Snippets

Peter Scargill Experimental NANO supply code

Created by Peter Scargill last modified
// see blog entry at http://tech.scargill.net/gpio-the-hard-way/
// now superceded by OLED version

#define LIGHT 12
#define RELAY 11
#define WARNING 10

#define WAITING 60
#define ONDELAY 20

#define SWITCHON 3.7
#define SWITCHOFF 3.1

// Below for lcd

/*
This Code has extra features 
including a XY positioning function on Display
and a Line Draw function on Nokia 3310 LCD 
It is modded from the original 
http://playground.arduino.cc/Code/PCD8544
*/
// Mods by Jim Park 
// jim(^dOt^)buzz(^aT^)gmail(^dOt^)com
// hope it works for you
#define PIN_PWM   9  // backlight
#define PIN_SCE   6  // LCD CS  .... Pin 3
#define PIN_RESET 7  // LCD RST .... Pin 1
#define PIN_DC    5  // LCD Dat/Com. Pin 5
#define PIN_SDIN  4  // LCD SPIDat . Pin 6
#define PIN_SCLK  3  // LCD SPIClk . Pin 4
                     // LCD Gnd .... Pin 2
                     // LCD Vcc .... Pin 8
                     // LCD Vlcd ... Pin 7

#define LCD_C     LOW
#define LCD_D     HIGH

#define LCD_X     84
#define LCD_Y     48
#define LCD_CMD   0

uint32_t secs=0;
uint32_t upSecs=0;
uint32_t downSecs=0;

int a = 0;

static const byte ASCII[][5] =
{
 {0x00, 0x00, 0x00, 0x00, 0x00} // 20  
,{0x00, 0x00, 0x5f, 0x00, 0x00} // 21 !
,{0x00, 0x07, 0x00, 0x07, 0x00} // 22 "
,{0x14, 0x7f, 0x14, 0x7f, 0x14} // 23 #
,{0x24, 0x2a, 0x7f, 0x2a, 0x12} // 24 $
,{0x23, 0x13, 0x08, 0x64, 0x62} // 25 %
,{0x36, 0x49, 0x55, 0x22, 0x50} // 26 &
,{0x00, 0x05, 0x03, 0x00, 0x00} // 27 '
,{0x00, 0x1c, 0x22, 0x41, 0x00} // 28 (
,{0x00, 0x41, 0x22, 0x1c, 0x00} // 29 )
,{0x14, 0x08, 0x3e, 0x08, 0x14} // 2a *
,{0x08, 0x08, 0x3e, 0x08, 0x08} // 2b +
,{0x00, 0x50, 0x30, 0x00, 0x00} // 2c ,
,{0x08, 0x08, 0x08, 0x08, 0x08} // 2d -
,{0x00, 0x60, 0x60, 0x00, 0x00} // 2e .
,{0x20, 0x10, 0x08, 0x04, 0x02} // 2f /
,{0x3e, 0x51, 0x49, 0x45, 0x3e} // 30 0
,{0x00, 0x42, 0x7f, 0x40, 0x00} // 31 1
,{0x42, 0x61, 0x51, 0x49, 0x46} // 32 2
,{0x21, 0x41, 0x45, 0x4b, 0x31} // 33 3
,{0x18, 0x14, 0x12, 0x7f, 0x10} // 34 4
,{0x27, 0x45, 0x45, 0x45, 0x39} // 35 5
,{0x3c, 0x4a, 0x49, 0x49, 0x30} // 36 6
,{0x01, 0x71, 0x09, 0x05, 0x03} // 37 7
,{0x36, 0x49, 0x49, 0x49, 0x36} // 38 8
,{0x06, 0x49, 0x49, 0x29, 0x1e} // 39 9
,{0x00, 0x36, 0x36, 0x00, 0x00} // 3a :
,{0x00, 0x56, 0x36, 0x00, 0x00} // 3b ;
,{0x08, 0x14, 0x22, 0x41, 0x00} // 3c <
,{0x14, 0x14, 0x14, 0x14, 0x14} // 3d =
,{0x00, 0x41, 0x22, 0x14, 0x08} // 3e >
,{0x02, 0x01, 0x51, 0x09, 0x06} // 3f ?
,{0x32, 0x49, 0x79, 0x41, 0x3e} // 40 @
,{0x7e, 0x11, 0x11, 0x11, 0x7e} // 41 A
,{0x7f, 0x49, 0x49, 0x49, 0x36} // 42 B
,{0x3e, 0x41, 0x41, 0x41, 0x22} // 43 C
,{0x7f, 0x41, 0x41, 0x22, 0x1c} // 44 D
,{0x7f, 0x49, 0x49, 0x49, 0x41} // 45 E
,{0x7f, 0x09, 0x09, 0x09, 0x01} // 46 F
,{0x3e, 0x41, 0x49, 0x49, 0x7a} // 47 G
,{0x7f, 0x08, 0x08, 0x08, 0x7f} // 48 H
,{0x00, 0x41, 0x7f, 0x41, 0x00} // 49 I
,{0x20, 0x40, 0x41, 0x3f, 0x01} // 4a J
,{0x7f, 0x08, 0x14, 0x22, 0x41} // 4b K
,{0x7f, 0x40, 0x40, 0x40, 0x40} // 4c L
,{0x7f, 0x02, 0x0c, 0x02, 0x7f} // 4d M
,{0x7f, 0x04, 0x08, 0x10, 0x7f} // 4e N
,{0x3e, 0x41, 0x41, 0x41, 0x3e} // 4f O
,{0x7f, 0x09, 0x09, 0x09, 0x06} // 50 P
,{0x3e, 0x41, 0x51, 0x21, 0x5e} // 51 Q
,{0x7f, 0x09, 0x19, 0x29, 0x46} // 52 R
,{0x46, 0x49, 0x49, 0x49, 0x31} // 53 S
,{0x01, 0x01, 0x7f, 0x01, 0x01} // 54 T
,{0x3f, 0x40, 0x40, 0x40, 0x3f} // 55 U
,{0x1f, 0x20, 0x40, 0x20, 0x1f} // 56 V
,{0x3f, 0x40, 0x38, 0x40, 0x3f} // 57 W
,{0x63, 0x14, 0x08, 0x14, 0x63} // 58 X
,{0x07, 0x08, 0x70, 0x08, 0x07} // 59 Y
,{0x61, 0x51, 0x49, 0x45, 0x43} // 5a Z
,{0x00, 0x7f, 0x41, 0x41, 0x00} // 5b [
,{0x02, 0x04, 0x08, 0x10, 0x20} // 5c ¥
,{0x00, 0x41, 0x41, 0x7f, 0x00} // 5d ]
,{0x04, 0x02, 0x01, 0x02, 0x04} // 5e ^
,{0x40, 0x40, 0x40, 0x40, 0x40} // 5f _
,{0x00, 0x01, 0x02, 0x04, 0x00} // 60 `
,{0x20, 0x54, 0x54, 0x54, 0x78} // 61 a
,{0x7f, 0x48, 0x44, 0x44, 0x38} // 62 b
,{0x38, 0x44, 0x44, 0x44, 0x20} // 63 c
,{0x38, 0x44, 0x44, 0x48, 0x7f} // 64 d
,{0x38, 0x54, 0x54, 0x54, 0x18} // 65 e
,{0x08, 0x7e, 0x09, 0x01, 0x02} // 66 f
,{0x0c, 0x52, 0x52, 0x52, 0x3e} // 67 g
,{0x7f, 0x08, 0x04, 0x04, 0x78} // 68 h
,{0x00, 0x44, 0x7d, 0x40, 0x00} // 69 i
,{0x20, 0x40, 0x44, 0x3d, 0x00} // 6a j 
,{0x7f, 0x10, 0x28, 0x44, 0x00} // 6b k
,{0x00, 0x41, 0x7f, 0x40, 0x00} // 6c l
,{0x7c, 0x04, 0x18, 0x04, 0x78} // 6d m
,{0x7c, 0x08, 0x04, 0x04, 0x78} // 6e n
,{0x38, 0x44, 0x44, 0x44, 0x38} // 6f o
,{0x7c, 0x14, 0x14, 0x14, 0x08} // 70 p
,{0x08, 0x14, 0x14, 0x18, 0x7c} // 71 q
,{0x7c, 0x08, 0x04, 0x04, 0x08} // 72 r
,{0x48, 0x54, 0x54, 0x54, 0x20} // 73 s
,{0x04, 0x3f, 0x44, 0x40, 0x20} // 74 t
,{0x3c, 0x40, 0x40, 0x20, 0x7c} // 75 u
,{0x1c, 0x20, 0x40, 0x20, 0x1c} // 76 v
,{0x3c, 0x40, 0x30, 0x40, 0x3c} // 77 w
,{0x44, 0x28, 0x10, 0x28, 0x44} // 78 x
,{0x0c, 0x50, 0x50, 0x50, 0x3c} // 79 y
,{0x44, 0x64, 0x54, 0x4c, 0x44} // 7a z
,{0x00, 0x08, 0x36, 0x41, 0x00} // 7b {
,{0x00, 0x00, 0x7f, 0x00, 0x00} // 7c |
,{0x00, 0x41, 0x36, 0x08, 0x00} // 7d }
,{0x10, 0x08, 0x08, 0x10, 0x08} // 7e ←
,{0x00, 0x06, 0x09, 0x09, 0x06} // 7f →
};




void LcdCharacter(char character)
{
  LcdWrite(LCD_D, 0x00);
  for (int index = 0; index < 5; index++)
  {
    LcdWrite(LCD_D, ASCII[character - 0x20][index]);
  }
  LcdWrite(LCD_D, 0x00);
}

void LcdClear(void)
{
  for (int index = 0; index < LCD_X * LCD_Y / 8; index++)
  {
    LcdWrite(LCD_D, 0x00);
  }
}

void LcdInitialise(void)
{
  pinMode(PIN_SCE,   OUTPUT);
  pinMode(PIN_RESET, OUTPUT);
  pinMode(PIN_DC,    OUTPUT);
  pinMode(PIN_SDIN,  OUTPUT);
  pinMode(PIN_SCLK,  OUTPUT);
  pinMode(PIN_PWM,   OUTPUT);
  analogWrite(PIN_PWM,255); 
  digitalWrite(PIN_RESET, LOW);
 // delay(1);
  digitalWrite(PIN_RESET, HIGH);

  LcdWrite( LCD_CMD, 0x21 );  // LCD Extended Commands.
  LcdWrite( LCD_CMD, 0xB1);  // Set LCD Vop (Contrast). //B1
  LcdWrite( LCD_CMD, 0x04 );  // Set Temp coefficent. //0x04
  LcdWrite( LCD_CMD, 0x14 );  // LCD bias mode 1:48. //0x13
  LcdWrite( LCD_CMD, 0x0C );  // LCD in normal mode. 0x0d for inverse
  LcdWrite(LCD_C, 0x20);
  LcdWrite(LCD_C, 0x0C);
}

void LcdString(char *characters)
{
  while (*characters)
  {
    LcdCharacter(*characters++);
  }
}

void LcdWrite(byte dc, byte data)
{
  digitalWrite(PIN_DC, dc);
  digitalWrite(PIN_SCE, LOW);
  shiftOut(PIN_SDIN, PIN_SCLK, MSBFIRST, data);
  digitalWrite(PIN_SCE, HIGH);
}

// gotoXY routine to position cursor 
// x - range: 0 to 84
// y - range: 0 to 5

void gotoXY(int x, int y)
{
  LcdWrite( 0, 0x80 | x);  // Column.
  LcdWrite( 0, 0x40 | y);  // Row.  

}

void LcdP(char *fmt, ...)
{
  char buf[128]; // resulting string limited to 128 chars
  va_list args;
  va_start(args, fmt);
  vsnprintf(buf, 128, fmt, args);
  va_end(args);
  LcdString(buf);
}

// end of lcd stuff

#include <stdarg.h>

uint32_t mymillis = 0;
uint8_t lightState = 0;
uint8_t state = 0; // 0 is power up, 1 is on, 2 is turning off
float vol;
uint8_t onDelay = 0;

uint16_t lightOnSet = 2;
uint16_t lightOffSet = 1022;

float offVoltage = SWITCHOFF;
float onVoltage = SWITCHON;

float average=0;

char *theState = "standby";

float voltage()
{
  // read the input on analog pin 0
  int sensorValue = analogRead(A0);
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):
  float vols = sensorValue * (5.0 / 1023.0);
  // print out the value you read:
  return (vols);
}

void p(char *fmt, ...)
{
  char buf[128]; // resulting string limited to 128 chars
  va_list args;
  va_start(args, fmt);
  vsnprintf(buf, 128, fmt, args);
  va_end(args);
  Serial.print(buf);
}

void setup()
{
  // put your setup code here, to run once:
  Serial.begin(57600);
  digitalWrite(LIGHT, LOW);
  digitalWrite(RELAY, LOW);
  digitalWrite(WARNING, LOW);
  pinMode(LIGHT, OUTPUT);
  pinMode(RELAY, OUTPUT);
  pinMode(WARNING, OUTPUT);

  average=voltage();
  LcdInitialise();
  LcdClear();
  LcdString("Init!");
}

void loop()
{
  // put your main code here, to run repeatedly:

  if (mymillis <= millis())
  {
    vol=voltage();
    average+=(vol/16.0);
    average=average*16.0/17.0;
    vol=average;
    if (state == 0)
    {
      if (vol > onVoltage)
      {
        if (onDelay == 0)
        {
          onDelay = ONDELAY*2;
          theState = "starting";
        }
      }
    }
    else if (state == 1)
    {  
      if (vol < offVoltage)
      {
        state = (WAITING*2) + 2;
        theState = "warning ";
      }
    }
    else if (state > 2)
    {
      digitalWrite(WARNING, HIGH);
      state--;
      if (state == 2)
      {
        state = 0;
        digitalWrite(RELAY, LOW); downSecs=0;
        analogWrite(PIN_PWM,255); // only 3v3 intended so this will likely do
        theState = "standby ";
      }
    }
    else
      digitalWrite(WARNING, LOW);

    if (vol > onVoltage)
    {
      if (onDelay)
      {
        if (--onDelay == 0)
        {
          state = 1;
          analogWrite(PIN_PWM,128); // only 3v3 intended so this will likely do
          theState = "active  "; upSecs=0;
        }
      }
    }
else
  {
      if (onDelay)
      {
        onDelay=0; theState = "standby "; state=0;
      }    
  }
  
    if (lightState == 0)
    {
     p("{\"voltage\":");
      Serial.print(vol);
      p(",\"status\":\"%s\"}\r\n", theState); // sadly printf here does not support floats
      gotoXY(0,0); LcdP("Volts: %d.%d",int(vol),((int(vol*100))%100)/10);
      gotoXY(0,1); LcdP("S: %s",theState);

      gotoXY(0,2); LcdP("H:%d.%d L:%d.%d ",int(onVoltage),((int(onVoltage*100))%100)/10,int(offVoltage),((int(offVoltage*100))%100)/10);
      gotoXY(0,3); LcdP("%05ld:%02ld:%02ld",upSecs/3600,(upSecs%3600)/60, upSecs%60);      
      gotoXY(0,4); LcdP("%05ld:%02ld:%02ld",downSecs/3600,(downSecs%3600)/60, downSecs%60);  
      gotoXY(0,5); LcdP("%05ld:%02ld:%02ld",secs/3600,(secs%3600)/60, secs%60);

      lightState = 1;
      digitalWrite(LIGHT, HIGH);
      switch (state)
      {
      case 0:
        if (onDelay)
        {
          lightOnSet = 80;
          lightOffSet = 944;
        }
        else
        {
          lightOnSet = 1;
          lightOffSet = 1023;
        }
        digitalWrite(RELAY, LOW);
        break; // battery is low
      case 1:
        lightOnSet = 980;
        lightOffSet = 44;
        digitalWrite(RELAY, HIGH);
        break; // battery is ok
      default:
        lightOnSet = 512;
        lightOffSet = 512;
        break; // intermediate state;
      }
      mymillis = millis() + lightOnSet;
    }
    else
    {  
      lightState = 0;
      digitalWrite(LIGHT, LOW);
      mymillis = millis() + lightOffSet;
      secs++;
      if (state==1) upSecs++; else downSecs++;
    }
  }
}

Comments (0)

HTTPS SSH

You can clone a snippet to your computer for local editing. Learn more.