
knitr Graphics Manual
Yihui Xie
September 28, 2013

This manual shows features of graphics in the knitr package (version
1.5) in detail, including the graphical devices, plot recording, plot rear-
rangement, control of plot sizes, the tikz device, figure captions, anima-
tions and other types of plots such as rgl or GGobi plots.

Before reading this specific manual1, you must have finished the main 1 http://bit.ly/knitr-graphics-src

(Rnw source)manual2.
2 http://bit.ly/knitr-main-pdf

Graphical Devices

The knitr package comes with more than 20 built-in graphical devices,
and you can specify them through the dev option. This document uses
the global option dev=’tikz’, i.e., the plots are recorded by the tikz
device by default, but we can change the device locally. Since tikz will
be used extensively throughout this manual and you will see plenty of
tikz graphics later, now we first show a few other devices.

with(trees, symbols(Height, Volume, circles = Girth/16,

inches = FALSE, bg = "deeppink", fg = "gray30"))

60 65 70 75 80 85 90

20
40

60
80

Height

V
ol

um
e

●●●

● ● ●
●

●
●

●
●

●●● ●
●

●
●●●

●●
●●

●

Figure 1: The default PDF de-
vice.

Figure 2: The PNG device.

Figure 1 and 2 show two standard devices in the grDevices package.
We can also use devices in the Cairo or cairoDevice package, e.g., the
chunk below uses the CairoPNG() device in the Cairo package.

Plot Recording

As mentioned in the main manual, knitr uses the evaluate package to
record plots. There are two sources of plots: first, whenever plot.new()
or grid.newpage() is called, evaluate will try to save a snapshot of the

http://bit.ly/knitr-graphics-src
http://bit.ly/knitr-main-pdf

knitr graphics manual 2

current plot3; second, after each complete expression is evaluated, a 3 For technical details, see ?setHook and
?recordPlotsnapshot is also saved. To speed up recording, the null graphical de-

vice pdf(file = NULL) is used. Figure 3 shows two expressions pro-
ducing two high-level plots.

plot(cars)

boxplot(cars$dist, xlab = "dist")

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

0
20

40
60

80
12

0

dist

Figure 3: Two high-level plots
are captured. The key to arrange
two plots side by side is to spec-
ify the out.width option so that
each plot takes less than half of
the line width. We do not have
to use the par(mfrow) trick, and
it may not work in some cases
(e.g. to put base graphics and
ggplot2 side by side; recall Fig-
ure 1 in the main manual).

Figure 4 shows another example of two R expressions, but the sec-
ond expression only involves with low-level plotting changes. By de-
fault, low-level plot changes are discarded, but you can retain them
with the option fig.keep=’all’.

plot(0, 0, type = "n", ann = FALSE)

for (i in seq(0, 2 * pi, length = 20)) {

points(cos(i), sin(i))

}

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 4: Two complete R ex-
pressions will produce at most
two plots, as long as there are
not multiple high-level plotting
calls in each expression; option
fig.keep=’all’ here.

Together with fig.show=’asis’, we can show the process of plot-
ting step by step like Figure 5.

A further note on plot recording: knitr examines all recorded plots
(as R objects) and compares them sequentially; if the previous plot is
a “subset” of the next plot (= previous plot + low-level changes), the
previous plot will be removed when fig.keep=’high’. If two succes-

knitr graphics manual 3

plot(cars)

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

abline(lm(dist ~ speed, data = cars)) # a regression line

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

Figure 5: Low-level plot changes
in base graphics can be recorded
separately, and plots can be put
in the places where they were
produced.

sive plots are identical, the second one will be removed by default, so
it might be a little bit surprising that the following chunk will only
produce one plot by default4: 4 adapted from https://github.com/

yihui/knitr/issues/41

m <- matrix(1:100, ncol = 10)

image(m)

image(m * 2) # exactly the same as previous plot

Plot Rearrangement

We can rearrange the plots in chunks in several ways. They can be
inserted right after the line(s) of R code which produced them, or ac-
cumulated till the end of the chunk. There is an example in the main
manual demonstrating fig.show=’asis’ for two high-level plots, and
Figure 5 in this manual also demonstrates this option for a high-level
plot followed by a low-level change.

Here is an example demonstrating the option fig.keep=’last’ (only
the last plot is kept):

https://github.com/yihui/knitr/issues/41
https://github.com/yihui/knitr/issues/41

knitr graphics manual 4

library(ggplot2)

pie <- ggplot(diamonds, aes(x = factor(1), fill = cut)) +

xlab("cut") + geom_bar(width = 1)

pie + coord_polar(theta = "y") # a pie chart

pie + coord_polar() # the bullseye chart

0
10000
20000
30000
40000
50000

cut

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

Figure 6: Two plots were pro-
duced in this chunk, but only
the last one is kept. This can
be useful when we experiment
with many plots, but only want
the last result. (Adapted from
the ggplot2 website)

When multiple plots are produced by a code chunk, we may want
to show them as an animation with the option fig.show=’animate’.
Figure 7 shows a simple clock animation; you may compare the code
to Figure 5 to understand that high-level plots are always recorded,
regardless of where they appeared.

par(mar = rep(3, 4))

for (i in seq(pi/2, -4/3 * pi, length = 12)) {

plot(0, 0, pch = 20, ann = FALSE, axes = FALSE)

arrows(0, 0, cos(i), sin(i))

axis(1, 0, "VI"); axis(2, 0, "IX")

axis(3, 0, "XII"); axis(4, 0, "III"); box()

}

Figure 7: A clock animation.
You have to view it in Adobe
Reader: click to play/pause;
there are also buttons to speed
up or slow down the animation.

We can also set the alignment of plots easily with the fig.align op-
tion; this document uses fig.align=’center’ as a global option, and
we can also set plots to be left/right-aligned. Figure 8 is an example

knitr graphics manual 5

of a left-aligned plot.

stars(cbind(1:16, 10 * (16:1)), draw.segments = TRUE)
Figure 8: A left-aligned plot
adapted from ?stars (I call
this the “Maruko” plot, and
it is one of my favorites;
see http://en.wikipedia.org/

wiki/Chibi_Maruko-chan).

Plot Size

We have seen several examples in which two or more plots can be put
side by side, and this is because the plots were resized in the output
document; with the chunk option out.width less than half of the line
width, LATEX will arrange two plots in one line; if it is less than 1/3 of
the line width, three plots can be put in one line. Of course we can also
set it to be an absolute width like 3in (3 inches). This option is used
extensively in this document to control the size of plots in the output
document.

The tikz Device

The main advantage of using tikz graphics is the consistency of styles
between texts in plots and those in the main document. Since we can
use native LATEX commands in plots, the styles of texts in plots can be
very sophisticated (see Figure 9 for an example).

When using XeLATEX instead of PDFLATEX to compile the document,
we need to tell the tikzDevice package by setting the tikzDefaultEngine
option before all plot chunks (preferably in the first chunk):

options(tikzDefaultEngine = "xetex")

This is useful and often necessary to compile tikz plots which con-
tain (UTF8) multi-byte characters.

Figure Caption

If the chunk option fig.cap is not NULL or NA, the plots will be put
in a figure environment when the output format is LATEX, and this

http://en.wikipedia.org/wiki/Chibi_Maruko-chan
http://en.wikipedia.org/wiki/Chibi_Maruko-chan

knitr graphics manual 6

plot(0:1, 0:1, type = "n", ylab = "origin of statistics",

xlab = "statistical presentation rocks with \\LaTeX{}")

text(0.5, c(0.8, 0.5, 0.2), c("\\texttt{lm(y \\textasciitilde{} x)}",

"$\\hat{\\beta}=(X^{\\prime}X)^{-1}X^{\\prime}y$",

"$(\\Omega,\\mathcal{F},\\mu)$"))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

statistical presentation rocks with LATEX

or
ig

in
of

st
at

is
ti

cs

lm(y ~ x)

β̂ = (X′X)−1X′y

(Ω,F , µ)

Figure 9: A plot created by
tikzDevice with math expres-
sions and typewriter fonts. Note
the font style consistency – we
write the same expressions in
LATEX here: β̂ = (X′X)−1X′y and
(Ω,F , µ); also lm(y ~ x).

option is used to write a caption in this environment using \caption{}.
The other two related options are fig.scap and fig.lp which set the
short caption and a prefix string for the figure label. The default short
caption is extracted from the caption by truncating it at the first period
or colon or semi-colon. The label is a combination of fig.lp and the
chunk label. Because figure is a float environment, it can float away
from the chunk output to other places such as the top or bottom of a
page when the TEX document is compiled.

Other Features

The knitr package can be extended with hook functions, and here I
give a few examples illustrating the flexibility.

Cropping PDF Graphics

Some R users may have been suffering from the extra margins in R
plots, especially in base graphics (ggplot2 is much better in this as-
pect). The default graphical option mar is about c(5, 4, 4, 2) (see
?par), which is often too big. Instead of endlessly setting par(mar),
you may consider the program pdfcrop, which can crop the white
margin automatically5. In knitr, we can set up the hook hook_pdfcrop() 5 http://www.ctan.org/pkg/pdfcrop

to work with a chunk option, say, crop.

knit_hooks$set(crop = hook_pdfcrop)

Now we compare two plots below. The first one is not cropped
(Figure 10); then the same plot is produced but with a chunk option
crop=TRUE which will call the cropping hook (Figure 11).

http://www.ctan.org/pkg/pdfcrop

knitr graphics manual 7

par(mar = c(5, 4, 4, 2), bg = "white") # large margin

plot(lat ~ long, data = quakes, pch = 20, col = rgb(0,

0, 0, 0.2))

165 170 175 180 185

-3
5

-2
5

-1
5

long

la
t

Figure 10: The original plot pro-
duced in R, with a large margin.

165 170 175 180 185

-3
5

-2
5

-1
5

long

la
t

Figure 11: The cropped plot; it
fits better in the document.

As we can see, the white margins are gone. If we use par(), it might
be hard and tedious to figure out a reasonable amount of margin in
order that neither is any label cropped nor do we get a too large mar-
gin. My experience is that pdfcrop works well with base graphics,
but barely works with grid graphics (therefore lattice and ggplot2 are
ruled out).

Manually Saved Plots

We have explained how R plots are recorded before. In some cases, it
is not possible to capture plots by recordPlot() (such as rgl plots), but
we can save them using other functions. To insert these plots into the
output, we need to set up a hook first like this (see ?hook_plot_custom

for details):

knitr graphics manual 8

knit_hooks$set(custom.plot = hook_plot_custom)

Then we set the chunk option custom.plot=TRUE, and manually
write plot files in the chunk. Here we show an example of captur-
ing GGobi plots using the function ggobi_display_save_picture() in the
rggobi package:

library(rggobi)

ggobi(ggobi_find_file("data", "flea.csv"))

Sys.sleep(1) # wait for snapshot

ggobi_display_save_picture(path = fig_path(".png"))

One thing to note here is we have to make sure the plot filename
is from fig_path(), which is a convenience function to return the figure
path for the current chunk.

We can do whatever normal R plots can do with this hook, and we
give another example below to show how to work with animations.

library(animation) # adapted from demo('rgl_animation')

data(pollen)

uM <- matrix(c(-0.37, -0.51, -0.77, 0, -0.73, 0.67,

-0.1, 0, 0.57, 0.53, -0.63, 0, 0, 0, 0, 1), 4,

4)

library(rgl)

open3d(userMatrix = uM, windowRect = c(0, 0, 400, 400))

Warning: font family "sans" not found, using "bitmap"

plot3d(pollen[, 1:3])

zm <- seq(1, 0.05, length = 20)

par3d(zoom = 1) # change the zoom factor gradually later

knitr graphics manual 9

for (i in 1:length(zm)) {

par3d(zoom = zm[i])

Sys.sleep(0.05)

rgl.snapshot(paste(fig_path(i), "png", sep = "."))

}

rgl Plots

With the hook hook_rgl(), we can easily save snapshots from the rgl
package. We have shown an example in the main manual, and here we
add some details. The rgl hook is a good example of taking care of de-
tails by carefully using the options argument in the hook; for example,
we cannot directly set the width and height of rgl plots in rgl.snapshot()
or rgl.postscript(), so we make use of the options fig.width, fig.height
and dpi to calculate the expected size of the window, then resize the
current window by par3d(), and finally save the plot.

This hook is actually built upon hook_plot_custom() – first it saves the
rgl snapshot, then it calls hook_plot_custom() to write the output code.

How to Compile This Manual

This manual has a long chain of dependencies, so it may not be easy to
compile. These packages are required (all of them are free software):

R Cairo, ggplot2, tikzDevice, rgl, rggobi, animation (all available on
CRAN except tikzDevice which is on R-Forge for the time being)

LATEX animate, hyperref and the tufte-handout class

Other GGobi, pdfcrop

	Graphical Devices
	Plot Recording
	Plot Rearrangement
	Plot Size
	The tikz Device
	Figure Caption
	Other Features
	Cropping PDF Graphics
	Manually Saved Plots
	rgl Plots

	How to Compile This Manual

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PlayPauseLeft:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

