Snippets
Created by
Ben Sherwood
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | from bs4 import BeautifulSoup
import math as maths
from numpy import *
import re
from collections import OrderedDict
import matplotlib.pyplot as plt
from scipy.stats import norm
s = requests.Session()
def all_player_info(result, week):
output = []
player_rows = result.find_all("tr")
for row in player_rows:
name = row.find("a", "playerName")
points = row.find("td", "statTotal")
if name and points:
if name.text == "Chris Thompson" and name.attrs["class"][2].split("-")[1] == "2559368":
print(name.attrs)
print("begone Chris")
continue
else:
output.append(name.text + "~" + points.text + "~" + str(week))
return output
def iter_all_weeks(current_week):
all_info = []
for x in range(1,current_week + 1):
for offset in range(1,988,25):
#for offset in range(1,200,25):
url = "https://fantasy.nfl.com/research/players?offset={}&position=O&sort=pts&statCategory=stats&statSeason=2018&statType=weekStats&statWeek={}".format(offset, str(x))
print(offset)
r = s.get(url)
soup = BeautifulSoup(r.text, "html.parser")
all_info += all_player_info(soup, x)
for offset in range(1,32,25):
url = "https://fantasy.nfl.com/research/players?offset={}&position=8&sort=pts&statCategory=stats&statSeason=2018&statType=weekStats&statWeek={}".format(offset, str(x))
print(offset)
r = s.get(url)
soup = BeautifulSoup(r.text, "html.parser")
all_info += all_player_info(soup, x)
for offset in range(1,54,25):
url = "https://fantasy.nfl.com/research/players?offset={}&position=7&sort=pts&statCategory=stats&statSeason=2018&statType=weekStats&statWeek={}".format(offset, str(x))
print(offset)
r = s.get(url)
soup = BeautifulSoup(r.text, "html.parser")
all_info += all_player_info(soup, x)
writer = open("results.csv", "w")
writer.write("\r\n".join(all_info))
return all_info
def make_player_dict(info):
play_dict = {}
for row in info:
player, score, week = row.split("~")
if player not in play_dict:
play_dict[player] = [float(score)]
else:
play_dict[player].append(float(score))
return play_dict
def make_summary_stats(play_dict, weeks):
stats_dict = {}
weights = [1 - ((weeks - x) * 0.03) for x in range(weeks)]
print("weights are: {}".format(weights))
for player in play_dict:
if len(play_dict[player]) != weeks:
print("first", player, "dupe name")
continue
temp_stats = [x for x in play_dict[player] if x != 0]
if len(temp_stats) == 0:
stats_dict[player] = [0, 0]
continue
try:
temp_weight = [x for idx, x in enumerate(weights) if play_dict[player][idx] != 0]
except IndexError:
print(player, play_dict[player])
stats_dict[player] = [average(temp_stats, weights=temp_weight), std(temp_stats)]
return stats_dict
def create_teams():
team_dict = {}
with open("team_config.csv") as teams:
for team in teams:
if team.strip() == "":
continue
player_info, team_name = team.strip().split("~")
play_team = "DEF"
if len(player_info.split("-")) != 1:
player_info = player_info.split("-")
play_team = player_info.pop().strip()
player_info = "-".join(player_info)
player_info = player_info.split(" ")
else:
player_info = player_info.split(" ")
pos = player_info.pop().strip()
while True:
if pos.strip() == "":
pos = player_info.pop().strip()
else:
break
player_name = " ".join([x.strip() for x in player_info])
del player_info
if team_name in team_dict:
team_dict[team_name].append({player_name: {"position": pos, "playerTeam": play_team}})
else:
team_dict[team_name] = [{player_name: {"position": pos, "playerTeam": play_team}}]
return team_dict
def compare_bell_curves(m1, std1, m2, std2):
'''
For 2 input means and std deviations return the chances that
mean & std dev 1 is greater than mean & std dev 2
https://math.stackexchange.com/questions/40224/probability-of-a-point-taken-from-a-certain-normal-distribution-will-be-greater
'''
m1, m2, std1, std2 = map(float, [m1, m2, std1, std2])
o = ((std1 ** 2) + (std2 ** 2)) ** 0.5
if o == 0:
o = 0.01
u = m1 - m2
return (1 - (-u / o)) / 2.0
def choose_best_player(available, all_plyr):
scores_dict = {}
for choice1 in available:
for choice2 in available:
if choice1 == choice2:
continue
else:
if choice1 not in scores_dict:
scores_dict[choice1] = [compare_bell_curves(*all_plyr[choice1] + all_plyr[choice2])]
else:
scores_dict[choice1].append(compare_bell_curves(*all_plyr[choice1] + all_plyr[choice2]))
if len(scores_dict) == 0:
return available[0]
else:
max_score = max([sum(scores_dict[x]) for x in scores_dict])
players = [x for x in scores_dict if max_score == sum(scores_dict[x])]
# At the moment arbritrarily picking top 1 if there are 2 with same score
# Presumably this won't happen over the course of 11 weeks but may flag later
return players[0]
def choose_team(teams, players):
ideal_teams = {}
for team in teams:
tmp_id_team = OrderedDict([
("QB", ""),
("RB1", ""),
("RB2", ""),
("WR1", ""),
("WR2", ""),
("TE", ""),
("WR/RB", ""),
("K", ""),
("DEF", "")
])
tmp_team = teams[team]
for position in tmp_id_team:
if position in ["QB", "TE", "DEF", "K"]:
choices = [result for x in tmp_team for result in x if position == x[result]["position"] and "IA" not in x[result]["playerTeam"] and "PUP" not in x[result]["playerTeam"]]
elif position[:2] in ["RB", "WR"] and position != "WR/RB":
choices = [result for x in tmp_team for result in x if position[:2] == x[result]["position"] and "IA" not in x[result]["playerTeam"] and "PUP" not in x[result]["playerTeam"]]
elif position == "WR/RB":
choices = [result for x in tmp_team for result in x if x[result]["position"] in ["RB", "WR"] and "IA" not in x[result]["playerTeam"] and "PUP" not in x[result]["playerTeam"]]
else:
print("oh dear", position)
exit()
if len(choices) == 0:
print(team, position, teams[team])
exit()
choice = choose_best_player(choices, players)
tmp_id_team[position] = choice
# print tmp_team
del tmp_team[[idx for idx, x in enumerate(tmp_team) for name in x if name == choice][0]]
ideal_teams[team] = tmp_id_team
return ideal_teams
def team_score(team, ref):
score = sum([ref[team[position]][0] for position in team])
std_dev = sum([ref[team[position]][1] for position in team])
return [score, std_dev]
def create_team_stats(teams, summ_stats):
high_stats = {}
for team in teams:
high_stats[team] = team_score(teams[team], summ_stats)
return high_stats
def play_the_games(team_stats, challengers="Any"):
if challengers == "Any":
results = {}
for teams_list_1 in team_stats:
sigma = team_stats[teams_list_1][1]
x_axis = linspace(team_stats[teams_list_1][0] - sigma, team_stats[teams_list_1][0] + sigma, 260)
plt.plot(x_axis, norm.pdf(x_axis, *team_stats[teams_list_1]), color="b")
plt.savefig(teams_list_1 + ".png")
plt.close()
for teams_list_2 in team_stats:
if teams_list_1 == teams_list_2:
continue
elne https://LOC_Code@bitbucket.org/LOC_Code/playoff-and-team-analysis.gitse:
results[teams_list_1 + '~' + teams_list_2] = compare_bell_curves(*team_stats[teams_list_1] + team_stats[teams_list_2])
sigma = max(team_stats[teams_list_1][1], team_stats[teams_list_2][1]) * 3
lower_band = min(team_stats[teams_list_1][0], team_stats[teams_list_2][0])
upper_band = max(team_stats[teams_list_1][0], team_stats[teams_list_2][0])
x_axis = linspace(lower_band - sigma, upper_band + sigma, 260)
plt.plot(x_axis, norm.pdf(x_axis, *team_stats[teams_list_1]), color="b")
plt.plot(x_axis, norm.pdf(x_axis, *team_stats[teams_list_2]), color="r")
plt.savefig(teams_list_1 + '~' + teams_list_2 + ".png")
plt.close()
return results
def main():
num_weeks = 12
results = iter_all_weeks(num_weeks)
player_dict = make_player_dict(results)
summ_stats = make_summary_stats(player_dict, num_weeks)
add_info = create_teams()
teams_for_comp = choose_team(add_info, summ_stats)
high_level_stats = create_team_stats(teams_for_comp, summ_stats)
game_results = play_the_games(high_level_stats, challengers="Any")
print(game_results)
with open("game_results.txt", "w") as out:
out.write("\r\n".join([x + "^" + str(game_results[x]) for x in game_results]))
with open("teams.txt", "w") as out:
out.write("\r\n".join([x + "^" + str(teams_for_comp[x]) for x in teams_for_comp]))
main()
|
Comments (0)
You can clone a snippet to your computer for local editing. Learn more.