
Defmod1: Finite element code for modeling crustal deformation

Tabrez Ali

tabrezali@gmail.com

1https://bitbucket.org/stali/defmod

https://bitbucket.org/stali/defmod

Features

– Can simulate elastodynamic & quasistatic processes (in 2D or 3D) such as:

– Coseismic (fault) slip or volcanic rifting
– Postseismic or postrifting deformation due to afterslip, poroelastic rebound and/or

viscoelastic relaxation
– Postglacial rebound and hydrological (un)loading
– Injection/extraction of fluids from subsurface reservoirs etc.

– Written entirely in Fortran 95
– Uses PETSc’s parallel sparse data structures & implicit solver(s)
– Runs on shared and distributed memory machines using MPI
– Scales well on large clusters with hundreds or even thousands of processor cores
– Free to download, use, modify and share (GPL v3)

Features

Supports:

– Stabilized linear tri, quad, tet & hex elements

– Elastic, viscoelastic, poroelastic and poroviscoelastic rheologies

– Time dependent force/flow and/or traction/flux BC’s

– Time dependent linear constraint equations

– Absorbing boundaries for dynamic problems

– Winkler foundation(s)

Note(s):

– Fault slip/opening and displacement/velocity/pressure BC’s can be specified using linear
constraint equations

– Isostasy can be simulated using Winkler foundation(s)

Physics

Cauchy’s equation of motion: ∫
Ω

(σij,j + fi − ρüi)dΩ = 0

Semi discrete form using the finite element method:

Mü + Cu̇ + Ku = f

C = αM + βK

– M is the mass matrix

– K is the stiffness matrix

– C is the damping matrix

– α and β are Rayleigh damping coefficients

Constraint Equations

Implemented using Lagrange Multipliers (LM’s)

Mü + Cu̇ + Ku + GTλ = f

Gu = l

– G is the constraint matrix

– λ is the force required to enforce the constraint

– l is the value of the constraint (e.g., prescribed slip or displacements)

Explicit Solver for Dynamic problems

For problems without constraints we perform explicit time integration using a central
differencing scheme for ü and a backward differencing scheme for u̇

ut+∆t =M−1
[
∆t2(f − Kut)−∆tC (ut − ut−∆t)

]
+

2ut − ut−∆t

– M is assumed to be lumped (i.e., diagonal)

– Time step is restricted by
∆tcritical ∼ L/c ; c =

√
E/ρ

where L is the (smallest) element edge length

For problems with constraints we use the “Forward Increment Lagrange Multiplier Method” of
Carpenter et al. [1991]

Implicit Solver for Quasistatic problems

– With linear constraints (LM’s) ∣∣∣∣K GT

G 0

∣∣∣∣ ∣∣∣∣uλ
∣∣∣∣ =

∣∣∣∣fl
∣∣∣∣

System is indefinite and solved using ASM preconditioned GMRES

– Without constraints ∣∣K ∣∣ ∣∣u∣∣ =
∣∣f ∣∣

System is symmetric positive definite and CG can be used instead (-ksp type cg)

Note: PETSc can be configured with many sparse solvers and preconditioners that can be engaged at runtime
using simple command line options

Implicit Solver for Quasistatic problems

– For problems involving viscoelasticity we use the time-stepping algorithm proposed by Melosh
and Raefsky [1980]

– For poroelastic problems we also have to account for the continuity equation which results in the
coupled system [Zienkiewicz and Shiomi, 1984]:

Keu − Hp = f

HT u̇ + Sṗ + Kcp = q

where Ke and Kc are solid and fluid stiffness matrices, H is the coupling matrix, S is the
compressibility matrix, p the pressure vector and q the in/out flow

The equations are solved using an incremental loading scheme [Smith and Griffiths, 2004]

Implicit Solver for Quasistatic problems

– For problems involving viscoelasticity we use the time-stepping algorithm proposed by Melosh
and Raefsky [1980]

– For poroelastic problems we also have to account for the continuity equation which results in the
coupled system [Zienkiewicz and Shiomi, 1984]:

Keu − Hp = f

HT u̇ + Sṗ + Kcp = q

where Ke and Kc are solid and fluid stiffness matrices, H is the coupling matrix, S is the
compressibility matrix, p the pressure vector and q the in/out flow

The equations are solved using an incremental loading scheme [Smith and Griffiths, 2004]

Applications

Many ...

Applications

Including problems with non-trivial fault geometries

Model with ∼ 8 million tet elements, with slip on the entire subduction interface, implicitly
solved, from start to finish, in ∼ 120 secs on 256 Xeon E5-2660 cores

Applications

Complex loading histories

Model with ∼ 6 million tet elements, with a slipping strike slip fault, explicitly solved (includes
2000 time steps), from start to finish, in ∼ 47.5 secs on 128 cores

Applications

Realistic topography

Model (mesh built by T. Masterlark) containing a spherical magma chamber, with traction
loading on the chamber wall, implicitly solved, from start to finish, in ∼ 1.5 secs on 4 cores

Applications

Heterogeneous (3D) material properties

A full 200 sec simulation of long-period (∼ 0.075 Hz) ground motion in Southern California,
using SCEC’s CVM-S4, due to slip on the Southern San Andreas Fault takes ∼ 100 secs on
256 cores

Applications

Fully coupled multiphysics

Model containing a porous, permeable magma chamber; Mass flux at the base of the conduit
results in ∆P (left) which then causes uplift (right)

I/O

Input

– A single ASCII file is used for ease of use and easy manipulation of mesh/BCs for runs
driven by shell scripts

– Currently all processor cores access the same ASCII input file2 to read on-core (i.e., local)
mesh data

Output

– Each processor core writes its own ASCII output (VTK) for on-core elements/nodes that
can be directly visualized using ParaView

– Output frequency can be specified in the input file (e.g., write output after every 50 time
steps)

2Can take a few minutes for runs involving more than 1K processor cores; E.g., 3 mins to partition, read and
map a ∼16 million (hex) element mesh on 1K cores of Lonestar (TACC) cluster

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1 Element data

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0 Nodal Data

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000 Material data

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0 Applied (nodal) force data

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0 Start and end time(s) for applied force

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1 Total simulation time

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1 Time step

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1 Output frequency

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1 Write total displacements

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit quad 5

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000

3.0E10 0.25 3000

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit-v quad 5 Enable viscoelasticity

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0

10.0 0.00 1 1

10.0 10.0 1 1

0.00 10.0 0 0

20.0 0.00 1 1

20.0 10.0 1 1

3.0E10 0.25 3000 1.0E18 1.0

3.0E10 0.25 3000 1.0E18 1.0

5 -10.0E10 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit-p quad 5 Enable poroelasticity

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0 1

10.0 0.00 1 1 1

10.0 10.0 1 1 1

0.00 10.0 0 0 1

20.0 0.00 1 1 1

20.0 10.0 1 1 1

3.0E10 0.25 3000 1.0E18 1.0 1E-6 1.0 0.05 2.2E9

3.0E10 0.25 3000 1.0E18 1.0 1E-6 1.0 0.05 2.2E9

5 -10.0E10 0.0 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0 0.0

Input file example

$ cat examples/two quads qs.inp

implicit-pv quad 5 Enable poroviscoelasticity

2 6 2 0 2 0 0

0.0 0.1 1 1

1 2 3 4 1

2 5 6 3 2

0.00 0.00 0 0 1

10.0 0.00 1 1 1

10.0 10.0 1 1 1

0.00 10.0 0 0 1

20.0 0.00 1 1 1

20.0 10.0 1 1 1

3.0E10 0.25 3000 1.0E18 1.0 1E-6 1.0 0.05 2.2E9

3.0E10 0.25 3000 1.0E18 1.0 1E-6 1.0 0.05 2.2E9

5 -10.0E10 0.0 0.0 0.0 0.0

6 -10.0E10 0.0 0.0 0.0 0.0

Build and Execution

$ ssh lonestar.tacc.utexas.edu

$ module load petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpirun -np 2 ./defmod -f examples/two quads qs.inp

Reading input file ...

Partitioning mesh ...

Forming [K] ...

Forming RHS ...

Setting up solver ...

Solving ...

Recovering stress ...

Cleaning up ...

Finished

Build and Execution

$ ssh lonestar.tacc.utexas.edu

$ module load petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpirun -np 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Reading input file ...

Partitioning mesh ...

Forming [K] ...

Forming RHS ...

Setting up solver ...

Solving ...

0 KSP Residual norm 6.484684701823e+00

1 KSP Residual norm 2.983375739070e-15

Recovering stress ...

Cleaning up ...

Finished

Build and Execution

$ ssh lonestar.tacc.utexas.edu

$ module load petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpirun -np 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Reading input file ...

Partitioning mesh ...

Forming [K] ...

Forming RHS ...

Setting up solver ...

Solving ...

0 KSP Residual norm 6.484684701823e+00

1 KSP Residual norm 2.983375739070e-15

Recovering stress ...

Cleaning up ...

Finished

By default output is written in VTK format and can be easily visualized using ParaView, VisIt etc.

Result

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0 Constraint Eqn’s

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3 Equation 1 {Ux5+Ux8-2Ux13=0.0}
1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0 Start and end time(s)

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3 Equation 2 {Uy5+Uy8-2Uy13=0.0}
0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1 Equation 9 {Ux9=1.0}
1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1 Equation 10 {Uy9=1.0}
0.0 1.0 9

1.0 0.0 1.0

Input file with constraints

$ cat examples/quadtree qs.inp

implicit quad 12

10 19 1 10 0 0 0

1.0 0.25 1 1

1 2 5 4 1

...

0.0 0.0 0 0

...

7.5E10 0.25 3000.0

3

1.0 0.0 5

1.0 0.0 8

-2.0 0.0 13

0.0 0.0 0.0

3

0.0 1.0 5

0.0 1.0 8

0.0 -2.0 13

0.0 0.0 0.0

...

1

1.0 0.0 9

1.0 0.0 1.0

1

0.0 1.0 9

1.0 0.0 1.0

Note: Any constraint that is specified remains active throughout the simulation; A zero value is
assumed (for u or p) unless specified otherwise

Result

Note: Displacements at hanging nodes are average of their corresponding edge nodes

More examples ...

– Displacement BC in 3D
Uy9=10.0
1

0.0 1.0 0.0 9

10.0 0.0 0.0

– Pressure head BC in 3D (for poroelastic problem)
P9=1.0E3
1

0.0 0.0 0.0 1.0 9

1.0E3 0.0 0.0

– Fault slip between two coincident nodes (in x-direction)
Ux13-Ux81=10.0
2

1.0 0.0 0.0 13

-1.0 0.0 0.0 81

10.0 0.0 0.0

More examples ...

– Displacement BC in 3D
Uy9=10.0
1

0.0 1.0 0.0 9

10.0 0.0 0.0

– Pressure head BC in 3D (for poroelastic problem)
P9=1.0E3
1

0.0 0.0 0.0 1.0 9

1.0E3 0.0 0.0

– Fault slip between two coincident nodes (in x-direction)
Ux13-Ux81=10.0
2

1.0 0.0 0.0 13

-1.0 0.0 0.0 81

10.0 0.0 0.0

More examples ...

– Displacement BC in 3D
Uy9=10.0
1

0.0 1.0 0.0 9

10.0 0.0 0.0

– Pressure head BC in 3D (for poroelastic problem)
P9=1.0E3
1

0.0 0.0 0.0 1.0 9

1.0E3 0.0 0.0

– Fault slip between two coincident nodes (in x-direction)
Ux13-Ux81=10.0
2

1.0 0.0 0.0 13

-1.0 0.0 0.0 81

10.0 0.0 0.0

Fault slip

El−1 El−2

4

1

3

2 5

Element view Nodal view (exploded)

6

78

To enforce slip we need to specify the relative displacement/opening between coincident nodes
{3 & 8} and {2 & 5}

For example the relative displacement (Y coordinate) between nodes {3 & 8} can be written as
Uy3-Uy8=1.0 and is specified (between 0.1− 0.5 seconds) as:
2

0 1 3

0 -1 8

1.0 0.1 0.5

Fault slip

Example

$ cat examples/2d fault dyn.inp

explicit quad 12

18796 19036 2 48 0 0 200

75 0.025 40 0

0.0 0.01

...

2

0 -1 1832

0 1 1619

0.1 0.2 2.7

...

2

1 0 1832

-1 0 1619

0.1 0.2 2.7

...

Example

$ cat examples/2d fault dyn.inp

explicit quad 12

18796 19036 2 48 0 0 200 ABC’s

75 0.025 40 0

0.0 0.01

...

2

0 -1 1832

0 1 1619

0.1 0.2 2.7

...

2

1 0 1832

-1 0 1619

0.1 0.2 2.7

...

Example

$ cat examples/2d fault dyn.inp

explicit quad 12

18796 19036 2 48 0 0 200

75 0.025 40 0

0.0 0.01 Damping coefficients

...

2

0 -1 1832

0 1 1619

0.1 0.2 2.7

...

2

1 0 1832

-1 0 1619

0.1 0.2 2.7

...

Example (Dynamic)

T=0.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=2.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=5.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=7.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=10.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=12.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=15.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=17.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=20.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=22.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=25.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=27.5 sec

Displacement Velocity (100x)

Example (Dynamic)

T=30.0 sec

Displacement Velocity (100x)

Example (Dynamic)

T=32.5 sec

Displacement Velocity (100x)

Example (Quasistatic)

T=0.0 years

Displacement Velocity (20x)

Example (Quasistatic)

T=5.0 years

Displacement Velocity (20x)

Example (Quasistatic)

T=10.0 years

Displacement Velocity (20x)

Example (Quasistatic)

T=15.0 years

Displacement Velocity (20x)

Example (Quasistatic)

T=20.0 years

Displacement Velocity (20x)

Example (3D Quasistatic)

T=0.0 years (Rifting starts)

Displacement

Example (3D Quasistatic)

T=1.0 years (Rifting ...)

Displacement

Example (3D Quasistatic)

T=2.0 years (Rifting ...)

Displacement

Example (3D Quasistatic)

T=3.0 years (Rifting ...)

Displacement

Example (3D Quasistatic)

T=4.0 years (Rifting ...)

Displacement

Example (3D Quasistatic)

T=5.0 years (Rifting ends)

Displacement

Example (3D Quasistatic)

T=10.0 years (Postrifting viscous relaxation)

Displacement

Example (2D Dynamic with ABCs)

Time step 250

Note: Full computational domain is shown

Example (2D Dynamic with ABCs)

Time step 500

Note: Full computational domain is shown

Example (2D Dynamic with ABCs)

Time step 750

Note: Full computational domain is shown

Example (2D Dynamic with ABCs)

Time step 1000

Note: Full computational domain is shown

Example (3D Dynamic)

T=3.0 secs

Velocity

Example (3D with Traction BCs)

Deformation due to lake3 loading

3Shoreline is shown in white

Example (2D Poroelasticity)

Pore pressure change following an earthquake at time step 0

(i) with a permeable fault zone (ii) with an impermeable fault zone

Example (2D Poroelasticity)

Pore pressure change following an earthquake at time step 5

(i) with a permeable fault zone (ii) with an impermeable fault zone

Example (2D Poroelasticity)

Pore pressure change following an earthquake at time step 10

(i) with a permeable fault zone (ii) with an impermeable fault zone

Example (2D Poroelasticity)

Pore pressure change following an earthquake at time step 15

(i) with a permeable fault zone (ii) with an impermeable fault zone

Example (2D Poroelasticity)

Pore pressure change following an earthquake at time step 20

(i) with a permeable fault zone (ii) with an impermeable fault zone

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production on

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production off

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production off

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production off

Example (2D Poroelasticity)

Pore pressure change due to injection (top right) and withdrawl (top left) of fluid in a
saturated reservoir

Production off

Example (2D Poroelasticity)

Fluid velocity vectors (unscaled) during steady production

With flow BC

Example (2D Poroelasticity)

Fluid velocity vectors (unscaled) during steady production

With no-flow BC

Example (3D Poroelasticity)

Pore pressure change due to withdrawl of fluid from a confined reservoir; Permeability ratio
b/w reservoir and surrounding rock = 1.0E6

Note: In 3D, both (stabilized) linear tet or hex elements can be used

Example (3D Poroelasticity)

Pore pressure change due to withdrawl of fluid from a confined reservoir; Permeability ratio
b/w reservoir and surrounding rock = 1.0E6

Note: In 3D, both (stabilized) linear tet or hex elements can be used

Parallelism

Each processor core owns only a part of the mesh, part of the stiffness matrix, part of the
load/solution vector and writes its own VTK output

A mesh partitioned (using METIS) to run on 4 processor cores

Parallelism

Each processor core owns only a part of the mesh, part of the stiffness matrix, part of the
load/solution vector and writes its own VTK output

Visualization of subdomain(s) 1

Parallelism

Each processor core owns only a part of the mesh, part of the stiffness matrix, part of the
load/solution vector and writes its own VTK output

Visualization of subdomain(s) 1, 2

Parallelism

Each processor core owns only a part of the mesh, part of the stiffness matrix, part of the
load/solution vector and writes its own VTK output

Visualization of subdomain(s) 1, 2, 3

Parallelism

Each processor core owns only a part of the mesh, part of the stiffness matrix, part of the
load/solution vector and writes its own VTK output

Visualization of subdomain(s) 1, 2, 3 and 4

Parallelism

The resulting stiffness matrix, distributed (row wise) across 4 processor cores

Limitations

– Due to the use of a serial mesh partitioner (METIS), the largest problem Defmod can
solve on most current generation clusters (having 16−128 GB of RAM on node 0) is
limited to 125-1000 million unknowns

– Beyond 4000 cores, the ‘I’ part in ‘I/O’ is likely to become a bottleneck as all cores will
have to access the same input file to read part of the mesh they own (skipping rest)
during the initialization phase

Solver performance

On the Trestles cluster (SDSC) for a problem with ∼ 25 million unknowns ...

CPU Cores DOF per Explicit Dynamic Implicit Quasistatic
Used # core Solver Efficiency Solver Efficiency4

128 195.2K 1.00 1.00
256 97.6K 0.97 0.92
512 48.4K 0.93 0.89

1024 24.4K 0.80 0.87

– On most current generation clusters, parallel efficiency of ∼ 90% or more can be achieved as long
as DOF/core is > 37.5K

– Ideally DOF/core should be b/w 37.5-250K for explicit dynamic problems and b/w 37.5-125K for
implicit quasistatic problems (assuming 1GB RAM/core, unbalanced mesh and default solver
settings)

4Maximum iterations were fixed

Examples

– Sample files are provided in the examples directory

– For more details look at the following files5 in order:

1. two quads qs.inp

2. quadtree qs.inp

3. cube qs.inp

4. 2d point load dyn.inp

5. 2d fault dyn.inp

6. 2d per fault poro qs.inp

7. 3d rift visco qs.inp

8. 3d reservoir poro qs.inp

5Some of the files are commented

Showcase application(s)

Investigating source processes; Estimating slip distribution and/or poroviscoelastic properties of
rock using (high rate) GPS + InSAR

Elastodynamic deformation due to a slipping
thrust fault

Quasistatic deformation due to afterslip and
poroviscoelastic relaxation

TODO

In order of priority

1. Code optimization (soon)

– Use adaptive time-stepping for quasistatic problem(s)
– Use AMG as default preconditioner for quasistatic problem(s)
– Reduce (local) memory footprint by using exact preallocation

2. Solution of the adjoint problem (planned)

Source files

Name Description
petsc∗.h Header file(s)
m utils.F90 Simple utilities (area of triangle/quadrilateral etc.)
m elems.F90 Element definitions, shape functions, their derivatives etc.
m local.F90 Element level routines to compute stiffness/mass matrix,

stress tensor etc.
m global.F90 Routines that need access to on-rank arrays (nodal coor-

dinates, element connectivity etc.)
main.F90 Main code (partitioner/mapper, solver(s) etc.)

More on installation ...

Dependencies

Defmod

PETSc METIS

MPI BLAS
LAPACK

Laptop/PC running Debian

$ sudo apt-get install gcc gfortran make python cmake git

$ curl -O https://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-lite-3.16.tar.gz

$ tar -xzf petsc-lite-3.16.tar.gz

$ cd petsc-3.16.*

$ export PETSC DIR=$PWD PETSC ARCH=arch-linux2-c-opt

$./configure --with-cc=gcc --with-fc=gfortran --download-mpich

--download-fblaslapack --download-metis --with-debugging=0

$ make all

$ export PATH=$PATH:$PETSC DIR/$PETSC ARCH/bin

$ cd ..

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpiexec -n 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Note: Above instructions can be used on any computer that runs Debian (or Ubuntu); See
http://www.debian.org/ports/ for supported architectures

Laptop/PC running Debian

$ sudo apt-get install libmpich-dev liblapack-dev libmetis-dev make python git

$ curl -O https://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-lite-3.16.tar.gz

$ tar -xzf petsc-lite-3.16.tar.gz

$ cd petsc-3.16.*

$ export PETSC DIR=$PWD PETSC ARCH=arch-linux2-c-opt

$./configure --with-metis --with-debugging=0

$ make all

$ cd ..

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpiexec -n 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Note: Above instructions can be used on any computer that runs Debian (or Ubuntu); See
http://www.debian.org/ports/ for supported architectures

Laptop/PC running Debian

$ sudo apt-get install libpetsc-real-dev libmetis-dev make git

$ export PETSC DIR=/usr/lib/petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all FPPFLAGS=-DPETSC HAVE METIS LDLIBS=-lmetis

$ mpiexec -n 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Note: Above instructions can be used on any computer that runs Debian (or Ubuntu); See
http://www.debian.org/ports/ for supported architectures

Linux clusters

On typical Linux clusters, MPI and BLAS/LAPACK are almost always preinstalled and all we
have to do is:

$ curl -O https://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-lite-3.16.tar.gz

$ tar -xzf petsc-lite-3.16.tar.gz

$ cd petsc-3.16.*

$ export PETSC DIR=$PWD

$./configure --with-mpi-dir=/path/to/mpi --download-metis --with-debugging=0

$ make all

NOTE: /path/to/mpi above is simply the MPI installation directory, which can be be found using:
$ which mpif90 | rev | cut -c12- | rev

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ mpiexec -n 2 ./defmod -f examples/two quads qs.inp -ksp monitor

Linux clusters

On many Linux clusters, such as those available via XSEDE or at large supercomputing
centers, PETSc is usually preinstalled. E.g., on the Lonestar cluster at TACC (UTexas) all we
have to do is:

$ ssh lonestar.tacc.utexas.edu

$ module load petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all

$ ibrun6 -n 2 -o 0 ./defmod -f examples/two quads qs.inp -ksp monitor

6via Scheduler

Linux clusters

Similarly, on the Comet cluster at SDSC all we have to do is:

$ ssh comet.sdsc.edu

$ module load petsc

$ git clone https://bitbucket.org/stali/defmod

$ cd defmod

$ make all PETSC DIR=$PETSCHOME

$ ibrun7 ./defmod -f examples/two quads qs.inp -ksp monitor

7via Scheduler

Other Linux distributions and operating systems

– Those using non-Debian based distributions should see the INSTALL file included with the
source

– Any standard conforming C/Fortran 95 compiler will work. The ones that have been
tested and are known to work include:

– AOCC (free)
– Clang/Flang (free)
– Cray
– GCC (free)
– Intel
– Open64 (free)
– PGI (free)
– Oracle/Sun Studio (free)

– Apple macOS and MS Windows users can install all required dependencies using
Homebrew and Cygwin/WSL, respectively

Suggested workflow

Defmod VTK output
file(s)

ParaView

Input fileexo2inp

Cubit/TrelisEXODUS II
file

Note: The exo2inp utility is available at https://bitbucket.org/stali/defmod-utils/

https://bitbucket.org/stali/defmod-utils/

Derivative work

Dr. Chunfang Meng at MIT has developed a sophisticated hybrid solver which can simulate
dynamic rupture due to quasistatic loading in poroviscoelastic media, and is useful for studying
processes such as induced or triggered seismicity. See
https://doi.org/10.1016/j.cageo.2016.11.014 for details.

He has combined the hybrid solver with OpenSWPC, a parallel, higher-order finite difference
code developed by Takuto Maeda at ERI (University of Tokyo). For more information about
this mixed (FE-FD) approach, see https://doi.org/10.1016/j.cageo.2018.01.015.

Dr. Meng has also extended the code to incorporate fault zone inhomogeneities (damage) as
well as the ability to model slip/rupture on truly intersecting faults. For details, see
https://doi.org/10.1785/0220190083 and https://doi.org/10.1785/0220190234,
respectively.

Defmod has also been incorporated into Esh3D for solving Eshelby’s inclusion problem in full
and half space. See https://doi.org/10.1029/2018EA000442 for details.

https://doi.org/10.1016/j.cageo.2016.11.014
https://doi.org/10.1016/j.cageo.2018.01.015
https://doi.org/10.1785/0220190083
https://doi.org/10.1785/0220190234
https://doi.org/10.1029/2018EA000442

Acknowledgements

– PETSc team for providing a first class Fortran API and support

– Greg Lyzenga/Jay Parker (JPL) for providing the 3D viscoelastic strain rate matrices

– Chris Kyriakopoulos (UC Riverside) for his help in validating Defmod with ABAQUS

– XSEDE award for testing and benchmarking code on x86 Linux clusters

For more information visit https://bitbucket.org/stali/defmod

A short preprint describing Defmod is available at http://arxiv.org/abs/1402.0429

Some useful utilities/scripts are available at https://bitbucket.org/stali/defmod-utils

https://bitbucket.org/stali/defmod
http://arxiv.org/abs/1402.0429
https://bitbucket.org/stali/defmod-utils

