

The first step in integrating TuCSoN and JADE has been implementing TuCSoN as a JADE service.

This means JADE BaseService class has been extended with the TucsonService class,
representing TuCSoN service entry point. This class has to be used to get an helper class,
extending JADE ServiceHelper interface, working as the actual mediator between clients and the
TuCSoN service: in t4j, the helper role is played by the TucsonHelper interface---whose
implementation class is hidden to clients. Its methods are quite self-explanatory if you know TuCSoN
terminology, and are listed in the picture below.

The only "unusual" method is getBridgeToTucson() : BridgeToTucson is the class which
TucsonHelper delegates TuCSoN coordination operations invocation to.

BridgeToTucson exposes the following API:

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#10
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#11

synchronousInvocation() — lets clients synchronously invoke TuCSoN coordination
operations
asynchronousInvocation() — lets clients asynchronously invoke TuCSoN coordination
operations

Synchronous Invocation. Given a coordination operation to perform (AbstractTucsonAction
subtypes, see t4j Javadoc), a maximum waiting time to be possibly suspended for (timeout), and a
reference to the caller Jade behaviour, the chosen coordination operation is requested to the active
TuCSoN service synchronously w.r.t. the caller behaviour. This means the caller behaviour only is
(possibly) suspended and automatically resumed by t4j as soon as the requested operation
completes—returning the completion event reified by TucsonOpCompletionEvent object.

Such mechanism encourages JADE programmers using t4j to adopt the same programming style
suggested by the JADE Programmers Guide (available here) regarding message reception:

1. the communication method – synchronousInvocation() in t4j, receive() in JADE – is
first called

2. the result is checked, and (i) handled, if available, (ii) otherwise method block() is called

@Override
public void action () {
 // field 'mt' stores the ACL message template
 final ACLMessage msg = myAgent.receive(mt);
 if (msg != null) { // message received: process it
 ...
 } else { // message not received yet: wait
 block();
 }
}

@Override
public void action () {
 // field 'tuple' stores the TuCSoN tuple template
 final Rd op = new Rd(tcid, tuple);
 final TucsonOpCompletionEvent
 res = bridge.synchronousInvocation(op, Long.MAX_VALUE, this);
 if (res != null) { // tuple found: process it
 ...
 } else { // tuple not found yet: wait
 block();
 }
}

This allows JADE runtime – through the behaviours scheduler – to keep on scheduling others
behaviours belonging to the caller agent while the invoking behaviour remains suspended (within
JADE "waiting queue").

Asynchronous Invocation: "Interrupt Mode". Lets clients asynchronously invoke TuCSoN
coordination operations, handling results "by interrupt".

In particular, when the requested operation completes, the JADE behaviour given as actual
parameter is activated to handle the operation result-that is, put in the ready queue, ready to be

http://jade.tilab.com/doc/programmersguide.pdf

scheduled.

The "result-handling" behaviour written by JADE programmers should implement t4j
IAsynchCompletionBehaviour interface: the setTucsonOpCompletionEvent() method is the
"hook" for t4j to share completion events between the caller and the "result handler" behaviour,
transparently to JADE programmers.

Asynchronous Invocation: "Polling Mode". Lets clients asynchronously invoke TuCSoN
coordination operations, handling results "by polling".

In particular, the caller agent gets a data structure (AsynchTucsonOpResult , depicted below)
representing the operation result, which it may query to check completion and (eventually) retrieve
the actual result.

In both cases, regardless of whether the coordination operation suspends or not, the agent
does not, thus the caller behaviour keeps on executing.

As a last note, the type hierarchy representing TuCSoN coordination operations is in package
it.unibo.tucson.sd.jade.operations as depicted in figure below.

2.1 "Hands-on" step-by-step tour

NB: What follows is based on the "Book Trading" example scenario shipped within t4j distribution
(see t4j "Getting Started", here).

If you want to work with t4j, remember to instruct the JADE platform to boot the TuCSoN
service, as explained in t4j "Getting Started", here.

Regardless of how you are willing to exploit TuCSoN services, you need to:

1. get the service helper class from TuCSoN service instance

 ITucsonHelper helper = (TucsonHelper) this.getHelper(TucsonService.NAME);

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md

2. [OPTIONAL] [12] start the TuCSoN node you wish to operate on

 if (!this.helper.isActive(20504)) {
 this.helper.startTucsonNode(20504);
 }

3. get an ACC (which is actually associated to the BridgeToTucson object you'll get from the
helper in step 4)

 this.helper.acquireACC(this);

4. get the bridge object through which all your TuCSoN operations will go

 BridgeToTucson bridge = this.helper.getBridgeToTucson(this);

5. [OPTIONAL] [12] stop the TuCSoN node when its services are no longer needed

 if (this.helper.isActive(20504)) {
 this.helper.stopTucsonNode(20504);
 }

Now, what to do next obviously depends on what your program logic needs. Anyway, you will likely
perform some of the following operations:

build the identifier of the tuple centre you wish to use (e.g., putting "hello" tule on default
TuCSoN node)

 TucsonTupleCentreId tcid = this.helper.buildTucsonTupleCentreId(
 "default", "localhost", 20504);

build the tuples you need (using usual TuCSoN facilities)

 LogicTuple adv = LogicTuple.parse(
 "advertise(provider("
 + this.getAID().getName()
 + "), service('book-trading')))");

build an "action", representing TuCSoN (meta-)coordination operations, choosing from all the
type hierarchy rooted in it.unibo.sd.jade.operations.AbstractTucsonAction

 Out out = new Out(this.tcid, this.adv);

perform the action according to your preferred invocation semantics (e.g. asynchronous,

file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#12
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#12

"polling" mode)

 AsynchTucsonOpResult res = this.bridge.asynchronousInvocation(out);

(e.g. asynchronous, "interrupt" mode)

 this.bridge.asynchronousInvocation(out,
 new AdvertisingCompletedBehaviour(this.adv), this);

 private class AdvertisingCompletedBehaviour extends OneShotBehaviour
 implements IAsynchCompletionBehaviour {...}

(e.g. synchronous mode)

 TucsonOpCompletionEvent result =
 BookSellerAgent.this.bridge.synchronousInvocation(in, null, this);

remembering, if needed, to exploit JADE's usual programming pattern

 if (result != null) { // tuple found: process it
 ...
 } else { // tuple not found: wait
 block();
 }

Contact Information
Author of this "how-to":

Stefano Mariani, DISI - Università di Bologna (s.mariani@unibo.it)

Authors of the add-on:

Stefano Mariani, DISI - Università di Bologna (s.mariani@unibo.it)
Luca Sangiorgi, Università di Bologna
Prof. Andrea Omicini, DISI - Università di Bologna

[1] Git standalone clients are available for any platform (e.g., SourceTree for Mac OS and Windows).
Also, if you are using Eclipse IDE for developing in JADE, the EGit plugin is included in the Java
Developers version of the IDE.

[2] Recommended JADE version is 4.3.2. Regarding TuCSoN and tuProlog, recommended version is
1.11.0.0209 and 2.9.1, respectively. Others (both newer and older) may work properly, but they have
not been tested.

[3] Binaries available here, installation instructions covering Linux, MacOS X, Windows and Unix

mailto:s.mariani@unibo.it
mailto:s.mariani@unibo.it
http://www.sourcetreeapp.com/
http://www.eclipse.org/home/index.php
http://marketplace.eclipse.org/content/egit-git-team-provider
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr1
http://ant.apache.org/bindownload.cgi

systems here.

[4] If you are using Eclipse IDE for developing in JADE, ANT is included: click "Window > Show View
> Ant" then click "Add buildfiles" from the ANT view and select file build.xml within ant-
scripts/ folder. Now expand the "TuCSoN4JADE build file" from the ANT view and finally double
click on target compile to start the build process.

[5] Actually, also a t4j-noexamples.jar is built. It is the same as t4j.jar except for the explanatory
example in package it.unibo.tucson.jade.examples.bookTrading , which is excluded.

[6] If you directly downloaded t4j jar or if you built it from sources without using the provided ANT
script, simply adjust the given command to suit your configuration.

[7] If you do not want to use the command prompt to launch Java applications, adjust the given
command to suit your configuration, e.g., if your are using Eclipse IDE: right-click on "jade.jar > Run
As > Run Configurations..." then double-click on "Java Application", select "Boot - jade" as the main
class, finally in the arguments tab put -gui -services
it.unibo.tucson.jade.service.TucsonService as program arguments (-cp
t4j.jar:../libs/tucson.jar:../libs/2p.jar:../libs/jade.jar is automatically added by
Eclipse according to project's build path settings).

[8] Separator : works on Mac & Linux only, use ; on Windows.

[9] Actually, a TuCSoN agent identifier can be any valid tuProlog ground term. See tuProlog
documentation, here.

[10] Because the seller agent starts the TuCSoN node, the whole MAS runs in the same JVM
process, thus sharing the same standard output. If you want to better distinguish what the agents do
from what the TuCSoN node does, comment out node starting/stopping code in seller agent's
source code and start the TuCSoN node separately [11].

[11] E.g., in a command prompt type java -cp tucson.jar:2p.jar
alice.tucson.service.TucsonNodeService . More on TuCSoN in its documentation, here.

[12] You can also start/stop a TuCSoN node separately, from another Java class, bash script, or even
by hand. See TuCSoN "Getting Started" available here for more info.

http://ant.apache.org/manual/install.html
http://www.eclipse.org/home/index.php
http://www.eclipse.org/home/index.php
http://apice.unibo.it/xwiki/bin/download/Tuprolog/Download/tuprolog-guide-2.9.0.pdf
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md#11
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
file:///Users/ste/Documents/t4j-space/t4j/how-to/tucson4jade_quick_guide_pdf.md

